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ON THE ZETA FUNCTION OF
A COMPLETE INTERSECTION

By ALaN ADOLPHSON* aAnND STEVEN SPERBER

ABSTRACT. — In this article, we compute the p-adic Dwork cohomology of a smooth complete intersection in
T™ x A" or PV over a finite field (where T™ is the 7n-torus). As an application, we prove the “Katz Conjecture”
(i-e., the assertion that the Newton polygon lies over the Hodge polygon) for such varieties. This result is new in
the case of T™ x A". (The case of PV is due to Mazur [14].)

1. Introduction

In [9], Dwork developed a p-adic cohomology theory for smooth projective hypersurfaces
over finite fields. Given f € Fy[zo,z1,...,zn], a form of degree d defined over the field
of ¢ = p® elements, Dwork constructed a complex KP%(f) of p-adic Banach spaces.
When the hypersurface V(f) defined by the vanishing of f in P¥ is nonsingular and
has nonsingular intersection with every coordinate variety Hy = rW{:::1 = 0}, where

icA

AcS=1{0,...,N}, A# S, then the complex KP%(f) is acyclic except in degree 0.
The characteristic polynomial of Frobenius acting on H, gives the primitive part of the
middle-dimensional factor of the zeta function of V(f). From this vantage point, there
remained the problems of extending this work to varieties other than hypersurfaces, as
well as to treat even in the hypersurface case open or singular varieties. Of course, the
development of crystalline cohomology and rigid cohomology provided an excellent basis
for these generalizations.

Our goal in the present paper is to use the approach of exponential modules or twisted de
Rham theory pioneered by Dwork in the hypersurface case to treat complete intersections.
In this we are continuing the early work of Ireland [11] and Barshay [4], who studied
projective and multiprojective complete intersections from this point of view also. In their
work, they constructed a complex of p-adic Banach spaces KV (related to the complex
K.(S,S) of section 6 below), proved the acyclicity except in degree 0 of this complex
in the smooth case, and related the characteristic polynomial of Frobenius acting on Hy
to the zeta function of the complete intersection defined by the simultaneous vanishing of
forms f1,..., fr € Fy[zo,...,zn] in PY. Specifically, they showed that this characteristic
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288 A. ADOLPHSON AND S. SPERBER

polynomial equals a product of certain factors (which the Weil conjectures imply are
polynomials), from which they concluded this polynomial has the correct degree. They
were unable to show the factors themselves are polynomials. In particular, they were
unable to construct a finite-dimensional p-adic vector space with action of Frobenius
whose characteristic polynomial is the interesting factor of the zeta function of a smooth
projective complete intersection. We construct such a theory here.

The main application of our work that we give here is a proof of the “Katz Conjecture”
(i.e., the assertion that the Newton polygon lies above the Hodge polygon: see [14]) for
general smooth complete intersections in an affine space or a torus (as well as another proof
in the projective case). Previously, such results were known only in the proper case. We
note also that our approach eliminates the need to treat separately the case of hypersurfaces
of degree divisible by p (compare [9], [10]). In a future article, we plan to describe
the relation between the theory developed here and classical de Rham cohomology. In
particular, we believe that the description we give here of middle-dimensional cohomology
and of a procedure for finding a basis for it should be useful in calculations involving
the Gauss-Manin connection.

We describe our results more precisely. In the present work we study both
open smooth complete intersections (in T™ Xx A™) in sections 2-5 and projective
smooth complete intersections in sections 6-7. In the open case, we let fi,...,f. €
Fylz1,...,Tmtn, (¥1 - -2Tm)"!] be Laurent polynomials and V be the variety in
T™ x A™ defined by the simultaneous vanishing of the f;’s. If we set ¢ =

.
meJrnH fi(x1, ..., Tmin), then is is well-known that
j=1

L(T™ x A" x A", g;t) = Z(V/Fy;q"t),

where the right-hand side is the zeta function of V' and the left-hand side is the L-function
of the exponential sum associated to g. It is also known from our earlier work [1] that,
with S = {1,....m+n+r}, Sag={m+1,...,m+n+r}, there is a complex of p-adic
Banach spaces K.(S, S,¢) which satisfies

(1.1) L(T™ x A™ x A", g; )"V = det(I — t Frob | K.(S, Sat)),

where the right-hand side is shorthand for the alternating product of characteristic series
of Frobenius acting on the complex K.(S, S,r). While we have studied L-functions such
as (1.1) in the past, our earlier results need further refinements here. Even if we make
appropriate hypothesis on the f; to ensure that g is nondegenerate (in the sense of
Kouchnirenko [13]), the polynomial g is not commode (in the sense of [1]) with respect
to the set Squ, = {m+n+1,...,m+n+r} (and therefore, a fortiori, not commode with
respect to Sar). Setting Trint1 =+ ° = Tmintr = 0 in g gives the zero polynomial, i.e.,
this substitution causes the dimension of its Newton polyhedron to drop by m + n + r,
rather than simply r which is what the condition of being commode requires. We are
nevertheless able to calculate H,(K.(S,Sar)) in the open case of a smooth complete
intersection V in T™ x A™. Using this result, we are able to show that the Newton
polygon of the primitive part of the middle-dimensional factor of the zeta function of V
lies over its corresponding Hodge polygon.
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ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 289

In the projective case we change our enumeration and notation, letting fy,..., f.
T

be forms in F[zo,...,zn]. Let g = Zl'N_’_jfj(l'o,...,l'N), S =1{0,1,...,N +r},
j=1

Sep = {0,1,...,N}, Squ = {N + 1,1...,N + r}. The projective case is thus more
complicated even when g is nondegenerate since the Newton polyhedron has dimension
N + r rather that N + r + 1 (= |S|) and since g vanishes when one specializes all the
variables in either S, or Sqy to be 0. As we noted above, Ireland [11] was able to compute
the homology of KP¥ in the smooth case. Here we compute the homology of K.(S, S) and
show that the characteristic polynomial of Frobenius acting on H, gives the primitive part
of the middle-dimensional factor of the zeta function of the smooth projective complete
intersection defined by the simultaneous vanishing of the f;’s in P?V. Our main technical
tools in this analysis are some properties of Koszul complexes which we specify explicitly
in the appendix. It is interesting that these properties are, in the case of a hypersurface
defined by the vanishing of a form f, sufficient to guarantee that

det(I — tFrob | KP¥(£))"V""" = Z(V(f)/Fg;at)(1 - qt) --- (1 — ¢™'t)

even in the case f is singular. In the projective case, we also compare Newton and
Hodge polygons giving another proof of Mazur’s theorem [14]. In the course of this, we
specify a basis (valid for a Zariski open set of the moduli space of complete intersections
with specified degrees) for the primitive middle-dimensional cohomology of a projective
complete intersection, which may prove useful in explicit calculations.

The outline of the paper is as follows. In section 2, we compute the homology of
the complex K.(S, S.), which gives the zeta function of a smooth complete intersection
in T™ x A™ (Theorem 2.19). In order to estimate the Newton polygon of Frobenius
acting on homology, we need a more precise description of a basis for these homology
spaces. In section 3, we obtain such a description for K.'(S, S,¢), the “reduction mod
p” of K.(S, Sa), by first obtaining such a description for its associated graded complex
K.(S, Sat) (Theorems 3.26 and 3.37). We then explain in section 4 how this lifts to a basis
for the homology of K.(S, Sa.f), which in turn leads to a lower bound for the Newton
polygon of Frobenius acting on homology (Theorem 4.13). In section 5, we identify this
lower bound with a Hodge polygon by using the ideas of [6] to explicitly compute the
Hodge polygon of a general complete intersection in (T™ x A™)c. In sections 6 and 7,
we repeat the above procedure for smooth complete intersections in PV, Here some of our
arguments are sketchier, because they are analogous to the case T™ x A™ and because the
result in the projective case is already known [14]. In section 8, we collect some general
results on complexes that are useful in sections 6 and 7.

2. Cohomology of toric and affine complete intersections
Let p be a prime number, ¢ = p?, and let F, be the finite field of ¢ elements.
Let T™ be the m-torus over F, (i.e., T™ is the product over F, of m copies of
the multiplicative group) and let A" be affine n-space over F,. Put N = m + n.

Take fi1,...,fr € Fylz1,...,2n, (21 - 7,)7!] and let V C T™ x A™ be the variety

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



290 A. ADOLPHSON AND S. SPERBER

fr =---= fr = 0. We allow the possibility that m or n is zero. Let V(F,:) be the
set of Fg.-rational points of V and let N (V') be its cardinality. The zeta function of
V is defined to be

Z(V/F,;t) = exp (i NS(V)g)

s=1

We begin by re-expressing Z(V/F;t) in terms of L-functions of certain exponential sums.
Fix a nontrivial additive character ¥ : F, — C* and let ¥, = ¥ o Tracep . F, : Fgs —
C*. For an Fg-regular function h on an F g -variety X, define

S(X.h) = Y W (ha)),

mE‘X(Fq*‘)
oo ts
L(X,h;t) = Ss(X,h)— ).
(150 = e 5.0
We introduce dummy variables x41,...,ZnN4, and put
g=ani1fi(zy,...,an)+ AT fo(zy, .. on) € Fyly, . oy, (21 2m) Y]

It is easily seen that

(2.1) ¢ N, (V) = Z Z Us(g(z1,- .- TN4r)),s

@1y @ €F fy Tt 1o 8N4 €F g
or equivalently,
(2.2) Z(V/Fg;qt) = L(T™ x A™ x A", g; t).
Put A’ = A"\ {(0,...,0)}. Since g vanishes identically on T™ x A™ x {(0,...,0)},
an easy calculation gives
(2.3)  Z(V/F;q"t) = L(T™ x A" x A’, g;t) ﬁ(l — ()T
§=0

We regroup terms as follows. Define a rational function P(t) by

ronel o\ (=N
e P = (LT x AT x Al [T (=g |
7=0
so that (2.3) becomes
N 1N—'r ‘ N
(2:5) Z(V/F ;') = (P(£)(1 — g)-")) D" T (1= ) () 0T
i=1

b

where we understand (a) =0if b <0 or b > a. We shall identify the factors on the
right-hand side with the action of Frobenius on p-adic cohomology spaces when V is
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sufficiently smooth. In particular, P(¢) will be the polynomial corresponding to the action
of Frobenius on the primitive part of middle-dimensional cohomology. For purposes of
induction on r, it will be convenient to allow r = 0. In this situation, we understand that
V =T™x A" and P(t) = 1.

We apply the theory of [1] to the L-function L(T™ x A™ x A", g;t). For a Laurent
polynomial h over any field in variables 1,7, ..., zx, 2} ', we denote by supp(h) C R*
the set of exponents of the monomials appearing in h, thought of as lattice points in R*.
Let A C RN*" be the convex hull of the origin and supp(g). Let C(A) be the real
cone generated by A, i.e., the collection of all nonnegative real multiples of points of
A. Put M = ZN*" N C(A). For u = (u1,...,un4r) € C(A), define its weight w(u)
by w(u) = un41 + -+ UNLr. :

Let Qo = Q,((ps (g—1), Where Q, denotes the p-adic numbers and ¢, and (,—; denote
primitive p-th and (g — 1)-st roots of unity, respectively. We normalize the p-adic valuation
ord on 2y by setting ord p = 1. Let Oy be the ring of integers of {3y and let # € Oy be
a uniformizing parameter, so ord 7 = 1/(p — 1). A key role will be played by the p-adic
Banach space B and its unit ball B(Oy):

B= {Z A, m g | A, € Qo, Ay — 0 as u — oo},
uEM -

B(0o) = {Z A,z € B | A, € O, for all u}.

uEM

The norm on B is defined by

Iy Aur ™z = sup | A
weM ueEM

It will be useful to consider some related spaces as well. For b,c € R, b > 0, define

L(b,c) = {Z Aux® | Ay € Qo, ord A, > bw(u) + ¢},
u€EM

L(b) = |J L(b,¢).

ceER

Note that we have L(b) C B C L(1/(p — 1)) for b > 1/(p — 1).
Define an operator ¢ on formal power series over M by

1/’(2 Auzt) = Z Apuz®.

u€M uEM

Observe that ¥(L(b,c)) C L(pb,c). Associated to g is a series Fy(z) € L(p/q(p — 1),0)
(see [1, equation (1.15)]) with the following property. Put o = * o Fy, the composition of
¥* with multiplication by Fy(z), where a = [F, : F,]. Then « is a completely continuous
Qo-linear endomorphism of B and of L(b) for 0 < b < p/(p — 1). Furthermore,

)N+'r—1 5N+r

(2.6) L(TN*7 g; 1)1 = det(I —ta)® ",
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292 A. ADOLPHSON AND S. SPERBER

where det(] — ta) is the Fredholm determinant of « as operator on B or any of the L(b),
0<b<p/(p—1), and § is the operator on formal power series in ¢ with constant term
1 defined by h(t)® = h(t)/h(qt).

