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CHARACTERS OF SUPERCUSPIDAL
REPRESENTATIONS OF CLASSICAL GROUPS

BY FIONA MURNAGHAN (*)

ABSTRACT. - In this paper we derive a Kirillov type character formula for irreducible supercuspidal representations
of p-adic orthogonal, symplectic and unitary groups. This formula is valid on a neighbourhood of zero in the Lie
algebra. It expresses the composition of the character of a supercuspidal representation with the exponential map
as the formal degree of the representation times the Fourier transform of an invariant measure on a certain elliptic
adjoint orbit. The orbit is denned using the data from the construction of the supercuspidal representation as a
representation induced from a finite dimensional representation of an open compact subgroup. As a consequence
of the above character formula, the coefficients in Harish-Chandra's local character expansion of a supercuspidal
representation are given as multiples of values of Shalika germs.

1. Introduction

Let G be a reductive algebraic group defined over a p-adic field FQ of characteristic zero.
Given a supercuspidal representation TT of the Fo-points G = G(Fo) of G, let d(7r) and ©^
denote the formal degree and the character ofpr, respectively. In [Mul-3], it was shown that,
under certain conditions on the residual characteristic of FQ, if G == GLyi(Fo). SL^(Fo) 01"
the 3 by 3 unramified unitary group, for many irreducible supercuspidal representations TT
of G there exists a Kirillov type character formula relating d(7^)~l@^ o exp to the Fourier
transform of a G-invariant measure on some elliptic Ad G-orbit. More precisely, there
exists a regular elliptic element X^ in Q and an open neighbourhood V^ of zero such that

(1.1) ^-^(expX) = /2o(x,)W, X e V. n s.e,.

Here, Jlo{x^ is the Fourier transform of a G-invariant measure ^o{x^ o11 Ae Ad G-orbit
O(Xn-) and Qreg is the set of regular elements in 5. In this paper, we investigate whether
(1.1) holds for those supercuspidal representations of p-adic classical groups which have
been constructed by Morris ([Mor2-3]).

Our methods depend on existence of constructions of supercuspidal representations as
representations induced from finite dimensional representations of open, compact modulo
centre subgroups of G. The inducing data for supercuspidal representations (in cases where
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50 F. MURNAGHAN

such data has been found) involves certain filtrations (nested sequences of open normal
subgroups) of parahoric subgroups which are attached to elliptic Cartan subgroups of G.
There is a canonical way, using height functions on affine roots, to define filtrations of
parahoric subgroups ([PR]). However, filtrations which are not canonical may occur in
inducing data ([Mor2]).

If G = GL^(Fo). due to the fact that an elliptic Cartan subgroup T is isomorphic to the
multipicative group of a degree n extension E of FQ, the filtrations arising are associated
to powers of the Jacobson radical of the hereditary order which stabilizes the powers of
the prime ideal in the ring of integers of E. These filtrations are canonical.

More generally, an elliptic Cartan subgroup T of a classical group G is a subgroup of the
product of the multiplicative groups of finitely many extensions of Fo (see [Morl], §1 for a
description of the classification of elliptic Cartan subgroups). Consequently, filtrations other
than those arising for general linear groups appear in the inducing data for supercuspidal
representations of G. Some filtrations are not canonical. Moreover, in the construction
of one supercuspidal representation, it may be necessary to work with several different
filtrations, where the relations between the groups belonging to two distinct filtrations
may not be explicit. Hence the construction of supercuspidal representations of G is more
technical than that for GLy,(Fo). The inducing data is built up inductively out of smaller
pieces of data which are concentrated on certain subgroups. On each of these subgroups the
construction is much like that for general linear groups (see the introduction and 6.2-3 of
[Mor3]). As a result, parts of the proof of (1.1) for a supercuspidal representation of G are
like the proof for general linear groups. However, the parts of the proof which deal with
the technicalities arising from the way these smaller pieces are fitted together are different.

In [Mu2], it was determined that, with the exception of one family of representations
(those associated to a cuspidal unipotent representation of the group over the finite
field), (1.1) holds for supercuspidal representations of the 3 by 3 unramified unitary
group Us. This was done using Jabon's inducing data ([J]), which was obtained from
Moy's characterization of the irreducible admissible representations via nondegenerate
representations ([Moy]). The results of this paper yield an alternate proof of (1.1) for those
supercuspidal representations of U3(Fo) constructed by Morris.

We now summarize the contents of this paper. The main results appear in §§7-10 and
are proved under the assumption that the residual characteristic of Fo is sufficiently large
(see §2).

Some notation is defined in §2.
§3 begins with background from [Mor2] concerning lattice chains, parahoric subgroups

and filtrations attached to tamely ramified elliptic Cartan subgroups. At the end of the
section, we prove some lemmas about lattice chains which allow us to define a truncated
exponential map on certain elements in the Lie algebra.

Let T be a tamely ramified elliptic Cartan subgroup of G. A T-cuspidal datum \&.
([Mor3]) consists of a collection of objects, including elements in the Lie algebra of
T, linear characters on the stabilizers of these elements in certain subgroups of G, and
integers which describe the size of the conductors of the linear characters. §4 and §5 begin
with elementary lemmas regarding the values of linear characters of unitary groups. After
recalling the definition of cuspidal datum, these lemmas are applied to the linear characters
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CHARACTERS OF SUPERCUSPIDAL REPRESENTATIONS 51

occurring in \P to produce an element c^_ in the Lie algebra of T. The element c^_ is then
shown to be regular. §4 deals with the case where the fields in the commutator algebra of
T are unramified (over a particular extension of Fo), and §5 deals with the general case.