We now explain how to modify this purely toric case to obtain L(T™ x A™ x A", g; ).
Different variables will play different roles in the argument, and we index them accordingly.
The set of all variables is indexed by S = {1,..., N + r}. Toric variables are indexed by
the set S, = {1,...,m}, affine variables by S,s = {m +1,..., N + r}, space variables
by S, = {1,..., N}, dummy variables by Sq, = {N + 1,...,N + r}. For any subset
I C S, we use subscripts to denote its intersection with these subsets, e. g., Iy, = I N So.
For any finite set I, we let |I| denote its cardinality.

Fix I C S with S, C I and let g; € Fy[{zi}icr, (z1,...,%m) ] be the polynomial
obtained from g by setting z; = 0 for j € Su¢ \ I. For j € Sut, let 6 : B — B be the
map “set £; = 0” and let 8; be the composition §; = H 6;. We define B; = 0;(B),

FESa\I
BI(O()) = HI(B(O())), L[(b,c) - HI(L(b,C)), L[(b) = HI(L(b)), and ar = d}a o 9[(F0)
We observe that by [1]

(2.7) LT g )0 = det(T — tag)®",

where «; may be regarded as acting on By or any of the L;(b), 0 < b < p/(p—1).

Equation (2.6) may be interpreted as follows. In [1, section 2] it is shown that there
exist elements H; € L(p/(p — 1), —1) such that the (commuting) differential operators
D; = x,@/ax, +H,:=1,...,N +r, satisfy

(2.8) aoD; =qD;oax
as operators on B or L(b), 0 < b < p/(p—1). Let K. = K.(B,{D;}t") be the Koszul
complex on B defined by D, ..., Dy.,. For 0 <1 < N +r, its component of degree [ is
K, = @ Bea,
|A|=t

where the sum is over all subsets A C S of cardinality ! and e, is a formal symbol.
The boundary map 0; : K; — K;_; is given by: if £ € B and A = {iy,...,%} with
1, < --- < 1y, then

l

a(€ea) = Z )’ 7IDi; (€) eavgisy-

7j=1
Define an endomorphism «; : K; — K; by
- @ i
|A|=1
Then (2.8) implies that «. is a chain map on K., hence by (2.6)

N+4r

= T det(I - toq | Kp)V'.
=0

1N+l

(2.9) L(TN*7 ;1)
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ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 293

Passing to homology, we have

N+4r
(2.10) L(TN*7 gty O™ = T det(I - tau | Hi(K.))Y',
=0

where @; is the endomorphism of H;(K.) induced by «; on K;.
For I C S with Sy, C I, put Dy ; = x;0/0x; + 6;(H;). We denote by K.(I) the Koszul
complex on By formed by the operators Dy ; for ¢ € I. In particular,

Kl(I)Z @ BIeA‘

ACI, |Al=l
We have in analogy with (2.10)
|1l—1 |1 i
(2.11) L(TV g 0) V7 = Hdet(I —tary | Hi(K.(I)Y.
1=0

Usually, no confusion will result if we denote &;,; simply by &; or even &.
The complexes K.(I) can be tied together by introducing some subcomplexes K.(I,I').
For I C S with S, C I and I' C I, let

Bf = () ker(6: | Br),

iel’

i.e., BI' consists of all elements of B; that are divisible by x; for all s € I'. Let K.(I,I")
be the subcomplex of K.(I) defined by

K= @ B \Vea

ACI, A=l
Note that for 7 € Iz, + ¢ I’, there is an exact sequence
0— Bf Y% - B % BL . — 0,
which induces an exact sequence of complexes
(2.12) 0— K.(I,['u{i}) - K(I,I') - K.(I\ {i},I') — 0.

Using this exact sequence, equation (2.11), and induction on |I’|, the natural toric
decomposition of AlT'l gives

11
(213) LTI % AL gy = T det(I - ta | Hy(KL(1, 1)V

=0
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294 A. ADOLPHSON AND S. SPERBER

To be precise, the left-hand side is the L-function corresponding to the exponential sum
> ¥(g1(x)), where z; runs over F, for i € I' and over F for i € I, i ¢ I'. In particular,
taking I = S, I’ = S,¢, we have by (2.2) that
N+r
(2.14) Z(V[Fy;qt) V" = T det(I - ta | Hi(K.(S, 8a))) 7V
1=0

Let A; C R be the convex hull of the origin and supp(g;). In particular, A = Ag.
We make two assumptions about g. We assume that for every subset I C S such that
Sio C I and Iy, # © we have dimA; = |I|. We call g semi-convenient when this
condition is satisfied. (When g is semi-convenient, g will be “commode” in the sense of [1]
with respect to any subset I C S,¢ such that Sq, € I.) When n = 0, this is equivalent
to requiring that the convex hull of supp(f;) have dimension m for s = 1,...,r. When
m = 0, it is equivalent to requiring that each f; contain terms ai]-:vf"" for j=1,...,n,
with a;; # 0 and k;; > 0, and that f;(0,...,0) #0 for ¢ =1,...,7. We also assume that
g is nondegenerate (see [1, section 2]), which implies that g; is also nondegenerate for all
I C S. Geometrically, this means that for all / C S, with S;, C T and J C {1,...,7},
the equations 6;(f;) = 0 for j € J define a smooth complete intersection X in the torus
TH! and that there is a compactification Y of the torus in which its closure X is smooth
and meets all orbits transversally. This condition is generically satisfied ([3], [12]).

By [1, Theorems 2.9 and 3.13] we have the following.

THEOREM 2.15. — Suppose that g is nondegenerate and semi-convenient. For I C S with
Sto C I and I' C I¢ with I}, # L4y, we have Hi(K.(I,I')) = 0 for I > 0, & is invertible
on Ho(K.(I,I')), and

(2.16) dimg, Ho(K.(I,T')) = Y (=)"=(7])1vol(A,),

I\NI'CJCI

where Vol(A ;) denotes the volume of A relative to Lebesgue measure on RI7!. Thus
by (2.13),

LT A gy = det(T — ta | Ho(K.(I, 1))

is a polynomial whose degree is given by (2.16).

Using this theorem and induction on r, we shall compute the homology of K.(S, Sat),
which by (2.14) is the complex that gives the zeta function Z(V/F; ¢"t). First, for later
application, we modify the formula (2.16) for dimgq, Ho(K.(I,1I")). For Sy, C I C S,p,
let Al ¢ R/ denote the convex hull of supp(f;(fi)), i = 1,...,r. Regarding R as
R/7=»l x Rl7aul, the projection of Ay C RI/I on Rl is the simplex

A ={(X)jeta Z Aj <1, Aj > 0for all j}.

Jj€Jau
The fiber of A; over (A))jes.. € A is the Minkowski sum Z AjAjsP, thus
J€Jau
Vol(Ay) = / Vol( D= NAfe) A dy;,
A J€Jau J€Jau
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ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 295

where Vol( Z /\]-A;*"’) denotes volume relative to Lebesgue measure on R!’s»!. It is
jEJdu
a theorem of Minkowski that Vol( Z )\jAf") is a homogeneous polynomial of degree

jGJdu
|Jspl in {)‘j}jé-fdu’ speciﬁcally,

T . J,
VoY aaiy =y sl PI)'M({A;’ Uhens) TT MY
i€ T L=l [T & i€ Ja

€Ty J€Jau

where M ({A;’s",l,-}je Ja.) denotes the Minkowski mixed volume of the collection of

| Jop| polytopes in RI’s! obtained by taking A‘j]”" with multiplicity /;. Induction on |Jg|
shows that

T &
/AH /\;j /\ 7y j€Jau

i€Jan  §€Ta (aal + Y 1)!
jeJdu
T &
— je']du
(-
hence evaluation of the above integral for Vol(A ;) gives
(2.17) (TDIVOl(AS) = (1)t D MUAT" i} jes)-
2 lj=|Jsp|
i€Jgu

When A‘j]s" is a single point and [; = 0 for all j € J4,, we define M({A]J-“’, litiesw) =1,
so that (2.17) remains valid even when J, = (. (This case will arise when we try to
generalize (2.16) to the case where I’ = I, when m = 0.)

Substituting the right-hand side of (2.17) into the right-hand side of (2.16) gives

dimg, Ho(K.(I, 1)) = > (=DM V(U Dt Y M{A™, L} ea)-
INI'CICT S L=l
i€Jaqu

To simplify this expression, we define an equivalence relation on the pairs (J, {l;};es..)

with 7\ I' C J C I and Z l; = |Jsp| that appear in this sum. Let J; = {j € Jq, |
J€Jau

l; > 0}. Define (J,{l;};jcs.) ~ (J’,{l;}jeJéu) if Jop = Jop, Jy = J., and I; = I’ for

j € J4. When two pairs are equivalent, we have

s T
M({A;I ’lj}jeJdu) = M({A] )l;}jGJ(’,u)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



296 A. ADOLPHSON AND S. SPERBER

since both collections consist of the same polytopes repeated with the same multiplicities.
Note that each equivalence class contains exactly one representative of the form
(G U Lau, {1} jers,)> where I, \ I, € G C Iq,. It follows that

dimg, Ho(K.(I,1'))
= Y ComEEgE Y MAAT Lhen) Y (<1l

Isp\Is,nggIsp Z lJ=|G|
J€lgqy

where S denotes a sum over pairs (J',{li}jes; ) in the equivalence class of the
pair (G U lay, {l;}jer,,)- For every pair (J',{l;}jes; ) in this equivalence class, the
set Jj, can be represented in the form Jj, = I4,4+ U F for a unique subset F,
Igw \ (I§y U lguy) € F C Iau \ lau+ (namely, j € F if and only if I} = 0). In
terms of F', the innermost sum in the previous equation becomes

Z (_1)|Idu|_lIdu,+[_lF|.

Tau\(I},V]Iau,+)SF Clau\Tau,+

Putting F' = I3, \ (Iqu,4+ U F), this sum becomes
+

> e

OCF' CI) \lau,+

But this clearly vanishes unless I}, C I, + (i.e., [; > 0 for all j € I},), in which case it
equals 1. We may thus restrict our sum to the classes of those pairs (G U Iqy, {/;}je1,.)
for which /; > 0 for all j € I}, and take a single representative from each of these classes.
With a slight change in notation, the formula becomes

(218) dimgo H()(K(I, I/))
= > (=yVIgap YT M{AY Liber,).

ISP\IénggIsp Z 1,=|J|
i€lygy
1;>1 for i€},

Let I C S with Sy, C I and let I" C I,s. When H;(K.(I,1I')) is finite-dimensional
for all I, we define

1l
X(I,I') = > (1) dimg, Hi(K.(I,I')).

=0

THEOREM 2.19. — Suppose that g is nondegenerate and semi-convenient. Then
(i) dimg, H;(K.(S, Saf)) < o0 for all 1.
(i) H;(K.(S,Sa)) =0 forl > N —r.
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(iii) Forl=1,...,N —r, dimg, H;(K.(S, Sat)) = (l+:"n—n)
multiplication by q"*". In particular, det(I — ta | Hi(K.(S, Sat))) = (1 — ql+rt)(,+;"_n)
forl =1,....N —r.

(iv) det(I — ta | Ho(K.(S, Sar))) = P(t)(1 - qrt)(:‘n).

(v) There is a subspace H' C Ho(K.(S, Sas)) of dimension (™) on which Frobenius
operates as multiplication by q". In particular, det(I —ta | H') = (1 — qrt)(r’l‘n) and
P(t) is a polynomial.

(vi) For r > 1,

X(8, )= > (=)NVigapr M(AYig;. .5 A7 ).
Sto CICSep i1t tin=|J|
i;>1 for all j

and Frobenius operates as

Proof. — Note that assertion (iv) follows immediately from equations (2.5) and (2.14)
and assertions (ii) and (iii). We prove statements (i), (ii), (iii), (v), and (vi) by induction
on r. To simplify notation, we write H;(I,I’) in place of H,(K.(I,I)).

Suppose 7 = 0, so that S;y = {m + 1,...,m + n}. In this case ¢ = 0, so
A=(0,...,00 e RY, M = (0,...,0) € RN, B = Q, and the differential operators are
D; = x;0/0x;, which act trivially on §2. It follows that K.(S, Sa¢) is the complex with
Ki(S, Sa) = (QO)(lTn) and all boundary maps trivial. Thus when r = 0, H;(S, Sa¢) is a
space of dimension (l:”n) with Frobenius acting as multiplication by ¢'. This is exactly
the assertion of the theorem. We observe that for » = 0,

l m 0 form >0

— _1)! _ ,

(220) X(S, Saf) - l_O( 1) (l _ n) - { (_l)n for m = 0.
Suppose the theorem true for » — 1. For notational convenience, put S’ = {1,..., N +

r — 1}. From (2.12) we get a short exact sequence

(2.21) 0— K.(S,S.) — K.(S,Su) — K.(S",S%) — 0,

and by Theorem 2.15, H;(S,S.;) = 0 for | > 0. The associated long exact homology
sequence then gives an exact sequence

(222) 0— Hl(S', S;f) — H()(S, Saf) s I{()(S7 S;f) — H()(S/ SI ) -0

) Maf

and isomorphisms for [ > 1
(223) H[(S, Saf) ad H1_|_1(S/, S;f).

Assertion (i) is now immediate from Theorem 2.15 and the induction hypothesis. We apply
the induction hypothesis to compute the homology of K.(S’, S.;). We have H;(S’,S.;) =0
for ] > N —r+1, so by (2.23) we have H(S, Sas) = 0 for [ > max{0, N — r}. This
establishes (ii) when N — r > 0. (The proof of (ii) when N — r < 0, i.e., the proof that

Hi(S,Sa) = 0 for all [ when N —r < 0, is given below.) For 1 <[ < N —r +1,
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Hy(S',8Y) is (,,,™ _,)-dimensional with Frobenius acting as multiplication by ¢"*"~*,
hence for 1 <1 < N —r, it follows from (2.23) that H;(S, Sa¢) is (, +’T"_n) -dimensional with
Frobenius acting as multiplication by ¢'*". This establishes assertion (iii). The space H’
of assertion (v) is the image of H,(S’,S.;) under the injection H,(S’, S.;) — Ho(S, Sat)
of (2.22).

To prove (vi), we observe that the short exact sequence (2.21) gives

X(S, Saf) = X(S7 S;f) - X(Slv e;f)'

From (2.18) and Theorem 2.15 we have

2.24 x(8,5) = DNVl M(AY iy .. A7 i),
af 1 r
St0CJICSep i1+ tin=[J|
i15eip_121

When r > 2, the induction hypothesis gives

(225) x(8,Sw) =Y, (=N YT M(A iy AL i),

St CICSsp i1t i1 =|J|
i1,eip_1221

Subtracting (2.25) from (2.24) gives assertion (vi) when r > 2. When r = 1, we follow
the same argument except that x(S’, S’;) is no longer given by the induction hypothesis
but rather by the right-hand side of (2.20).

It remains to prove (ii) and (vi) when N —r < 0. Since the expression for x (S, Sa¢) in (vi)
vanishes for N —r < 0, we see that (vi) follows from (ii) in this case. Suppose N —r = —1.
Then dimg, Ho(S, Sk;) = x(S, S.;) by Theorem 2.15 and dimg, Ho(S’, Si;) = x(5’, Ss)
since H;(S’, Sl;) = 0 for { > 0 by (ii) (in the case N —r = 0, which was already proved).
But x(S,S%) = x(5’, Sl¢) by evaluating (2.24) and (2.25) with N — r = —1, so the map
Ho(S,S%;) — Ho(S',S.) in (2.22) is an isomorphism. Since Hq(S’, S.¢) = 0, it follows
that Hy(S, Sat) = 0, thus (ii) and (vi) are established for N — r = —1. For N — r < —1,
we have Ho(S,S.;) = 0 by (2.24), hence Hy(S, Sar) = 0 by (2.22).

3. Complexes in characteristic p
From Theorem 2.19 we have
(3.1) P(t) = det(I — ta | Ho(K.(S, Sa)))/(1 — g"t) (7).
Our goal (Corollary 4.14 below) is to use this formula to give a lower bound for the Newton
polygon of P(t). Later, we shall identify this lower bound with the Hodge polygon
of the primitive part of middle-dimensional cohomology of the complete intersection
F,=...=F =0in (T™ x A")c, where F; € Clz1,...,zn, (1 Tm) 7] is the
generic polynomial with the property that the convex hull of supp(F;) coincides with the

convex hull of supp(f;).
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The first step is to describe a basis for Ho(K.(S, Sat)). In fact, it is no more difficult
to do this for all H;(K.(S, Sas)). We begin by considering some related complexes in
characteristic p. Let R be the ring R = F,[z* | u € M]. This ring is graded by the weight
function defined earlier, namely, let R(*), the homogeneous part of degree k, be the span

of all monomials z* with w(u) = k. For s =1,...,N + r, put
9

3.2 : — Ly R(l)

( ) g T 8{Ei €

Let K. = K.(R,{g:}\%") be the Koszul complex on R defined by gi,...,gn4,. Grade

K. so that the boundary maps J; are homogeneous of degree 0, i.e.,

R—l(k): @ R*De,.

ACS, |A|=l

For I C S with S;, C I, we may regard ; as an endomorphism of R, homogeneous of
degree 0, and define Ry = 6;(R). We also put

91 1
(3.3) 9ri = Tig - € R{Y
for i € I and let K.(I) = K.(Ry,{g1:}icr) be the Koszul complex on R; defined by
the g;; for i € I. For I' C L, let

RY = () ker(6; | Ry),

iel’

the elements of R; divisible by x; for all i € I'. Let K.(I,I') be the subcomplex of
K .(I) defined by

(3.4) K(I,I= @ R Mea
ACI, |A|=l

For i € I;, i ¢ I’, we have, as in (2.12), an exact sequence of (graded) complexes
(3.5) 0— K.(I,I'U{i}) — K.(I,LI') = K.(I\{i},I') — 0.

We shall compute the dimension (over F,) of H;(K.(S,Sa))*), the homogeneous
component of H;(K.(S,S.)) of degree k, for all I and k and use this information to
describe a basis for H;(K.(S, Saf)). The answer will be expressed in terms of certain
invariants of certain polyhedra. As before, let Afs” be the convex hull of supp(fz,, (f:)).
i=1,...,7. When m = 0 and I, = (), we assume f;(0,...,0) #0fori=1,...,7, so
that A? £ §. As before, A; will denote the convex hull of the origin and supp(6;(g)).

For any set Y C RY, let £(Y) denote the cardinality of Y N Z". For any subset I C S
with S¢o C I, set 6(1) = {j € {1,...,7} | N+ j € I4,} and define a power series in

the variables ¢; for j € 6(I) by

= I, k;
36)  P({tilesy) = Y. LY kA I t7 € Zll{t}iesn]l-
k=0 jes(D) jes(n)
for jE6(I)
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It is easily seen that
(3.7) Pr = Pr,usu, |t;=0 for jgs(n)-

It is well-known that £(k, Al + ... + k,AF?) is a rational polynomial of degree < [ Isp|
in ky,...,k., say,

U AT 4 B AR = STl kS € QL. k)
ertter<|Lsp|

Thus

r

PIspUSdu(tl7"'at7')= Z Z ael e"H( 8t) t’;l...tfr

ki,....kr=0 el+"'+er$|Isp|

b T (62 (17—
= Z Qey - erH(tfgtj) (gl—tk)

e1+-+er<|Lsp| j=1

= ¥ PeFee (b ste)
ert e, <| Ll H(l—tj)eﬁl

Jj=1

for some polynomial pel e, (t1,...,tr) € Qlt1,...,t.]. Note that if e; > 0, then
pel...e,(th-.-,tr) is divisible by ¢;, and if e; = 0, then ¢; does not appear in
pgj‘i.er(tl, ..., t,). Furthermore, degpffl‘i.er(tl, ..ytr) = €1+ -+ e, unless a£1 e, =0,
in which case this polynomial vanishes. From (3.7) we have

I
peslp-ner(tlv ERE) tT‘)
(3.8) Pr({t}ies) = > 1
1—t;)%*
e1+'“+5rS|Ispl H ( J
e;=0 for j&6(I) jes(I)
It is easily seen from the definitions of A; and the weight function w that

dimg, R = 6(kAL) — £((k — 1)Ap),

iLe.,

Mg

(3.9) (dimg, Rt —1) Y U(kAn)t
k=0

>
Il

0

We regard RY as being fibered over R!%:l. The fiber of C(A;) over a point
(kj)jesu) € Nlaul s Z ij]If". Hence
JES(I)

TINMENSY é( > ij]I_sp)’
> ki<k Cd€s()
Jjes(I)
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i.e., by (3.6)

(3.10) (1= Y LkANE = Pr({t;}iesm)le=t for ses(n)-
k=0

It now follows from (3.8) and (3.9) that

oo Isp
erren (Bynnyt
Z(diqu ng))tk _ z Pere L ) )
k=0 e14-ter<| Lyl Taul+Y €5
e;=0 for j&56(I) (1 — t) i=1

Define

(3.11) 4 (1) = PEre (o (1 = )10 € Q).
Then

(3.12) > (dimp, R = (1) N gl (#),

=
Il

0 e1+-Fe.<|Lsp|
e;=0 for jg6(I)

Note that if A = card{j | e; > 1}, then grr . (t) is divisible by ¢4. Furthermore,
deg qij‘?..er(t) < |Igp|. Tt is clear from the definitions that pés.'?,o(tl,...,tr) = 1, hence
a7o(t) = (1= t)lfel.

LEMMA 3.13. — Suppose that g is nondegenerate and semi-convenient. Then for I C S
with Sy, C I and I4, # 0, we have Hi(K.(I)) = 0 for | > 0 and dimg, Ho(K.(1))®

is the coefficient of t* in

Yo ).

e1+-+er<|Isp|
e;=0 for j&&6(I)

Proof. — The complex K.(I) is acyclic in positive dimension by [13] (see also
[1, Theorem 2.17]). The formula for dimp, Ho(K.(I))*¥) follows from this acyclicity
and (3.12).

Since K;(I,I')®) and Hy(K.(I,I'))*) are always finite-dimensional, we may define

1]
(1,1 = Z(—l)’ dimg, K;(I1,1)®

1=0
1]

=Y (-1)'dimp, H/(K (I,I')®.
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Lemma 3.14. — Suppose that g is nondegenerate and semi-convenient. Let I C S with
Sio C I and let I' C L. Then x®(I,1') is the coefficient of t* in

(315) ) Z (__1)|Isp|_|J| Z qé’lmer(t).

Lp\I{,CJICI; e1+-+e.<|J|

e;=0 for jZ6(I)

e;>1 for jE€6(I")
If in addition I}, # lau, then Hi(K.(I, 1)) = 0 for | > 0, hence dimp, Ho(K.(I,1'))*)
is the coefficient of t* in (3.15).

Proof. — When I}, # L4y, gr is nondegenerate and commode (in the sense of [1]) with
respect to I’, so the complex K .(I, 1) is acyclic in positive dimension by [1, Theorem 2.17],
and we need to prove only the formula (3.15) for x®) (I, I").