The T-cuspidal datum ^f is used to construct an open compact subgroup Pp_ of G, and an
irreducible representation p^_ of P^_ ([Mor3]). The datum ^ is defined inductively in terms
of cuspidal data associated to subgroups of T. §6 consists of a few lemmas describing
basic properties of P^ and p^_ which follow from the inductive definition of ^_.

The topic of §7 is properties of adjoint orbits of linear functionals on the Lie algebra
Q. The particular linear functionals considered here occur in the integral formula for the
Fourier transform of a G-invariant measure on the adjoint orbit of c^_.

The representation p^, is a tensor product of various representations of P^, and c^_ is a
sum of elements in the Lie algebra of T. There is a one to one correspondence between the
representations occurring in the tensor product defining p^_ and the semisimple elements
occurring in the sum defining c^_. In §8, we derive a relation between the character of
one of these representations and the Ad Pp_-orbit of a particular linear functional which is
defined in terms of the corresponding semisimple element.

As shown in [Mor3], the representation TT^ of G which is induced from the representation
p^ of P^ is an irreducible supercuspidal representation of G. If we define a function on
G by giving it the same values as the character of p^_ at points in P^_ and zero at other
points, we obtain a finite sum of matrix coefficients of TT^. One of the main results of this
paper is Proposition 9.1, which can be stated as follows. The value of this function at a
unipotent element in G coincides, up to multiplication by its value at the identity element,
with the value of the Ad P^-orbit of a linear functional defined in terms of c^_ at the
corresponding nilpotent element in the Lie algebra. In proving the proposition, we assume
that the T-cuspidal datum \& is uniform: that is, \&. satisfies certain mild restrictions on the
size of some conductoral exponents. This uniformity condition, which most cuspidal data
satisfy, was introduced in §7 in order to deal with cases where the relations between the
distinct filtrations attached to cuspidal data are not explicit (see the proof of Lemma 7.9).
It is possible that further investigation of the properties of these filtrations will allow us to
modify the proof so that Proposition 9.1 holds for all 3/.

Theorem 10.1, which states that if TT = TT^ and \S/ is uniform, then (1.1) holds with
X^ = c^, is a consequence of Proposition 9.1 and Harish-Chandra's integral formulas for
QTT and /2op^). Corollary 10.3 then gives the coefficients in the local character expansion
of TT at the identity as multiples of values of Shalika germs at c^.

In defining c^ and proving the results of §§7-10, we assume that if there are
cuspidal representations of reductive groups over finite fields occurring in \S/, then these
representations are associated via the construction of Deligne and Lusztig to a character
of a minisotropic torus. In §11, we discuss some examples where this assumption is
dropped. For some of these examples, (1.1) does not hold. In some cases, there exists a
generalization of (1.1), in which the single Fourier transform is replaced by a finite linear
combination of Fourier transforms.

At the end of [Mor3], Morris outlines a method of combining the results of [Morl] with
those in the main body of [Mor2-3] to construct more general types of cuspidal data. Some
of the supercuspidal representations associated to this more general data are not equivalent
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52 p. MURNAGHAN

to any of those obtained via the earlier construction. As long as any representations of
finite classical groups which occur satisfy the assumption mentioned above, and (analogues
of) the results of [Mor2-3] are valid in this setting, it should be possible to define an
element c^_ such that (1.1) is satisfied (with X^ = c^_ and TT = TT^). We make some
comments on this in §12. —

2. Notation

Let F be a p-adic field of characteristic zero, 0 the ring of integers in F, p the maximal
prime ideal in 0, and w a generator of p. Suppose that (TO is an involution on F, with
fixed field Fo. Oo and po will denote the ring of integers and maximal prime ideal in
FQ. If (TQ is nontrivial, set

F1 = [x GF | xao(x) =1}

F} = F l n ( l + p j ) , j eZ j > 1.

Let V be a finite-dimensional vector space over F. Throughout this paper, the residual
characteristic p of F will be assumed to be strictly greater than the dimension of V over
F. Suppose that V is equipped with a non degenerate (c, ao)-sesquilinear form /, where
e = ±1 is fixed:

f(u, v) = e aof(v, u}, u, v e V

f{\u, v) = \ f(u, v), X <E F, u,v G V.

Let G == U(/) denote the corresponding classical group (defined over Fo). Then

G = G(Fo) = {g e GL(V) | f{gu,gv) = f{u,v), V ^ w eV}.

If erg is trivial (F = Fo) and e = 1, resp. -1, then f is symmetric, resp. alternating, and
G is an orthogonal, resp. symplectic group. In the case ao is nontrivial, / is hermitian
or skew-hermitian, according to whether e = 1 or -1, and we shall say that G is a
genuine unitary group.

Let a be the involution on End^(V) induced by the form /:

f(Tu, v) = f(u, a(T)v), u,v e V T G End^(V).

Then
G = { g e G L ( V ) \ g a ( g ) = l } ^

and the Lie algebra Q of G is given by

S = { X e E n d ^ ( V ) | X + a ( X ) = 0 } .

If X is an element of Endr(V) such that det(l + X)^0, the Cayley transform C(X)
of X is defined to be (1 - X)(l + X)-1. It is easily verified that if det(l + X) ̂  0, then
X is in Q if and only if C(X) belongs to G.
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Given a a-stable subset B of End^(V), define

B+ = { X e B | cr(X) = x }
B- ={X eB | a(X) = -X}.