From the definitions,

B(LINW= @ R M+ e,
ACI, |A|=t
We fix a set T' C I' and ask for which A C I, |A| =1, we have I' \ A = T Clearly, we
must have A = (I’\T)UT, where T' C I \ I’ has cardinality { + |T'| — |I'|. Thus

11|

(k) N — _1)\! ] — || . T,(k—1)
(3.16) ™1, 1) ;( 1) TZ:? <l+|T|—|I’| dimg, Ry 7Y,

A formula for dimp, R?’(k_l) can be obtained from (3.12). A standard inclusion-exclusion
argument shows that

S e, IO~ 5 (1) e, F
k=0

k=0 INTCJCI

Substituting from (3.12) into this formula and using (3.16) we see that ¥(*)(I,I’) is the
coefficient of t* in

11

e (M-I Y,
YD (S

TCI
_ _ Jep

x Y (=pMIE -y YT gl (1)

I\TCJCI ert+ter<[Jspl

e;=0 for j&6(J)

Fix a subset K C I, and fix e1,...,e, with e; +--- + ¢, < |K|. We ask for the
coefficient of qg e, () in (3.17). Let A C Sq, be the set of all indices N + j such that
ej # 0. The equality of (3.15) and (3.17) is equivalent to the assertion that the coefficient
of gX . (t) in (3.17) is

(3.18) { (—1)\Eel=IKl i [\ T C K C Iy and I, C A C L.,
0 otherwise.
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It is clear that g%, (t) does not appear in (3.17) unless I\, C K C I, and A C I,
Assume from now on that these conditions are satisfied. Then qf:,_.er(t) will appear in
(3.17) for each J, I\ T C J C I, such that J, = K and Jg, 2 A, thus the coefficient
of ¢X . (t) in (3.17) is

1]

(3.19) ;(—1)’ > (l JIrIllT*I |_I'||I,|>tl > (=)I=M1(1 — )=,

TCIr I\TCJCI
Jsp=K and Jq,2A

We show this expression equals (—1)/%»I=IX1 if [} C A and equals 0 otherwise.
We evaluate the innermost sum in (3.19) first. Note that it is the empty sum unless
I, \ T., € K. When this condition is satisfied, it equals

Z (_1)|Idul—|LI(1 _ 75)—|L|
AUIau\Tau)CLCIau

_ (e e (|1du| — AU (Igu \ Tay)|
(1 _t)lKl j_ 'AU(Idu\Tdu)l

(—=1)/Lrl=IKI
(1 —t)Kl

)iy,

7=|AU(Tau\Tau)|

where we have set j = |L| in the second expression. Replacing j by j + |AU (Lau \ Tau)|
and using the fact that |Iq,| — |A U (Zau \ Tau)| = |Tau \ 4|, this simplifies to
(=1) /el —IK 1 4iTau\4]

Substitution into (3.19) transforms that expression into

|| |Il _ |I/| (_1)|ISPI_|K|t|Tdu\A| £ T \T CK
1\l L, I Iy - 5
(3.20) Z( 1) Z (l + 7| — llll)t { (1 — t)IKI+Taul P ' sp
1=0 TCI 0 otherwise.
Interchanging the order of summation transforms this into
_ |1
(—1)Lel=IKI [Tau\A| [l =7 l
. N -y u —t)".
(3.21) (1 — t)IK I+ Taul Z t Z l+|T| - |I'| (=)
TCI' =0
I \T.,CK

The inner sum in (3.21) equals

|I|_|I'| —|I|—|I’| lIl_II/l .
(l + |T| — |I/|) (—t)l — Z ( l )(_t)l-f—l [—|T|

1=0
= (—)lT1=ITI(q gyl

Substituting this last expression into (3.21) gives

[1|-17

I=|I'|-|T|

(=1)Hel=IXI Tau\Al(_p\|T'|=IT]
(3.22) (1 _ t)'I,'+|Kl_,ISPI Z t (_t) .

TCr
Isp\Tsp CK
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The decomposition T' = T, U Ty, induces a decomposition of the sum appearing in
(3.22) as a product of two other sums, i.e., (3.22) equals

(_1)Ifsp|—|Kl

£) 1T =173 IT\AL(__g) o =121
(3.23) (1 — ) HIK= L] > DI B
Isp\KnggI' T,CI,

where we are implicitly using the assumption made earlier that I, \ I, C K, otherwise
the first of these sums is empty. Evaluating the first sum we get

[ Lepl
- . |Is, |_|Isp‘+|K| |1l =3
(_t)llspl [T1| — ( P (—t) apl—7
Z Z J - |Isp| + |K|

L\KCT:\CI., =ILp || K]
[ =1 Lsp [+ K|
_ Z (| ol — |I?pl+|K|)(_t)|1;p|_|15p|+|x|—j
=0 J

= (1 — t)II;p|_|15p|+|K|,

hence (3.23) becomes

( 1)|ISP|_[K|

(3.24) T

Z tsz\Al(_t)Véul—szl_

T:CI4,

To complete the proof of Lemma 3.14, we need to show that the sum in (3.24) equals
(1 — t)fal if ) C A and is O otherwise. Putting B = T, \ A we have

(3.25) PR CHEIEEY S (1) el Tl T B

T,CI, BCI\ \A T,CI,,
T,\A=B

Putting j = |T»| and writing 7> = B U (T3> N A), a disjoint union with T, N A C I} N A,
we see that the inner sum equals

|B|+14,nAl 175,04

Z ('I!iuT‘T|)(_1)|Iéu|—jtlléu|—j+lB|: Z <|IduﬂAl)( 1)Maul=3+IBl g, 1=
i—|B '

i=1B] i=0 J
= (_1)lB|(_t)lIéu\A|(1 — t)lIéunAl.

Substituting this result into the right-hand side of (3.25), that expression becomes

(=) au\Al(1 = )llaanAl Z (=18,

BCI) \A

But this sum is clearly O unless I3, C A, in which case the entire expression clearly
equals (1 — t)Haul,
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THEOREM 3.26. — Suppose that g is nondegenerate and semi-convenient. Then
(i) Hi(K.(S,84)) = 0 for I > N —r.

— m -
(ii) For [ = 1,...,N —r, dimp, Hy(K.(5,84)® ={ \ ;1 p_p) FE=1ET
~ otherwise.
(iii) dimg, Ho(K.(S, Sat))®) is the coefficient of t* in

N
Z(—1)J‘—"-1(],Tn>tf+ Sooo=nv o gL ).

Jj=r+1 Sto CJCSsp e1+--+er<|J|
e;j>1 for all j

In particular, Ho(K.(S, Sa5))® = 0 for k < r or k > N.

Remark. — When r = 0, i.e, Sat = {m+1,...,m + n}, Squ = 0, we understand
the second sum in Theorem 3.26 (iii) to be simply Z (-1)N-Vlgd @) =
$t0CICSep
(=t)™(1 — t)™. The whole expression in (iii) is then just equal to 1 if n = 0 and
equal to 0 if n > O.

Proof. — To simplify notation, we write H;(I,1I’) in place of H;(K.(I,I’)). We note
first that by Lemma 3.14, (iii) follows from (i) and (ii).

The proof of (i) and (ii) is by induction on r. Suppose r = 0. Then K.(S, Sa¢) is the
complex K;(S,S.) = (Fq)(l:nn) with all boundary maps trivial. Hence H;(S,Sas) = 0
for | > N, and for 0 < [ < N we have

m .
(3.27) dimg, Hi(S, Sa) ¥ = { (z n) if k=1,
0 otherwise.

This is exactly the assertion of the theorem when r = 0.
Suppose the theorem true for » — 1. For notational convenience, put S’ = {1,..., N +
r — 1}. From (3.5) we get an exact sequence

0 — K.(S,S.) — K.(S,S) — K.(S',S) — 0,

and by Lemma 3.14, H;(S,S.;) = 0 for [ > 0. The associated long exact homology
sequence then gives an exact sequence

(328) 0— Hl(SI,S;f) — Ho(s, Saf) g H()(S, S,f) — H()(S/,S;f) — 0

a;

and isomorphisms for [ > 1

(3.29) Hy(S, Sag) = Hi41(5, Syy)-
By induction we have H;(S’,Sl;) =0for! >N —r+1,andfor 1<I< N —-r+1
. ! g\ " if k=1+r—1
(3.30) dlIIquHl(S, a.f)(): l+r—1—n 1 =ctr—1
0 otherwise.

Parts (i) and (ii) of the theorem now follow from (3.29).
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Let the gr; be as in (3.3) and put

D= f'fiaizi + 91,
an operator on Ry. Let K./(I) = K.(Ry,{D} ;}ier) be the Koszul complex on R; defined
by the D}, for i € I. Let K./(I,I") be the subcomplex of K.'(I) defined by taking
K|(I,I') = K;(I,I). The rings R} have an increasing filtration F.R! defined by taking
Fka' to be the span of monomials z*, v € M, with w(u) < k. This induces a filtration
F.(K./(I,I") on the complexes K.'(I,I'), namely,

RE(I IV = @ FeiRl Ve,

ACI, |A|=1

which in turn induces a filtration F.(H.(K.'(I,I'))) on the homology spaces H.(K.'(I,I')).
We shall compute gr'(H.(K.'(I,I'))), the associated graded of this filtration. It is clear
from the definitions that gr-(K./(I,I')), the graded complex associated to the filtered
complex K./(I,I'), is identified with the complex K.(I,I’) considered previously.

Associated to the filtered complex K.(I,I') is a convergent E' spectral sequence
[17, Chapter 9] with

Elt,l = Hk+l(R"(I7 II))(k)’
Ex =g WHe (K1, T)).

Suppose we are in the situation of Lemma 3.14. Then E}; =0 for k41> 0or k+1 <0,
from which it is easily seen that all the differentials df , : E};, — E}_,,,, , of the
spectral sequence are 0. Hence E}; ~ E}, ~ - =~ Eps, for all k,l. By Lemma 3.14
we have the following.

LEmMA 3.31. — Suppose that g is nondegenerate and semi-convenient. For I C S with
Sto € I and I' C Iy with Iy, # Iqu, we have Hi(K.'(I,I')) = 0 for | > 0 and
dimp, g™ Ho(K/(I,1')) is the coefficient of t* in

Z (_1)llspl—|J| Z qulr"er(t)'

Isp\Is,nggIsp el+"'+3r5|‘]l
e;=0 for jgs(I)
e;>1for jes(I')

Now consider the case I = S, I’ = S,, so that

(3.32) E} )~ Hepi(K (S, Sa))®
(3.33) E ~ gt™W Hy (K (S, Sat)).-

We shall again show that E,ﬁyl ~ Epg for all k,I. We begin by computing
dimp, Hi(K.'(S, Sa)) for all [.
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LemmA 3.34. — Suppose that g is nondegenerate and semi-convenient. Then for all I,
dimpq H[(I_{.I(S, Saf)) = diqu Hl(K(S, Saf)),

hence dimg, Hy(K.'(S, Sat)) can be computed from Theorem 3.26.

Proof. — The existence of the spectral sequence implies that

N+4r B N+r B
> (=1)'dimp, H(K (S, S)) = > (-1) dimg, Hi(K (S, Sar)),
=0 =0

hence it suffices to prove the stated equality for I > 1. The proof is by induction
on r. The case r = 0 is trivial since K.(S,S.) = K.(S,Sa) in that case. Put
"S"={1,...,N +r—1}. As in (3.5), we have an exact sequence of complexes

(3.35) 0— K.(S,8S.) — K./(S,8) — K.(S,8) — 0.

By Lemma 3.31, H;(K./(S,S’;)) = 0 for [ > 0, hence the long exact homology sequence
gives isomorphisms

Hy(K (S, Sat)) = Hip1 (K. (', Sy))

for I > 1. By induction we have dimg, H,(K./(S’,S.)) = dimp, Hi(K.(S',Sk))
and by (3.29) we have H;(K.(S, Sat)) ~ Hi+1(K.(S',SL)) for I > 1. It follows that
dimp, Hi(K. (S, Sa)) = dimp, Hi(K.(S, Sat)) for [ > 1. This proves Lemma 3.34.

From (3.32) and Theorem 3.26, we see that E} ; = 0 for all k, [ except possibly E},, _,
forl=1,...,N—rand E}_, for k=r,...,N. Therefore gr® Hy,;(K./(S,S)) = 0
except possibly for gr*" H;(K./(S,S844)), I = 1,...,N —r, and gr® Hy(K (S, Sat)),
k=r,...,N.Ifle{1,...,N —r}, it now follows from Lemma 3.34 and Theorem 3.26
that

diqu gr(l+T)Hl(I—{',(S7 Saf)) = diqu Hl(R(S7 Saf))(H—r)’

Examining the differentials of the spectral sequence shows that £, _, =~ E,i_k o~
E;;f’_k if kK #r,ie,

(3.36) gr® Ho (K. (S, Sa)) ~ Ho(K.(S, Sa))®
for kK = r+41,...,N. For k = r, one sees that E°  is a quotient of E! . (in
fact, EX°, ~ Ef,_,,), hence dimp, EY°, < dimp, E},_r. But by Lemma 3.34 and

equation (3.36), we see that we must have dimg, E° . = dimp, E}y,r, also. By
Theorem 3.26 we now have the following.

THEOREM 3.37. — Suppose that g is nondegenerate and semi-convenient. Then
@) Hl(K.’(S, Saf)) =0forl >N-—r.
(i) Forl =1,...,N —r,

_ m .
diqu gr(k)Hl(K.l(S,Saf)) — l4r—n Zf E=1l+r,

0 otherwise.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



308 A. ADOLPHSON AND S. SPERBER

(i) dimg, gr'® Ho(K.(S, Sat)) is the coefficient of t* in

Z (_1)j—r—1(j7_nn>tj+ Z (=1)N-WI Z qulmer(t)'

j=rt+1 St0CJICSep e1t+--+e.<|J|
e;>1 for all j

In particular, gr® Hy(K.'(S, S4)) = 0 for k < r or k > N.

4. p-Adic estimates

We now prove a lemma on lifting homology from characteristic p to characteristic
0, which will allow us to use the results of section 3 to obtain information about the
complexes of section 2. Let O be a complete discrete valuation ring with uniformizer =
and let K be an O-module. We call K flat if multiplication by 7 is injective and separated

if ﬂ 7w K = 0. A separated @-module K has an obvious metric space structure with the
Jj=1

{m? K} forming a fundamental system of neighborhoods of 0. We call K O-complete if

it is complete in this metric.

LEmMA 4.1. — Let K. = {~~-%K12th—9—%0} be a complex of flat, separated,
O-complete O-modules with O-linear boundary maps. Let K. be the complex obtained
by reducing K. modulo «. If Hi(K.) has dimension d over O /() and multiplication by
7 is injective on H{(K.) and H,_,(K.), then H|(K.) is a finite, free O-module of rank d.
Furthermore, any lifting of any basis for H;(K.) is a basis for H;(K.).

Proof. — Consider H;(K.) = kerd;/im 0J;4;. We claim im 04, is complete. Let
{014125s}32, be a Cauchy sequence in im 0p41, say,

A(s
Or12s41 — Og12s = 7wy,

where A(s) — oo as s — oo. Suppose we have found Zj,...,2, € K;.1 such that
81_‘_12]‘ = (9[4_12]' and 21'4.1 = 2]‘ (mod WA(j)). Then 6[+1Zs+1 - 8,+12S = WA(S)’LUS,
so 4w, = 0 in H;(K.). By the injectivity of 7 on H;(K.), ws, = 0 in H;(K.),
e, wy = O41ys for some y, € K;y;. Hence Oiy1(zs41 — 25 — WA(s)ys) = 0. Put
Zep1 = 2, + TGy, Then Z,4; = %, (mod 7*®)) and 841%,41 = Oi412541. Since
K4 is complete, the Cauchy sequence {Z,} has a limit 2. It is then clear that {0412, }
converges to Ojy1%.
There is a short exact sequence of complexes

0-K5K —-K.—0,
where the second arrow means multiplication by m. The associated long exact homology
sequence and the hypothesis that multiplication by 7 is injective on H;_;(K.) imply that we

have an isomorphism H;(K.)/mH;(K.) ~ H;(K.). The completeness of im J;,, implies
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that H;(K.) is separated. It is then straightforward to check that if £, ..., &, is a basis for
Hi(K.), then &;,...,&; is an O-basis for H;(K.), where &; is any lifting of & to H;(K.).
We shall apply this result in the following setting. In the definitions of our complexes
in section 2, we may replace B by its unit ball B(Qy), thus obtaining complexes
K.(1,I';Op) of Op-modules. We define a reduction map p : B(Og) — R as follows.
If ¢ = Z A,z € B(Oy), then p(€) = Z A,z € R, where A, € F is the
u€EM ueEM
reduction of A, modulo 7. There are induced maps p : B} (Op) — RY forall I C S with
Sio € I and I' C L. By [, section 2], the image of the complex K.(I,I';Oy) under p
is the complex K./ (I,I'). Thus we have short exact sequences of complexes

(4.2) 0— K.(I,LI';00) S K.(I,I'; 00) L K./ (I, T') — 0.

Before we can apply Lemma 4.1, we must check that multiplication by = is injective
on all HI(K(I,II, Oo))

LemmAa 4.3. — Suppose that g is nondegenerate and semi-convenient. For I C S with
Sto €I and I' C I¢ with 1, # I4,, multiplication by  is injective on H;(K.(I,1'; Oy))
Sfor all 1.

Proof. — The long exact homology sequence associated to (4.2) is

(4.4) v Hyn (KL T)) = H(K.(I,1';0p))
S H(K.(I,I';00) = H(K.!(I,LT') = ---.

The result now follows immediately from Lemma 3.31.
Applying Lemma 4.1 and Lemma 3.31 gives the following.

COROLLARY 4.5. — Suppose that g is nondegenerate and semi-convenient. For I C S
with Sto C I and I' C I with I}, # Iau, one has H(K.(I,1I';0g)) = 0 for | > 0 and
Ho(K.(I,I';0y)) is a free Og-module of finite rank.

LEmMMA 4.6. — Suppose that g is nondegenerate and semi-convenient. Then for all I C S
with Sy, C I and for all |, multiplication by 7 is injective on Hi(K.(I, I,s; Op)).

Proof. — The proof is by induction on |I4,|. When 4, = 0, K.(I, I¢; Op) is the complex
with Ky(I, Ls; Qo) = (Op)\i=TTee) and all boundary maps trivial. Thus Hy(K.(I, Le; Oo))

is a free Op-module of rank (l_l"}sp'), so multiplication by = is injective for all I. Now

suppose we know the result for all subsets I C S with Iy, of a given cardinality. Let
J € Saus J & ILau, and put J = I U {j}. There is a short exact sequence of complexes

0 — K.(J, Jug; O) — K.(J, Lt; Og) 2 K.(I, Ls; Og) — 0.
By Corollary 4.5, the associated long exact homology sequence gives an exact sequence
(47) 0— Hl(I,Iaf) g H()(J, Jaf) — Hg(.], Iaf) bl H()(I, Iaf) — 0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



310 A. ADOLPHSON AND S. SPERBER

and isomorphisms for [ > 1
Hy(J, Jag) ~ Hiyp1 (1, Lag).

The induction hypothesis then implies that multiplication by = is injective on H;(J, Jus)
for [ > 1. By the induction hypothesis (resp. Lemma 4.3), multiplication by = is injective
on Hy(I, L) (resp. Ho(J, Lg)). The injectivity on Ho(.J, Jat) then follows from the exact
sequence (4.7).

By Lemma 4.6, we may apply Lemma 4.1 to obtain a basis for Ho(K.(S, Sat; Oo))
by lifting a basis for Ho(K.'(S, Sa.t)). We choose a basis for Hy(K.' (S, S.¢)) as follows.
For k = r,...,N, let B® = {¢® (g’(“,)c)} be a set of monomials of weight k
in {z* | w € M} such that their images in gr'®) Hy(K./(S,Sas)) form a basis. By
Theorem 3.37,

N
. = fici f ki _1)i-r-1 m J
(4.8) d(k) = coefficient of ¢* in Z( 1) <j—n)t
J=r+1
D DR C3 ) A W AN (O}
St6CJICSep er+--+e,<|J|

e;>1 for all j

N
Clearly then, the set B = U B® is a basis for Hy(K.' (S, Sat)), so by Lemma 4.1, B is

k=r
also a basis for Ho(K.(S, Sas; Oo)).
Let W be the Qo-span of B and set W (b,c) = W N L(b, ¢). From the above remarks,
we have

N+r

1 i
(4.9) B34 (0) = W(p—_——l,0> o Y DB MY 0,),
=1
N+r
4.10 BS —wa S DB\
S S

i=1

Let LY (b,¢) = N;cp ker(6; | Li(b,c)). Set e = b —1/(p — 1). Repeating the proofs of
[1, Proposition 3.6 and Theorem 3.8] (for a somewhat improved version of these arguments,
see [2, Lemma 3.3 and Theorem 3.14]), we get the following.

THEOREM 4.11. — For b,c € R with 1/(p —1) < b < p/(p — 1),

N+4r
L3 (b,c) =W(b,e)+ > DLy (b, c+e),
=1
N+r ’
Lgaf(b) =W Z DiLgaf\{l}(b)'
=1

We now follow the method of [10, section 7]. Put £, = Q,,({,) and let 7 € Gal(£2y/)
be a lifting of the Frobenius automorphism of Gal(F,/F,). By [1, section 1], there exists
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F(z) € L(1/(p—1),0) such that the operator 3 = 7~ oo F, an Q;-linear endomorphism
of B and of L(b) for 0 < b < p/(p — 1), satisfies f* = a. Let {0y}, be an integral
basis for Qg over ;. For 5 ) e B®), write

a N d(k) N+r
B el ) =SSN AG kK Ut o) (modz DiBg"*f\{'}).
=1 k=r j=1 =1

By (4.10), the A(j,k,l;5',k’,1") are uniquely determined by this relation.

LemMma 4.12. — ord A(j, k15, k,1") > k.

Proof. — Since 7% op€S) € L(1/(p — 1),0), it follows that G(r*0ye)) €
L(p/(p — 1),0). The lemma is then an immediate consequence of Theorem 4.11.

Let ord, be the p-adic valuation normalized by requiring ord, ¢ = 1. We compute
all Newton polygons with respect to this valuation. By the argument that establishes

[10, equation (7.7)], we now have the following. (See the two paragraphs preceding [10,
Theorem 7.1] for the assertion about the endpoints.)

THEOREM 4.13. — Suppose that g is nondegenerate and semi-convenient. Then the Newton

N+4r
polygon of the polynomial det (I —ta | B3*/ Z DiBga‘\{z}> lies on or above the Newton
=1

polygon of the polynomial ﬁ(l — ¢*t)¥® and their endpoints coincide.

By Theorem 2.19 (iv), i’cv:er finally have:

COROLLARY 4.14. — The Newton polygon of the polflynomial P(t) lies on or above the
Newton polygon of the polynomial (1 — q”t)"(rT—nn)H(l — ¢*)¥®) and their endpoints
coincide. e

Remark. — Note that, in view of (2.5), the corresponding factor of Z I(VV/ Fg;t)is P(¢g™"t),

which has lower bound determined by the polynomial (1 — ¢)~ () H (1 — gFt)dk+n),
k=0

5. Hodge polygon

The purpose of this section is to identify the lower bounds of Theorem 4.13 and
Corollary 4.14 with certain Hodge polygons of toric and affine complete intersections. This
is a rather straightforward calculation, based on the results of [6]. We begin by recalling
the definition of Hodge polygon.

Let X be a complex variety and let H!(X,Q) denote rational cohomology with
compact supports. By Deligne [7, 8], there is a mixed Hodge structure on H!(X,Q),
in particular, there is a decreasing (Hodge) filtration F- on H.(X, C). The Hodge numbers
h¥(H.(X,C)) are defined by

hE(HY(X, C)) = dime FFH!(X, C)/F*H!(X, C),
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and the Hodge polygon of H!(X, C) is defined to be the Newton polygon of the polynomial

H(l - qkt)hh(Hi(X’C)). Alternatively, there is also an increasing (weight) filtration W.
k>0

on H!(X,Q) such that the Hodge filtration F induces a pure Hodge structure of weight
s on W,H{(X,C)/W,_1H\(X,C), ie.,

W,H\(X,C)/W._,H\(X,C)~ P H*',
a+b=s

where H%¢ = H*® and H*" is the complex conjugate of H*®. If we put h**(H!(X,C)) =
dimg H*®, then

W*(HY(X,C)) = Y h*'(HY(X,C)).

b>0

Consider the case where F; € C[zy,...,n, (1 Tm) ], i =1,...,r, is the generic
polynomial with the property that the convex hull of supp(F;) equals Afs" and let
X C (T™ x A™)c be the smooth complete intersection F; = --- = F,. = 0. Since

X is affine, of complex dimension N — 7, we have H(X,C) = 0 for [ < N —r or
[ > 2N — 2r. Furthermore, the Gysin map HY~"*+(X,C) — HN+™+((T™ x A")¢, C)
is an isomorphism for ¢ = 1,...,N — r and is surjective for ¢ = 0. It is a morphism
of mixed Hodge structures sending H**(X) to H**"**7((T™ x A")¢), and by [6] we
have for = = 0,...,N

m . ]
(5.1) h® b(HN+z((Tm XAn)C,C)) — i—n ifa=b=1,
0 otherwise.
Hence for ¢ = 1,...,N —r
‘ m o b
(5.2) ha’b(HéV_T""(X,C)) — rdi—n ifa=0=n1,
0 otherwise,
in particular,
(5:3) REEHN X, C) = \ppion) TE=0
0 otherwise.