Let tr be the trace map on End^(V), and let tro = tr p / p o ° tr , where tr F / F o ( x ) =
x + ao(^), x e .F. If A is a subspace of End^(V), set

A^ = { X € Endp(y) I tr (XY) = 0 VV G A }.

If X G End^(V), the notation C[X] will be used for the commuting algebra of X
in End^(V).

3. Lattice chains and filtrations associated to elliptic Cartan subgroups

Let /, V, and G be as in §2. In [Mor2], Morris constructed parahoric subgroups and
filtrations associated to tamely ramified elliptic Cartan subgroups of classical groups. The
section begins with a summary of definitions and results from [Mor2] which will be used
in this paper. The last part of the section is concerned with relations between elements
of Q and G which are used in later sections when evaluating linear characters of various
subgroups of G.

By a lattice chain in V, we mean a family C = {Lj^ez of 0-lattices in V which is
stable under multiplication by elements of Fx and such that L^+i C Li. The period of C
is the smallest integer e such that wLi = L^e for all % in Z. C is the sequence of lattices

• • • w~lLe-l D LQ D £i D • • • D Le-i D w£o 3 • • •

Given a lattice L in V, the dual (or complementary) lattice L^ is defined by

1} = {v<EV | /(^.L) CO}.

£ is said to be self dual if 2^ G C whenever L G £.
Let £ = { 2 ^ } ^ z b e a lattice chain in V. Then, as shown in [BF],

(3.1) A ̂  { X e End^(V) | X £, C ̂  V% }

is a hereditary order in End^(V) and

(3.2) B ̂  { X G End^(V) | X L, C L^+i Vz }

is the Jacobson radical of A. The parahoric subgroup determined by A is defined to be
p = A H G ([Mor3], p. 714).

A lattice chain {Bi}zez m End^(V) will be called self dual if it is self dual with respect
to the trace map tr on End^(V). That is, for each z, the lattice

B,* = { X e End^(Y) | tr (XB,) C 0}
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54 p. MURNAGHAN

belongs to the lattice chain. Since B, is an 0-lattice in End^(V), 5, is also an Oo-lattice
in End^(V). Its dual (complementary) lattice B\ is denned by

B\ = {X G End^(Y) | tro(X£?,) C Oo }.

If Co is the ramification degree of F over Fo, then ([Mor3], p. 20)

B^w^B^

Thus B^ belongs to the lattice chain if and only if B\ belongs to the lattice chain.
Suppose that V = Vi e ^2 where V,, i = 1,2, is a a-stable subspace of V. Then the

restriction /, of / to V, x V, is a non degenerate (e, <7o)-sesquilinear form on Vi. Suppose
that C = {Li}, resp. M = {MJ, is a self dual lattice chain in Vi, resp. V^ Morris
([Mor2], §2) defines a self dual lattice chain, denoted C ® M and called the sum of C
and M, in V. In addition, Morris constructs a periodic self dual lattice chain in End^(V)
([Mor2], 2.10). The hereditary order associated to C C M ((3.1)) and its Jacobson radical
((3.2)) belong to this lattice chain. Also, each lattice in the chain is a-stable.

The lattice chains in V which are associated to elliptic Cartan subgroups are produced
by taking sums of canonical lattice chains in certain extensions of F ([Mor2, §3]). The
related lattice chains in End^(V) then give rise to nitrations of the parahoric subgroups
determined by the lattice chains in V.

Let T be an elliptic Cartan subgroup of G. The assumption p > dim V implies that T
is tamely ramified. The commuting algebra A of T,

A = { x G Endp^V) | xy = yx V y € T },

is isomorphic to a finite direct sum of separable field extensions of F. We write
A = (^ Ei. Since T is elliptic, cr(F,) = Ei for every %, and either the restriction

Ki<r

of a to every F, is non-trivial for all i, or the restriction of a to exactly one E^ is
trivial, and in this case E^ = F. As in §3.1 of [Mor2], choose p, = ( /^ i , . . . ,^) G A
with 0 / p.! e E, and a(^) = e/^. Define

/A :A x A ̂  F

(^) ̂  tr(/^cr(?/)).

Then /A is a non degenerate (e, ao)-sesquilinear form on A. Assuming that U(/, V) ^
U(/A,A), we identify / with /A and V with A. Then

T = {x <E V | a;a(^) = 1 }.

For the moment, assume that A = E^ = E, that is, r = 1. Let e = e ( E / F ) be the
ramification degree of F over F, v the F-valuation of /^, and p^ the prime ideal in F.
Then, ([Mor3], 3.3), for any integer %,

(P^=Pt;-™

(where the dual is with respect to / = /A). Thus C = {p^},ez is a self-dual lattice chain
of period e in V = F. This lattice chain will be referred to as the canonical lattice chain
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in E. Let A, B and P be the corresponding hereditary order ((3.1)), Jacobson radical
((3.2)), and parahoric subgroup. From w^ = ̂ \ it follows that wB1 = B^. The
filtration {B^ez is a lattice chain (with period e) in End^V). Each B1 is a-stable, and
B'B3 C B^3 for all integers i and j.