Thus the only nontrivial case is the middle-dimensional cohomology HY~"(X, C). The
primitive part PHY="(X,C) of middle-dimensional cohomology is defined to be the
kernel of the (surjective) Gysin map H¥~"(X,C) — HN+"((T™ x A")¢,C). By (5.1),

PHY-"(X, C) has codimension ( mn> in HN~"(X, C). More precisely,

WH(HY (X, C)) if k #0,

(5.4) h*(PHY"(X,C)) = h(HN-"(X,C)) - (T i n) if k=0.
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In [6] is described a procedure for computing the Hodge-Deligne numbers of X in terms
of invariants of the polytopes Af, Si, C I C Sy, i =1,...,r. We carry out part of this
procedure in order to verify the following.

THEOREM 5.5. — The lower bound for the Newton polygon of the polynomial P(q~"t)
given by Corollary 4.14 is the Hodge polygon of PHN~"(X, C).

Proof. — In view of (5.4) and the remark following Corollary 4.14, the theorem is
equivalent to the assertion that

(5.6) REF(HY"(X,C)) = d(k + )

for all k, where d(k) is given by (4.8).
Following [6], we set

(5.7) H(X) =D (-1)'h*(H(X, C)).
>0

Consider first the case 7 = 1, n = 0, i.e., X is the hypersurface F; = 0 in TE. From
section 3, we have

S HRATYE = (1= Y ¢S5
k=0 e1=0
One of the basic results of [6] is the following.

THEOREM 5.8 ([6, Remark 4.6]). — If X is the hypersurface Fy = 0 in TE, then

(—=1)™lek(X) = (=1)F ( >+coeﬁﬁclem‘oft’“rl in qusfﬁ o(t)-

e1=0

This result may be generalized to complete intersections.

PROPOSITION 5.9. — If X is the complete intersection F} = --- = F, = 0in (T™ x A")c,
then
N-r_k . . N-|J
(=) "e*(X) = coefficient of t**" in Z (—=1)N-II Z qulmer(t).
St CJCSsp e1+-+e.<|J|
e;>1 for all j

Remark. — This proposition implies Theorem 5.5, because it is now straightforward to
prove (5.6) using (5.3) and (4.8).

Proof of Proposition 5.9. — We follow the outline given in [6, section 6]. Put
G=anpF1+  +aongFr—1
and let Y be the hypersurface G = 0 in (T™ x A™ X A")¢. By [6, section 6.2],
(5.10) e (X) = eF((T™ x A™)g) — " 1(Y),
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and by (5.1),

(5.11) e*((T™ x A™)¢) = (—1)N-k(km )
—-MNn

We cannot apply Theorem 5.8 directly to compute e**"~1(Y) because Y is not a
hypersurface in a torus but rather a hypersurface in (T™ X A™ x A")c. So for I C S

with Si, C I we put Gy = Z $i9.rsp(Fi_N) — 1 and let Y7 be the hypersurface Gy = 0

":EIdu
in T¢!. (Note that Y7 = 0 if Io, = #) Then Y = | J Y7 (a disjoint union) and by
’ Sto CICS
[6, Proposition 1.6],
(5.12) FY)= > eF(vr).

St CICS

We shall apply Theorem 5.8 to each Y; to compute e*(Y;), then substitute into (5.12) to
find €*(Y) and substitute into (5.10) to find e (X).
The convex hull of supp(Gy) is A;. By (3.9) and (3.12),

M8

—|I|- Ip
kAN = (1 =)~ 1172 Y e ().
0 ertter<| Lyl

e;=0 for jg6(I)

x~
It

So by Theorem 5.8,
I
(_1)II|—1ek(Y1) = (-1)* (k|+| 1) + coefficient of t**! in Z qé’?..er (t).

e1+-+e, <[l
e;=0 for j&6(I)

From (5.12),

o M
(5.13) ef (V)= Y (-pHiHE 1(
S.CICS k+1
+ coefficient of t*+1 in Z (1)1 Z Qe{i‘?,'er (t).

St CICS ert-+er<|Lsp|
e;=0 for j&6(I)

Using the decomposition S = Sy, U Sy, we have

S DIt R )

SioCICS e1+-+e.<|Lsp)
e;=0 for j¢Z6(I)

Z Z (_1)|11|+|12|—1 Z qgi...er(t)

St0CT1 CSup I3 CSuu ert-te <|L|
e;=0 for jZ6(I2)

— Z (_1)|I1|+r—1 Z qeli...er(t)

St0CI1 CSep ert+tep<|I1|
e;>1 for all j
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by a standard inclusion-exclusion argument. We also have

() Eer ()4

$1.CICS
— (—1)N-r+k-1 m
(=1) k+1—-r—n

by a straightforward combinatorial argument. Thus (5.13) becomes

eF(Y) :(__]_)N—r+k+1< m )

k+1—-1r—mn
+ coefficient of t**! in Z (—=1)Mhl+r=1 Z ..., (1)
Stogllgssp el+"‘+erS|11|

e; 21 for all §

Combining this with (5.10) and (5.11) yields Proposition 5.9.

6. Cohomology of projective complete intersections

In this section we change notation slightly. Let fi,...,f, € Fylzo,...,zn] be

homogeneous polynomials with deg f; = d; fori = 1,...,7. Let V. C P be the projective
variety fi = -+ = f, = 0. Put g = anq1f1 + - + TNt fr € Fylzo,. .., Tn4r). Let
V* C ANt be the affine variety f; = --- = f,. = 0. As in (2.2),

(6.1) Z(V*[Fy;qt) = LANT x A", g;t).

On the other hand, N,(V*) = (¢° — 1)N4(V) + 1, hence
(6:2) Z(V* [Fyit) = Z(V[Fy; gt) Z(V/Fyst)™ (1 — ).

Write
P(t)(_l)N—r—l

S (e O R (T e}

Then (6.1) and (6.2) imply that

(—pyv-r _ Pl)(1 - gV (DY

N+1 r .
(6.3) LIAN+ x A", ;) P

Let S ={0,1,...,N+r}, Syp ={0,...,N}, Sau = {N +1,...,N + r}. By (2.13),

N+41+r
(6.4) LAN* x A7, git) 0" = T det(I -t | H(K.(S,5)) V"
=0

For purposes of induction, we shall have occasion to consider cases where S5, = @ or
Sau = 0. Although such cases have no geometric interpretation in terms of complete
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intersections, the L-function L(AN*! x A" g;t) is still defined. Recall [1] that we say f;
is commode if it contains each of the monomials ng, .. ,a:}i\} with nonzero coefficient.

THEOREM 6.5. — Suppose that v < N, g is nondegenerate, and f; is commode for
i = 1,...,7. Then
(i) dimg, H(K.(S,S)) < oo for all l.
(i) Hi(K.(S,S)) =0 forl #0,1,N+1—r.
(iii) Suppose N —r > 0. Then dimg, Hy1--(K.(S,S)) = 1 and Frobenius acts on

Hyi1_+(K.(S,S)) as multiplication by ¢V *'. The space H,(K.(S, S)) with Frobenius &,
is isomorphic (as Frobenius module) to Hy(K.(S,S)) with Frobenius qao.

(iv) Suppose N —r = 0. Then H,(K.(S, S)) with Frobenius &, is isomorphic to a direct
sum Ho(K.(S,S)) ® H', dimq, H' = 1, with Frobenius acting on Hy(K.(S,S)) by qay
and acting on H' by multiplication by ¢~ 11,

(V) The Frobenius endomorphism &g is invertible on Hy(K.(S,S)) and

dime, Ho(K.(S, S))

N+1 N+1 A _
:(—1)N_T+1(N—T+1)+(—1)N+1Z(—l)l( z ) >ooodydi
l=r+1 i1t Fin=l—1
2;2>1 for all j

Comparing the right-hand sides of (6.3) and (6.4), we have immediately the following.
COROLLARY 6.6. — Suppose that r < N, g is nondegenerate, and f; is commode for
i = 1,...,7. Then

P(g"t) = det(] — tao | Ho(K.(S, 5))),

in particular, P(t) is a polynomial. Its degree is given by Theorem 6.5 (V).

Remark. - If f; =0,4=1,...,r, are smooth hypersurfaces in PY in general position,
then one can always make a coordinate change on P (defined over a finite extension of
F,) so that g is nondegenerate and all f;’s are commode. (See [3])

The proof of Theorem 6.5 will require several steps. First observe that the homogeneity

condition on the f;’s implies that every monomial z&° - .- z%Y 25 R -zl 4+ appearing

in g satisfies
ao+ - +any =dibi + -+ d;b,.

This in turn implies that every v € M = ZN+1+" N C(A) satisfies the same condition.
It follows that

(67) D0+"’+DN_d1DN+1"'"’_dr-DN+r:0

as operator on B or L(b). More generally, for I C S we have

(6.8) > Dri— Y diinDp;i=0

i€l i€1ay
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as operator on By or Lp(b). This relation. implies that for I’ C I, the map from
Ko(I,I') = BY eg to Ky(I,1') = @ Bf ¥ i) defined by
iel

(6.9) Eegr Y e+ (—dimn)Eey

i€lp 1€1qu

has image lying in the set of 1-cycles. Suppose { ey is a O-boundary, ie., there exist
¢&.€ BIMY guch that ¢ = ZD“(&). Put
icl

s if i € Ly,
ST _di_y ifi€ Ly,

and define 7;; = €,£; — €;§; € B{'\{i’j} for 4,5 € I. Then {n;;}; jer is a skew-symmetric
set and Z Dy j(ni;) = €&, i.e., the image of £ ey under the map (6.9) is a 1-boundary.

jeJ
Thus (6.9) induces a map
¢t Ho(K.(I,I')) — Hy(K.(I,I')).

It is clear that ¢! o qap = @y o ¢}, i.e., ¢T respects the Frobenius structure.

PrOPOSITION 6.10. — Suppose that g is nondegenerate and f; is commode fori = 1,...,r.
Then for I' C I C S with I, # Iy, and Iy, # L, we have H((K.(I,I')) = 0 for | > 1,

(611)  dimg, Ho(K(LI) = 3 (=)= 5 (] ),
ISP\IénggISP Z l;=|J|-1 i€lqu
i€lygy
1;>1 for i€},

ay is invertible on Ho(K.(I,1')), and ¢% is an isomorphism.

Proof. — The proof is by induction on |I’|. When I’ = (), Proposition 8.3 of the appendix
says that H;(K.(I,I’)) = 0 for [ > 1 and ¢! is an isomorphism. The invertibility of
@y is given by [1, Theorem 3.13] and the formula for dimg, Ho(K.(I,1’)) follows from
[1, Theorem 2.9] and a calculation as in the derivation of (2.18).

Suppose |I’| > 0 and let € I'. Then there is a short exact sequence of complexes

0— K.(I,I') — K.(I,I'\ {i}) — K.(I\ {i},I'\ {i}) — .