The next case to consider is that where A = (^) E, is such that every ^ is an
Kz<r

unramified extension of F. As shown in §3.4 of [Mor2], summing the canonical lattice
chains (of period 1) in the E, results in a lattice chain Cn of period 1 or 2, a hereditary
order Au, and a filtration of Au arising from powers of the Jacobson radical B of Az.
Moreover, £^ is independent of the order of summation of the canonical lattice chains.
Following the conventions of [Mor3], if Cu has period 2, set B, = B\ and if Cn has
period 1, set B^ = B^i-i = B\

Finally, suppose that A = Q) E, is such that at least one ^ is ramified over F.
K»<r

As in §3.5 of [Mor2], reordering summands if necessary, we assume that there exists i,
0 < i < r - 1, such that E, is unramified over F for i < i, and E, is ramified over F
(e(F,/F) > 1) for i > L Set A^ = g) Fz. Let £^ be the lattice chain in An obtained

Ki<£
by summing the canonical lattice chains in the £^, 1 < i < i. Set Pu = Az n U(/^ A^),
where ̂  is the restriction of / to An x A^. For ^ + 1 < j < r, let Mj be the canonical
lattice chain in Ej. Working inductively, define Cj = Cj-i C Mj, where £^ = £n. The
notation ^l^"^ will be used to denote the hereditary order associated to £j. The parahoric
subgroup determined by A^~3^ is

p(r-,) ^ ^r-3) p u(^ e /^+i e • • • e /„ A^ e £^+i e • • • e ̂ -).
Here, /, is the restriction of f to E, x Ei. Let B^"^, % G Z, be the lattice chain in

EndpfA^ C Y.Ei\ constructed using Cj. Then A^-^ = ̂ r-J) and the filtration of
v i=£ /

P^-^ arising from {B^^}^ is

p^r-3} ̂  p(r-,) ^ (^ ̂ (r-J)), 1 > 1.

Each ^(r-J) is an open compact normal subgroup of P^-^.

LEMMA 3.3. - Fix j > i + 1. Let C = Cj-i and M = Mj. Set Ac = An ifj = i + 1,
anJ Ac = A^"-74"^ ?yj > i + 1. ^r denotes the Jacobson radical of Ac- Let V^ = Ej and

T7 - fA .e^+ ie—e^- i , ifj>t+i,
^-{A^ ^=^+1.

^ g^ ^ B^"^, A = A^-^ and P = P^-^. Let AM C End^(V2) be the hereditary
order associated to M. Set PC = Ac H U(/i, Vi) anJ P^ = A^ U U(/2, ^2), w^^ //z
^ the restriction of f to VH x VH, h = 1,2. TT^n

(1) ff,^ C Bi+fe, z , f c G Z.
(2) BI ^ ^^ Jacobson radical of A.
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(3) Let Cj be the ramification degree of Ej over F. Then wBi = Bi+2e . % G Z.
(4) Bi H (End^(Vi) C End )̂) = {B, H Endr(Vi)) C (^ H End^)), ^ C Z
(5) Pc c Pnu(/i ,yi) .
(6) Ac C An End^(Vi).
(7) Bi H End^(Vi) C Br.
(8) .AnEndj^) = AM ^PHU(/2, V^} = PM. The filtration defined by intersecting

the B i ' s with End^("l/2) coincides with the filtration from powers of the Jacobson radical
BM of AM-'

BM = B^i-i H End )̂ = B^ H End )̂, i e Z.

Proof. - (1)-(6), and (8) are results from Proposition 2.7, Lemma 2.10, and
Propositions 3.11 and 3.14 of [Mor2].

(7) By (6), the Jacobson radical of Ac contains the Jacobson radical of Ar\ End^(Vi).
By Lemma 3.13 of [Mor2], the Jacobson radical of A H End^(Vi) is 0i n End^(Vi). D

For the remainder of the section assume that A is a hereditary order, and the sequence

.. . D ff_i D Bo = A D Bi D . • • D B, D .. .

is a lattice chain in End^(V) such that
(i) Bi is a-stable

(ii) BiBj C B^, for all %, j € Z.
For % > 1, define

P , = { x < E G | x - 1 ̂ B,}.

LEMMA 3.4. - Given X G ^+, z > 1, there exists Y G Bi such that Y + a(Y) + ya(y) =
X.

Pwo/. - Since X e B^, there exists Vi G % such that Y^_ + a(Y^) = X (for example,
since 2 e C^, Vi could be taken to be X/2). Then

X - (Vi + a(Vi) + Y,a{Y,)) = -Y,a{Y,),

is cr-stable, and, by (i) and (ii), lies in B^. Suppose Yi, Y^ ..., Yk G Bi are such that

y, - y,_i e Bri
x - (Y, + a(v,) + y,a(r,)) e B ,̂̂

for 2 < r < fc. Since X - (^ + a(V,) + Y^(yfc)) G B^^ there exists iy,+i G B^i^i
such that

W,+i + a(W^i) = Z - (V, + a(Vfc) + ^a(yfc)).

Set Vfc+1 = y^ + ^+1. Then

X - (V.+i + a(Vfc+i + ^+10(^+1)) = r,a(^+i) + Wwa{Yk) + ^+10(^+1),

is cr-stable and, by (i) and (ii), is an element of B^2)i' The B^ i > 1, form a
neighbourhood base of zero in End^(V) (for j > 1, w3A = B,, some i). Thus the
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Yfc's converge to an element Y satisfying the conclusion of the lemma. Note that Y G Bi,
since each Yjc G Bi. D

LEMMA 3.5. - L^r X G .4 be such that det(l + X) ̂  0 an^ X + a(X) + Xa(X) G Bi
/or ^m<? % > 1. Then there exists Y G Bi ^c/z r/iar 1 + X + V G G.

Proof. - Since det(l + X) / 0, det(l + a(X)) = det(a(l + X)) / 0. So

X + a(X) + Xa(X) G B, implies ((1 + a(X))(l + X))-1 G 1 + Bi.

Let P = 1 - ((l+a(X))(l+X))-1 . As a(P) = R and P G 2^, we can apply Lemma 3.4
to obtain TV G Bi such that

vr + (T{W) + iva(iv) = ̂ .

Then
(1 + W)(l + a{W)) = ((1 + a(X))(l + X))-1,

which implies that (1 + X)(l + W) <E G. Set V = W + XIV. Then (1 + X)(l + WQ =
1 + x + V. Since W G Bz and X e ̂  = BO, it follows that Y e B,. D

Suppose 2 < m < p. Given X G Endr(^), set

m-l ̂  m-1 ,-^ _ -.^

U X ) = ^ — and U^)=E(-1)'1——/-^-
/i=0 ^=1

Assume X is in .4 Ft Q and X"1 is in Bi for some % > 1. We define a coset P(^)(X)
of Pi = P n (1 + Bi) in P as follows:

(3.6) P(m,z)(X) = ((e^(X) + Bi) n P)P,.

The assumption m < p implies X^/fa! G ^ for 1 < h < m - 1. Thus eyn(X) G ^l.
It is a simple matter to check that X occurs with exponent at least m in any nonzero
term in eyn(X)eyn(-X) - 1, and the coefficient of each nonzero term lies in 0. Thus
e^(X)e^(-X) G 1 + Bi. It follows that det(e^(X)) / 0. Since X <E 0, a(X) = -X,
which implies that cr(e^(X)) = Cm(-X). This fact, together with X^ G 23z, implies

e^(X) - 1 + a(e^(X) - 1) + (e^(X) - l)a(e^(X) - 1) G %.

Thus, by Lemma 3.5, p^m,i)W is well defined. That is, e^(X) + B^ does intersect P. To
see that P(^)(X) is just one coset of P, in P, suppose that e^(X) + V and e^(X) + V
belong to P for some V, Y ' G 2^. Then

(e^(X) + V)(UX) + V')-1 = (e^(X) + V)(e^(-X) + a(y'))
G (e^(X)e^(-X) + B,) H G C (1 + B.) H G = P,.

LEMMA 3.7. - Suppose 2 < m < p and X G A D g is such that X171 G B^ Let
x G P(^)(X). Then
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(1) X-1 e P(^)(-Z)
(2) X £ U )̂ + %

Proo/. - (1) x-1 = a(x) £ (<r(e^(X)) + ^)P, = (e^(-X) + Bi)Pi.
(2) Write a; == (e^(X) + V)(l + Y ' ) , with V £ B, and Y ' £ B,-. Then e^(X) £ .4

implies a; - 1 £ e^(Z) - 1 + Bi and Cnz(X) - 1 € A Thus

m-1 f-i^+i /"_1 Y^ \ '*
U )̂ e Uen.W) + B, = ̂  ——^ ^ — + B^

h=\ n \j=l 3 - )

I f l ^ n ^ m - l . t h e coefficient of Xn coincides with the coefficient of t" in the power
series expansion for ^(e*) = log(l + (e* - 1)) = *. That is, the coefficient of X equals
one, and the coefficient of -X"", 2 <: n < m - 1, equals zero. If n >_ m, the coefficient of
X" belongs to Oo and X" = Xn-mXm e B,. Therefore

E^fE^I^^- D^ (-l)W /'-,1 x^
h [^ ^h h \h3')

4. Linear characters and cuspidal data: the unramified case

Throughout this section, T denotes a fixed elliptic Cartan subgroup of G such that every
Ei in the direct sum A = ff^ Ei is unramified over F. We prove some elementary results

Ki<r
about linear characters and we state Morris' definition of a cuspidal datum associated to
T, with a minor modification. At the end of the section, a semisimple element in the Lie
algebra of T is associated to a cuspidal datum and this element is shown to be regular.

Let A = An and P =- Pn, and define B and B, as in §3. For % > 1, set T, = TH (1 + B,),
and for i e Z, Ti = T H 6,, where T denotes the Lie algebra of T, that is, T = A~. If

(£T)tf = {X € End^(Y)- | tro(X£T) C Oo},

then ([Mor3], 4.13) (B,"^ = (0?)-. Define a linear function A from Z to Z by

B? - BW
(^=^).

Then A(% + 1) = A(%) - 1 ([Mor3], 4.18). As in [Mor3], the notation A~(\(i)) may be
used in place of B^y

For 1 < i < r, let Bi be the group of roots of unity in E^ of order prime to p. Set
OT^ = (WE^I ' ' ' ̂ Er\ where WE, is a uniformizer in Ei. Let CA be the subgroup of

r

Ax generated by WA and JJ^.
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If F ^ FQ, by a linear character of G we mean a character of G of the form \ o det,
where \ is a character of F1. The following two lemmas concern the relation between
values of linear characters on certain subsets of G and elements of the centre of 0.

Let n be a character of FQ having conductor equal to Oo-

LEMMA 4.1. - Suppose that F ^ FQ and 1 < m < p. Let f > 1. If^ is a linear character
of G such that ^ \ Pf-i is nontrivial and ^ \ Pf is trivial, then there exists c' in the centre
ofQ such that c7 G A~{\{f)) - A~{X{f - 1)) and

^p^{X))=^iv,{c/X))^

for all X € A n s such that X771 € Bf.