The vanishing of H;(K.(I,I')) for I > 1 follows immediately from the associated long
exact homology sequence and application of the induction hypothesis to K.(I,I"\ {:})
and K.(I\ {:},I'\ {z}). The maps qﬁf\{i} and (bf’\\{{z}} are isomorphisms by the induction
hypothesis, so Proposition 8.6 of the appendix implies that qﬁf’ is an isomorphism and
that the sequence

0— Ho(K.(I,I')) — Ho(K.(I,I' \ {i})) = Ho(K.(I\ {i},I'\ {i})) = 0
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is exact. By induction, &y on Ho(K.(I,I'\ {i})) and on Ho(K.(I \ {i},I' \ {i})) is an
isomorphism, hence &y on Hy(K.(I,1')) is also an isomorphism. We also get

dimg, Ho(K.(I,I')) = dimg, Ho(K.(I,I' \ {i})) — dimg, Ho(K.(I'\ {i},I'\ {i})),

so the desired formula for dimg, Ho(K.(I,I’)) follows from the induction hypothesis.

Remark. — Note that in the case |I},| > |Isp|, the proposition implies all homology
vanishes since the index set for the inner sum on the right-hand side of (6.11) is empty.

PROPOSITION 6.12. — Suppose that g is nondegenerate and f; is commode fori =1,...,r.
Let I' C I C S with I;p = Iy but I, # Ila,. For notational convenience, set

\Ih] = || = k and |Iay| — |Ip| = k. Then Hy(K.(I,I')) = 0 if

1¢{0,1}U{k k+1,... k).

If in addition k > 0, then

(6.13) H(K.(I,I') =0 iflg {kk+1,...,k}

(6.14) H(K(LT) =~ 0 ifle{kk+1,... k).

Proof. — The proof is by induction on |I5,|. When I, = @, one has
BIN\A _ Qo ifI'CA,
I 0 ifI'Z A,

hence

KL= @ Qea

I'CACI, |A|=l
and all boundary maps of the complex K.(I,I’) are zero. Thus

111"

(6.15) Hy(K.(I,1')) = (20) {171,

which implies the proposition when |I,| = 0.
If |Ip| > 0, let ¢ € I, and consider the short exact sequence

(6.16) 0—- K.(I,LI') - K.(I,I'\ {i}) = K.(I\ {¢}, " \ {i}) — 0.

The complex K.(I,I’\ {i}) satisfies the hypotheses of Proposition 6.10, so H;(K.(I,I’\
{¢})) = 0if I # 0,1. Thus the long exact homology sequence associated to (6.16) gives
isomorphisms

(6.17) Hi(K.(I\{:}, '\ {:})) ~ H(K.(I,I'))

for I > 1. The assertion for H;(K.(I,I')) now follows by applying the induction
hypothesis to Hyy1(K.(I\ {i},I' \ {¢})). Suppose in addition that |I;,| > |Is,|- Then
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H(K.(I,I'\{i})) = 0 for all | by equation (6.11), so (6.17) holds for all { > 0. Induction
on |Is,| now reduces (6.13) and (6.14) to the case Iy, = @, where the result follows
from (6.15).

When Iy, = I, and |I4.| = |I},| + 1, there is a simple way to check when or is
an isomorphism. To fix ideas, suppose Iy, = I3, U{N +r} andlet Z =3, &eqy €
K;(I,I') be a 1-cycle. Then &; € B;I\{i}, in particular, £y, € BI. If the homology
class represented by this 1-cycle lies in the image of ¢!, then there exists £ € BI' such
that = is homologous to the 1-cycle Z ey + Z (=di—n)€ egiy. Thus there is a

1€1sp 1€14y
skew-symmetric set 7;; € B;’\{i’j Y such that

N, 13 ifi € Ip,
> Dj(mi) =& - { (~di_n)€ ifi € Ia,.
jeI
Taking ¢ = N +r we get Ny, ; € Bf/\{j} such that
Enir + €= Di(nnirg):
JjeI
But this equation says that {5, and —d,.£ are homologous O-cycles in Ho(K.(I,I’)). In

other words, the map defined by sending = to (—1/d,. )N+, is, by the argument above,
defined on homology classes in the image of ¢f’ and is a left inverse to ¢§/:

! o ¢!’ = identity : Ho(K.(I,I')) — Ho(K.(I,1")).
Thus ¢! is an isomorphism whenever
dimg, Ho(K.(I,I')) = dimg, H,(K.(I,I")) < co.

COROLLARY 6.18. — Suppose that g is nondegenerate and f; is commode fori=1,...,r.
Let I' C I C S with I, = Iy, and |Igu| = |I},| + 1 = |Ip| + 1. Then Hy(K.(I,1')) =0
for 1 > 1, ¢¥ is an isomorphism, and dimg, Ho(K.(I,I')) = 1

Proof. — 1t follows from (6.13) that H;(K.(I,1’)) = 0 for [ > 1. To prove the remaining
assertions, we see by the above discussion that it suffices to check that

dimg, Ho(K.(I,I')) = dimg, Hi(K.(I,T')) = 1.

But this follows from (6.14).
We now analyze the case I = S, I’ = S\ {N + r} in more detail.

CoRrROLLARY 6.19. — Suppose that 1 < r < N + 2, g is nondegenerate, and f; is
commode for i = 1,...,r. Then Hi(K.(S,S\{N +7})) =0ifl > 1 and ¢§\{N+T} is
an isomorphism. Furthermore,

(6.20)  dimg, Ho(K-(S, 5\ {N +1}))
N+1
=(_1)N+r+(__1)N+1 i(_l)l(N;'l) Z d?d’;’r
l=r

it in=l—1
11,eeip_1 21
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Proof. — For notational convenience, we put S’ = S\ {N + r}. The vanishing of
H(K.(S,8")) for | > 1 is an immediate consequence of Proposition 6.12 and the
hypothesis that » < N + 2. We prove that ¢§' is an isomorphism by induction on
N + 2 — r. Suppose that 7 < N + 2 and consider the short exact sequence

(6.21) 0 K.(S,8") — K.(5,8"\ {N}) — K.(S\ {N},5"\ {N}) — 0.

By Proposition 6.10, ¢§,\{N} is an isomorphism, so by Proposition 8.6 of the appendix,
¢ will be an isomorphism provided ¢§'\\{{NN}} is. Thus by induction it suffices to establish
the result when r = N+ 2. But I = S, I’ = S’, r = N 42, is exactly the case covered by
Corollary 6.18. Note that Corollary 6.18 also establishes (6.20) when r = N + 2. We also
prove (6.20) by induction on N + 2 — r. Since ¢§,\\{%} is an isomorphism, Proposition
8.6 of the appendix implies that the connecting homomorphism in the exact homology
sequence associated to (6.21) is zero, hence

dima, Ho(K.(S,S")) = dime, Ho(K.(S, S\ {N})) —dimg, Ho(K.(S\{N}, '\ {N})).

The value of the first term on the right-hand side is given by (6.11). The desired expression
for the left-hand side then follows by applying the induction hypothesis to the second
term on the right-hand side.

Proof of Theorem 6.5. — Note that Theorem 6.5 (i) is a consequence of Theorem 6.5 (ii)-
(v), so we need only prove parts (ii)-(v). We proceed by induction on r, proving additionally
that when N —r > 0, ¢2 is an isomorphism. When r = 0, i.e., S = {0,1,...,N}, it
is straightforward to check that K.(S,S) is the complex with Kn41(S,S5) = Qo and
K;(S,S) =0 for [l # N + 1, where all boundary maps are zero and Frobenius acts on
Kn11(S,S) as multiplication by ¢™V*1. This establishes Theorem 6.5 in that case (when
one interprets appropriately the sum appearing in Theorem 6.5 (v)).

Suppose r > 1. We again put S’ = S\ {N + r}. There is a short exact sequence
of complexes

(6.22) 0— K.(S,S)— K.(S,5) = K.(8',8") — 0.

By Corollary 6.19, H;(K.(S,S")) = 0 if | # 0,1, and by the induction hypothesis,
H(K.(S,8") =0ifl # 0,1, N+2—r. It follows from the associated long exact homology
sequence that H;(K.(S,S)) =0if [ # 0,1, N + 1 — r, establishing Theorem 6.5 (ii).

If N —r > 0, then the long exact homology sequence gives an isomorphism

HN+2_T(K.(S/, SI)) =~ HN+1—7‘(K‘(S’ S))7

hence, by the induction hypothesis, dimq, Hy41—-(K.(S,S)) = 1 and Frobenius acts
as multiplication by ¢¥*!. When N — r > 0, we also have by the induction hypothesis
that Ha(K.(S’,S")) = 0 and ¢3, is an isomorphism. By Corollary 6.19, ¢ is also
an isomorphism, hence ¢2 is an isomorphism by Proposition 8.6 of the appendix. This
establishes Theorem 6.5(iii).

Now suppose N — r = 0. By the induction hypothesis, ¢§: is an isomorphism, and
by Corollary 6.19, ¢§' is an isomorphism. Hence by Proposition 8.6 of the appendix, the
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connecting homomorphism H;(K.(S’,S")) — Ho(K.(S,S)) of the long exact homology
sequence associated to (6.22) is zero. Thus the nontrivial terms of the long exact homology
sequence give us a commutative diagram with exact rows (For typographical convenience,
in this diagram we denote H;(K.(I, 1)) by H;(KT).):

0 — Hy(KS) 5 Hy(KS) — Hy(KS) — Hy(KS) — 0
(6.23) $31 $g 1 ¢S 1
0  — Ho(KS) = Ho(KS) — Ho(KS) — 0.

By the induction hypothesis, dimgq, H>(K.(S’,S’)) = 1 and Frobenius acts on it
as multiplication by ¢™¥*!'. Thus 7(H2(K.(S’,S’))) is a one-dimensional subspace of
H,(K.(S,S)) with Frobenius acting as multiplication by ¢"+!. A diagram chase, using
the above observation that the two right-most vertical arrows in (6.23) are isomorphisms,
now shows that

(6.24) H\(K.(S,8)) > m(Hy(K.(S',5"))) ® $5(Ho(K (S, 9))),

which establishes Theorem 6.5(iv).
What we have done so far implies that

dimg, Ho(K.(S, S)) = dimg, Ho(K.(S,S")) — dimg, Ho(K.(S', ).

Evaluating the first term on the right-hand side by Corollary 6.19 and the second term on
the right-hand side by the induction hypothesis establishes Theorem 6.5 (v).

7. Newton and Hodge polygons in the projective case

The calculation of a lower bound for the Newton polygon of P(t) proceeds exactly as in
sections 3 and 4, therefore we just summarize results while pointing out some differences
in the projective case.

Let the ring R be defined as in section 3 and let K. = K.(R,{g:}Xt") be the
Koszul complex on R defined by go, ..., gn+-. As in section 3, one can define the related
complexes K.(I), K.(I,I") for I' C I C S. All these complexes are graded as in section 3.

Let I C S with I, # (. The homogeneity condition on fi,..., f. implies that the
polytopes A", ... A are (IIsp| — 1)-dimensional (instead of I, |-dimensional). Thus
é(klAf" + ot krAfs") is a rational polynomial of degree < |I;,| — 1 in ky,..., k., say,

Uk AT + o+ k Ale) = > alr o kS - ke € Qlky, ..., ki)

ey +-+er<|Lp|—1

The hypothesis that g is commode implies that for each j, A;s" is the (|Isp| — 1)-simplex

in Rl with vertices (d;,0,...,0),...,(0,...,0,d;), so, in fact,

kldl + -+ krdr + |Isp| - 1)

Uk AT + - 4 kAl =
(1 v - r) ( IIspl_l
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This formula shows that the lattice point function on the left-hand side depends only on

|Isp|, not on I, itself, thus the same is true for the formulas that follow.
I

The polynomials pei®...(t1,...,t.) can be defined as before and we have
= (k)\ 1k P e (t,.. 1)
Sme =y el
k=0 €1+"'+€,-S|Isp|—1 (1 _ t) dul j:le]

e;=0 for j&6(I)

Define .
o (t) = P2 (b, (1L = )TN € Q.
Then
(7.1) > (dimp, R{)tF = (1 — )71+ > Gemee, (1).
k=0 eit++er<|Lp|-1

e;=0 for jg6(I)

Using induction on |I’|, as in the proof of Proposition 6.10, gives the following. (The
case |I’| = 0 is Proposition 8.4 of the appendix.)
PROPOSITION 7.2. — Suppose that g is nondegenerate and f; is c_ommode fori=1,...,m.
Then for I' C I C S with I, # Iy, and Iy, # I, we have Hi(K.(I,I')) = 0 for | > 1,
dimp, Hi(K.(I,1'))® = dimg, Ho(K.(I,1'))* =Y,

and dimg, Ho(K.(I,1')® is the coefficient of t* in

Do (T gl (),

Lp\I,CJCILp ertter=|J|~1
;=0 if ig5(I)
e;>1if i€8(I')
Arguing as in the proof of Proposition 6.12 gives the following.
PROPOSITION 7.3. — Suppose that g is nondegenerate and fi is commode fori=1,...,r.
Let I' C I C Swith I, = I, but I}, # Iqu. Then Hi(K.(I,I')) = 0 if

00,13 U{Tqul = spls ol = sl + 1, [ Lau| = Hspl}-

If in addition |14, > |Lp|, then Hy(K.(I,I')) = 0 for l € {|I4,] — Lspl; - - - s Hau| — [ Lsp|}
and

dimg, Hy(K.(1,T'))®

|Idu_I/u .