Remark. - The coset P(^J)(X) defined by (3.6) (with i = f) is not an element of P but a
coset of Pf. However, since ^ is trivial on Pf, ̂  \ P can be viewed as a character of P / P f .

Proof. - Let e be the period of £u' By definition of 23^,

B, = B^, where a(i) = [(z - 1)/(3 - e)] + 1.

Here, [ • ] is the greatest integer function.
The centre Z of G is

Z = { / ? . 1 | / ? G F 1 }

where 1 denotes the t x t identity matrix (t = dimY). For i > 1, set Zi = Z D Pi. Via
the above identification of Z with F1, Zi can be identified with F^^,^ (see §2). Thus
det(Z^) is the group of ^th powers in F^^i^. Since p and t are relatively prime, the ^th

powers in ^rL+n^i coincide with -FrL-Ln/21- As B is the Jacobson radical of A, tr (B) = p
([BF]). By periodicity of {B'hez, we see that tr(B1) = p^-i)/^]+i. Hence

det(l + B1) C 1 + p^-1)/6^1 and det(l + B,) C 1 + p^1)/2!.

This implies that det(Pz) C -FrL+n/z]- since det(Zi) = -FrL+i)/2] and Zi C P^,
det(P^) = ^z+D/215 z ^ 1- ^e are assuming that '0 is nontrivial on P^-i, so
det(Py-i) 7^ det(Pj). Therefore [ f / 2 ] < [(f +1)/2]. That is, / is odd. Set i = (f +1)/2.

Let ^ be a character of F1 such that

(4.2) ^{x) =x{deix), x € G.

Because '0 is trivial on P^, resp. nontrivial on Pj-i, and det(Zy) == det(P^) = F^, resp.
det(Zj_i) = det(Pj-i) = F^_i, the conductor of ^ is F}.

Assume X G w4H0 is such that X771 e Bf. Let L be a finite extension of F containing the
eigenvalues a i , . . . , On of X. Extend | • [ from F to a norm | • \L on L. A is conjugate (by a
matrix in GLt(F)) to a subset of the t x t matrices with entries in 0 ([BF]). It follows from

x^ e B^ =^ x^ e B^^ =^ w-^x^ e A
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that
(f^l^lF1 < 1, 1 <i<n.

Thus
H? < g^-^)-1)/^1 = g-^+D/2] = q-^ Ki<n.

This implies

(trX)^^.

Set j = [(^ + m - l)/m]. Then

( t r^e^^ t rXe^ .

Let (yk)~~ be the set of elements x C p^ such that trip/^rc == 0. Define a map

<^:(PT/(PT^W
f/m-1 \ 1

^+(^)-- 5>^!+P' n^1 F;.
l \s=0 / J

m-1

Applying remarks preceding Lemma 3.5 to the element V^ x8 / s \ of 0 (with Bi = p\
s=l

a = o-o, and G' = F1), we see that (f){x + (pQ~) is a coset of F} in F^. Note that

em(^i)em(^2) ^ e^(a:i + x^} + p^ rri, a;2 ^ P^.
2/ G ^(rr + (p0~) ^==^ y~1 € (/){-x + (p^)~) by Lemma 3.5(1)
(f)(x + (^)~) = F^ =^ rz; C G(^1) C p^ by Lemma 3.5(2).

Thus (f) factors to an isomorphism between (p^'/d/)" and F^/F^. This isomorphism
will be used to identify ^ | FJ- with a character of (p^)"/^)".

We also have an isomorphism between the group of characters of (.p^)"/^)" and
(^""^'"/(.p"-7)". Given r G (p~^)~ the coset r + (p"^)" maps to the character

^^^(trF/Fo^1"60^)).

where eo is the ramification degree of F over Fo.
Let c' be such that w^^^c' belongs to the coset r + (p'^)" which is associated

to \ via the above two isomorphisms. From X € Q and tiX G p^, it follows that
trX € (^)~. Therefore,

(4.3) x(^(trX)) = ̂ tiF/F^iiX)) - ̂ (^(c'X)).

Let W e By such that e^(X) + TV C G. That is, (e^(X) + IV)P^ = R(^J)(X). Then

det(e^(Z) + IV) = det e^(X) det(l + ̂ (X)-1^) e det e^(X)(l + pQ.
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By definition of j, \a,\^ < q-^ implies |a,|p < q~3, 1 < i < n. This can be used to
show (see Lemma 3.16 of [Mul])

<m-l( ^T- Y^8 \

delete E^ (1+^-
,s=0

Thus

Since

we actually have

det^W+^efs^Vi+pQ.
\s=0 ' /

em(X)-{-WeG => det(e^(X)+W)eF1,

det(e^(X)+lV)€^(trX).

Using (4.2) and (4.3),

^(mj)W) = x(det(e^(X) + W)) = xW-rX)) = ̂ (tro^X)).

If X € B., then p^f)W G P^. Therefore ^h(mj)W) = 1 for all X G 67, which
implies that c' G ^-(A(/)). Similarly, cf ̂  A-{\{f - 1)) (because ^(p(mj)W) / 1 for
at least one X G BJ_^). D

LEMMA 4.4. - Suppose that F ^ FQ and 1 < m < p. Let f > 1 and c G
C- n (^~(A(/)) - A~{\{f - 1))). A^Mm^ that c is in the centre of 0. Let ^ be a
linear character of G such that

^(7) = n(tro(c(7 - 1)), 7eT^-i.

TTi^n ?/i^ ^x^^ c' in the centre ofQ such that c - c' G A~{\{f - 1)) <^

^(PCmJ)^))-"^^^)),

ybr ̂  X e A n 0 5Mc/z rtor X^ e 0^.
Prw/. - Because it is assumed that A~{\{f)) / A~(X{f - 1))), it must be the case

that A(/) is even ([Mor3], 4.13) and / is odd ([Mor3], 4.18).
Since c / A~(\{f - 1)), there exists W € BJ_^ such that n(tro(cWQ) ^ 1. Because

trVF C (pt(^-i)/2l)- = (p^-1)" (̂ ^ the proof of Lemma 4.1) and 2, t = dimp(y) G O",
we can choose /? G (p^-1)- such that f3 = -(trl^)/(2t). Set 7 = C(ft ' 1), where 1
denotes the t x t identity matrix. Then 7 e Tj-_i and

^) = Q(tro(c(7 - 1))) = 0(tro(c(C(/3 • 1) - 1)) = 0(tro(c(-2/3 .1)))
= ̂ iTF/F^-2tc(3)) = n(tr^/^(ctr^)) = n(tro(cW)) / 1.

Thus ^ is nontrivial on T^-i, hence nontrivial on Pj-i.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



62 F. MURNAGHAN

Let \ be a character of F1 such that ^ = xodet. The equality det(Py) = det(Z^) = F^
(see the proof of Lemma 4.1) implies det(Ty) = F}. Since ^ [ Tf is trivial, we conclude
that ^\Pf is trivial. Let d be as in Lemma 4.1.

Let 7 G Ty_i. Then

7 + l G 2 + ^ - i = 2 ( l + ^ _ i ) ( 2 e 0 x )
=^ 7 + 1 is invertible and (7 + I)"1 G (1/2)(1 + B^_i) C A

Set V = 2(7 + l)-^ - 1). Then 7 - 1 e Y + ̂ , V G 7}_i, and 7 G ^(V)^
(Y2 G 0/). Thus

^(^^^(tro^y^^^tro^^-l)))

and '0 and ^ i-̂  ^(tro^^ — 1))) coincide on Ty-i. Let W be any element of Bj_-^.
Choose (3 as above and again set 7 = <7(/? • 1). Then

^(tr ̂  ((c - c')tr W)) = n(tro((c - c')(-2/3) . 1)) = n(tro(c - c')(7 - 1)) = 1,
W^BJ_^

which implies that c - c! € A~(A(/ - 1)). D
r

Given c G A = ^ft £^, let 1̂  be the subfield of Ei generated by the %th component of
i=l

r

c, 1 < i < r. Set Ac = (^) Fi. If X G fl, ^c(^) denotes the stabilizer of Z in G.
i=l

A cuspidal datum of rank n (associated with T, A, P) consists of a set of objects
as follows:

(a) A sequence A > /2 > •" > /n of positive integers
(b) If fn > 1 a sequence ci, cs , . . . , Cn € (7^ such that F C Aci C • • • C A^ C A and

linear characters ̂  of G(j) = ZG(j-i)(cj), (5(0) = C?, 1 < j < n, such that

^•(7) = O(tro(c,(7 -1))), 7 e r^,_i,
and

c,eA-(A(/,))-A-(A(^-i)).
In addition, ZG(n-i)(cn) = T.

(c) In the case fn = 1, a sequence c i , . . . , c^-i € (7^ as in (b). The Cartan subgroup
T C P{n — 1) = P n C?(n — 1) can be taken to fix a unique vertex in the affine
building associated to G(n - l^([Mor3], §5). If P(n - 1)° is as in §3.17 of [Morl],
and T = T/{T H Pi), then T H P(n - 1)° is a minisotropic torus in P{n - 1)°.
Let ^n be a character of T H P(n - 1)° in general position such that the irreducible
cuspidal representation a^ of P(n — 1)° associated to ^n is fixed by no element of
P(n- l)/P(n-1)°. (Here P{n-1)° denotes the inverse image ofP(n-l)°in P{n-1).)

(d) For each linear character ̂  of G'(j) as above, an element c' in the centre of the
Lie algebra Q(j) of G(j) such that

(4.5) ^(p(rfj,)p0)=n(tro(c^)),
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for X G AF} fl(j) such that X^ G Bj,. Here, d = 2[dimr(y)/2] + 1 and p^,f,)(X)
is defined by (3.6).

Remarks. - (1) As discussed in [Mor3] Remark 3.5, the groups G{j) are products of
(genuine) unitary groups over field extensions of F. A linear character of G(j') is simply
a product of linear characters of these unitary groups. The group G(j) acts on the vector
space V and Cu is an 0^-chain, where 0<^ is the unique maximal order in A^, and
G{j) n P inherits the arithmetic structure arising from T, so properties of (G[j\T,' • •)
are the same as those of (6?, T, • • •). Thus, given cj as in (b), Lemma 4.4 (applied to each
of the unitary groups occurring in G{j)) establishes the existence of c' satisfying (4.5).

(2) Recall that fj is always odd (see the proof of Lemma 4.4). Suppose fy> 1. Set
ij = (fj — I)/2 and i'j == (fj + 1)/2. Morris' definition of a cuspidal datum of rank n
([Mor3], 3.5) differs from the above .in that the condition (4.5) on c' in (d) is replaced
by the weaker condition

^,{x) = 0(tro(c;.(rK - 1)), x C P,; H G(j).