(T ) it Ul = el = gl and k= 4 1
sp du .
0 otherwise.

We record a special case of this result, an analogue of Corollary 6.18.
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COROLLARY 7.4. — Suppose that g is nondegenerate and f; is commode fori = 1,...,r.
Let I' © I C Swith I, = I, and |Iau| = |I},,| + 1 = |Lp| + 1. Then Hi(K.(I,T")) = 0 if
I > 1, dimg, HI(I_(.(I I")® = dimg, Hy(K.(I1,1')* =Y, and
1 ifk=|Lp|
0 ifk # |1l

Following the proof of Corollary 6.19, we arrive at the following.

dimg, Ho(K.(I,T'))® = {

CoROLLARY 7.5. — Suppose that 1 < r < N + 2, g is nondegenerate, and f; is commode
fori=1,...,r. Then H(K.(S,S\{N+7r}))=0ifl>1,

dimp, Hy(K.(S,5\ {N +r}))® = dimp, Ho(K.(S, 5\ {N +r}))*Y,

and dimp, Ho(K.(S, S\ {N + r}))® is the coefficient of t* in

(—1)NFrgr=t 4 Z (_1)N+1—|J| Z qul~~-eT(t)'

JCSsp e1+-+e.<|J|—-1
e;>1 for all j

We finally arrive at the analogue of Theorem 6.5.

THEOREM 7.6. — Suppose that 1 < r < N, g is nondegenerate, and f; is commode for
t = 1,...,7. Then
(i) dimp, Hi(K.(S,S)) =0 for  # 0,1,N + 1 — .
(i) dimp, Ho(K.(S,S))® is the coefficient of t* in

(7.7) (_1)N—r+1(tr o tN)+ Z( 1)N+1 1] Z qux"'er(t)'

Jcssp el+“'+5rS|J|"1
e;>1 for all j

(iii) If N — r > 0, then dimp, H,(K.(S,5))® = dimp, Ho(K.(S, S))*V) and

1 ifk=N+1,
0 otherwise.

dimp, Hy41_-(K.(S,8))® = {
Gv) If N —r = 0, then

dimg, Hy(E.(5,5))® = dimp, Ho(K.(S,5))*D + {(1) if k=N+1,

otherwise.

The generalization of the rest of sections 3 and 4 is straightforward. Let d(k) be the
coefficient of t* in expression (7.7).

THEOREM 7.8. — Suppose that 1 < r < N, g is nondegenerate, and f; is commode

for i = 1,...,r. Then the Newton polygon of the polynomial P(t) = det (I — tag |

N+r
BZ/ Z D; BS\{' ) lies on or above the Newton polygon of the polynomial H (1—gFt)d®
=0 k=r

and their endpoints coincide.
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Remark. — The corresponding factor of Z(V/F,;t) is P(¢~"t), which has lower bound

-r

determined by the polynomial H (1 — gFe)dte+n),

We now describe the Hodgke_ 0polygon in the projective case. Let Fy,..., F. €
Clzo, - . ., zn] be the generic homogeneous polynomials of degrees ds, . . ., d., respectively,
and let X C Pg be the smooth complete intersection F} = --- = F,. = 0. For J C S,
let U; C PY be the subset consisting of those points whose homogeneous coordinates
(zo,...,zn) satisfy z; # 0 if and only if j € J. Thus Uy =~ Tlc‘”_1 and there is a

decomposition of Pg as PY = U Uj;. Putting X; = XNUj, we get a decomposition
0#£ICS.p
(7.9) x= { x5
0#JCSep

For each J C S, J # 0, let F’ be the dehomogenization of F; with respect to any
z;, j € J, and let A7 C RIVI=1 be the polytope and ¢’ (t) be the polynomials
associated to ﬁ'{’ as in section 3. The genericity of F; implies that these are independent
of the choice of ;. In fact, A/ is the (|.J| — 1)-simplex with vertices at the origin and
(d;,0,...,0),...,(0,...,0,d;). By Proposition 5.9, (—1)I’I=1="¢¥(X ;) is the coefficient
of tF in

Yoo @)

er+-+e.<|J|-1
e;>1 for all j

It is easily checked that ¢/ ... (t) = ¢/ .. (t) for all J and all ey,...,e,. Furthermore,

the decomposition (7.9) implies that e*(X) = z e¥(X7), hence (—1)N-"eF(X) is
0£JCS.p

the coefficient of ¢* in

Yo (=pvHi Yo @)

0£JCSep 1t ter<|J|-1
e;j>1 for all 5

Using well-known facts about the cohomology of smooth complete intersections in PY,
we conclude that

KH(PHN="(X,C)) = d(k + 7).

COROLLARY 7.10. — The lower bound for the Newton polygon of the polynomial P(q~"t)
given by Theorem 7.8 is the Hodge polygon of PHN""(X,C).
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8. Appendix

We begin by proving an elementary result about Koszul complexes for which we do
not know a reference. Let A be a commutative ring, M an A-module, and oy,...,0,
commuting endomorphisms of M as A-module. We compare the homology of the Koszul
complexes K.(M,{o;}7_;) and K.(M,{o}?=) under the assumption that there is a
relation

n—1
(8.1) On = Z a;o;, a; € A.
=1

Clearly this implies that Ho(K.(M,{o;}™,)) = Ho(K.(M, {0;}'7}')). It also implies
that the map

n—1

meg — meny + E(—ai)m e}

=1
induces a homomorphism ¢ : Ho(K.(M,{o:}1-,)) — Hi(K.(M,{o:}}1))-

PROPOSITION 8.2. — Suppose Hy(K.(M,{c;}}=}) = 0 for I > 0. Then
H(K.(M,{0:}~,)) = 0 forl > 1 and ¢ is an isomorphism.

Proof. — Let K. (M, {0;}7=}) be the complex K.(M,{o;}?=}') shifted one position
to the left, ie.,

KV (M, {oi}i5)) = Kia(M, {0} 157
There is a short exact sequence of complexes

0 — K.(M,{0:}15)) = KM, {o:}i-y) — KM, {0:}]5]) = 0,

=1

where the map K;(M, {o;}}=}') — K;(M,{o;}",) is the natural inclusion defined by
mer — mer for T C {1,...,n — 1}, |T| =, and the map

K(M, {o:i}r) = KP(M, {05 = Koo (M, {0}

is defined by

0 ifnégT,
mer = mer\(ny ifn €T,

for T C {1,...,n}, |T| = I. Since H;(K.(M,{0;}}=}')) = 0 for [ > 0, the associated long

exact homology sequence immediately implies that H;(K.(M,{o;}";)) = 0 for [ > 1.
The connecting homomorphism

Hy(K.O (M, {o:}{5!)) = Ho(K.(M, {o:}]5}')) — Ho(K.(M, {0:}I]"))
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sends the homology class of m € M to the homology class of o,(m) € M. But

n—1

on(m) = Z a;o;(m), so this homology class is trivial, i.e., the connecting homomorphism

=1
is zero. Thus the long exact homology sequence gives isomorphisms
Hy(K.(M, {0:}iy)) = Hi(K.D (M, {0:}i)) = Ho(K.(M, {o:}i])),

Ho(K.(M,{0:}7,)) ~ Ho(K.(M, {o:};2}")),

hence an isomorphism

Hy(K.(M, {0:}i_1)) = Ho(K.(M, {0:};,))-

From the definitions, one checks that this isomorphism sends a 1-cycle Z m; eg;y to the

=1

0-cycle m,, ey. The map ¢ defined above is inverse to this isomorphism.

We apply this result in the setting of section 6. Assume that g is nondegenerate and that
fi is homogeneous of degree d; and commode, i = 1,...,r. Consider the Koszul complex
K.(S,0) = K.(B,{D;}*t"). The homogeneity condition implies that dim A = N + r,
hence by [1, Theorem 2.9] there is a subset S’ C S of cardinality N +r, say, S' = S\ {io},
such that K.(B, {D;}cs') is acyclic in positive dimension and D;, is a linear combination
of the D;’s, s € S, say D;, = ZieS' a;D;, a; € Q. Thus by Proposition 8.2, the map
(where £ € B)

§ep — &ip €fip) + Z(—ai)ﬁi €{i}

1€S’

is an isomorphism of Hy(K.(S,0)) and H,(K.(S,0)). From (6.7) we see that the map

@S defined by (6.9) is just a nonzero scalar multiple of this isomorphism (in fact, the
scalar is ¢;,, where ¢; is defined following (6.9)), hence 45?; is also an isomorphism. More
generally, one has the following.

PRrOPOSITION 8.3. — Suppose that g is nondegenerate and f; is commode fori =1,...,r.
Then for I C S with I, # 0 and 14, # 0 we have Hy(K.(I,0)) = 0 for | > 1 and #°
is an isomorphism.

Proof. — The hypothesis on I implies that dim A; = |I| — 1, hence one can repeat the
argument given above for the case I = S.

There is a modification for the Koszul complex K. = K.(R,{g;}X") of section 7.
The results of [1], together with Proposition 8.2, imply that there is an isomorphism
(homogeneous of degree 1) from Ho(K.) onto Hy(K.). The dimension of Ho(K.)® can
then be calculated from (7.1). However, note that the map q&g defined by (6.9) need not be
an isomorphism unless dy, ..., d, are all prime to p. So in general, we have the following
weaker version of Proposition 8.3.

PROPOSITION 8.4. — Suppose that g is nondegenerate and f; is commode fori =1,...,r.
Then for I C S with I, # 0 and 14, # O we have Hi(K.(I,0)) = 0 for | > 1,
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dimg, Hy(K.(1,0))® = dimg, Ho(K.(I,0))*V, and dimg, Ho(K.(I,0))® is the
coefficient of t* in

Yo gt (t).

er-teten=|Lp|—1
e;=0 if N+igI4qu

We prove another simple lemma on complexes. Let
0—-L —-M —-N.—-0

be a short exact sequence of complexes of A-modules. Suppose that p : Ly — L,
¢ : My — My, and ¢ : Ny — N; are A-module homomorphisms with image
contained in the space of l-cycles and sending O-boundaries to 1-boundaries (hence
they induce homomorphisms p : Ho(L.) — Hi(L.), ¢ : Ho(M.) — Hy(M.), and
¢ : Ho(N.) — Hy(N.)) such that the diagram

Ll—-)Ml—*Nl
(8:5) ‘T
L0—>M0—>N0

commutes.

PROPOSITION 8.6. — If 9 is surjective, then the connecting homomorphism Hi(N.) —
Hy(L.) is zero. If in addition Hy(N.) = 0 and ¢ and v are isomorphisms, then p is also
an isomorphism.

Proof. — We first show that the conecting homomorphism is zero. Let £ € N; be a
I-cycle. Since 1 is surjective, we may choose n € Ny such that v(n) is homologous
to £&. Choose ( € M, such that ¢ maps to n under the surjection My — Nj. By the
commutativity of (8.5), ¢(¢) € M; maps to (n) € N; under the surjection M; — Nj.
But ¢(¢) is a 1-cycle in M7, so by definition of the connecting homomorphism, £ maps to
0 in Ho(L.). If H3(N.) = 0, one then has a commutative diagram with exact rows:

gl il ‘1

0 — Ho(L.) » Ho(M.) —» Ho(N.) — 0.

Since ¢ and 1) are both isomorphisms,  must also be an isomorphism.
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