However, since existence of c'j as in (d) is guaranteed by Lemma 4.4 (see Remark(l)), the
above definition of cuspidal datum is actually equivalent to Morris' definition.

Suppose for the moment that fn = 1. The representation a^ (as in (c) above) is
the irreducible representation of P{n — 1)° associated by Deligne and Lusztig ([DL]) to

_ ______ / r \
^n | T n P{n - 1)°. Fix Cn = 4 G (w~^ ][JB, jnT such that ZG(n-i)K) = T. The

v i=l /

Lie algebra of the finite reductive group P(n — 1) is

P{n - 1) = (A n fl(n - 1))/(B H @(n - 1))

and the image Cn of w^Cn in P(n — 1) is regular and belongs to the Lie algebra of T.
By our assumption on p, the exponential and logarithm maps are defined on the nilpotent
subset and unipotent subset of P(n — 1) and P(n — 1)°, respectively, and the Campbell-
Hausdorff formula holds. Therefore, results of Kazhdan ([Kl]) regarding the character of
o-n may be applied.

Let 0 be a nontrivial character of the residue class field of Fo. There is no loss of
generality in assuming that ^{w^r} = 0(r), for r G ^"^Oo- (Here, if w G Oo» ^
denotes the image of w in the residue class field of Fo). Given a nilpotent element X of
P(n - 1)°, set x = exp(Z). If ̂  is the character of a^ then ([Kl])

^^ = #(P(n-l)0) ^ ^tro^Ad^-1^))).
X,crn\ ) ———————yeP(n-i)0

Here we have used tro to denote the trace over the finite field, and # for cardinality.
Conditions on On ((c) above) guarantee that o~n induces to an irreducible representation
On of P(n - 1). From o^, we obtain a representation pn of P(n - 1) which is trivial
on Pi(n - 1). Let X e A n s(n - 1) be such that Z^ e Si. Then the image ~X of
X in 'P(n - 1) is nilpotent, and hence expX belongs to P(n - 1)°. Also, the image
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of p^i}(X) in P(n - 1) equals expX. The Frobenius formula for the character of an
induced representation and the above expression for ̂  combine to yield

^ Xn(W^)) ^ r ^^Ad/^W))^
Xn{^) JP(n-l)

where \n denotes the character of pn.
In general, there exist irreducible cuspidal representations of P{n - 1)° which do

not correspond to characters in general position, and these representations do not give
rise to a relation of the form (4.6). As remarked in [Mor3], cuspidal data involving
such representations may be associated to supercuspidal representations of G. For more
discussion of these cases, see §11.

Let ^ = (T, (^i, ci, c'l, /i), (^2, C2, c^, /s),. • •) be a cuspidal datum of rank n (and drop
the assumption that fn = 1). Set

n

^=^..

J=l

By definition, c^ € T. Let Qreg denote the set of regular elements in 5. The following
lemma is a special case of a result of Morris ([Mor3], Lemma 4.21).

LEMMA 4.7. - Let c G C^ n (A~(A(%)) - A~{\{i - 1))) /or ^om^ integer %. //
X (E (c + A-(A(% - 1))) n C[c], then Zc(X) c Zc(c).

LEMMA 4.8. - For 1 < j < n, T = ZGO--I)(^. + • • • + c^). In particular, c^ G S^e^.

Proof. - By definition, ^ + • • • + c^ € T. Thus T C ZGO-I)(^ + • • • + < ) and it
suffices to show that ZG'O-I)(^ + • • • + cj C T.

If /n = 1, by definition ^(n-i^O = T. If /„ > 1, by definition ((b) above)
^G(n-i)(cn) = T. By (b) and (d),

<ec ,+(A-(A( / , - l ) )nA) ,
Applying Lemma 4.7 to C?(n - 1),

Ada;«) = < =^ ^ G ZG(n-l(Cn) = T.

Thus ZG(n-i)«) = T.
Let 1 < j < n - 1. Arguing as above, except with T replaced by G{j) and A

replaced by C[c,], we see that G{j) -=- ZG^J-I)^). Because fj > fj^ > . . . > ^ and
c^,...,< C T C C[c,],

c;. + ... + 4 G c;. + (A-(A(/, - 1)) n C[c,])
Cc,+(^-(A(^.-l))nC[c,-]).

By Lemma 4.7, applied to G{j - 1),

ZGU-D^ +... + cj c ZGO-)^ +... + <) = ZGO-)(^ +... + <).
By induction, ZG^C'^ + . • . + ̂ ) = T. D
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5. Linear characters and cuspidal data: the ramified case

Let T be an elliptic Cartan subgroup of G having the property that the ramification
degree e ( E i / F ) is greater than one for i < i < r and Ei is unramified over F for
1 < i < i, where 0 < i < r — 1. That is, at least one of the extensions Ei is ramified
over F. Let the lattice chains Cu and Cr-t, orders Au and A^\ and parahoric subgroups
Pn and P^, 0 < t < r - i - 1, be as in §3.

For 0 < t < r — i — 1, let Or-i denote the (non-trivial) involution on E^_^ which
corresponds to the restriction fr-i of / to Er-t x Er-t' Set

T^ = T n U{ft, Ei) = { x G E^_, I x ar-i(x) = 1}.

Similarly, if i > 0, let fu be the restriction of / to Au x Au, and set

r, = rn u(f^Au) = {x e A^ \xa^x) - i},
where Ou corresponds to fu.

By Lemma 3.3(8), if i ̂  0 or t -^ r - 1, A^ n End^(£^-t) is the hereditary order
associated to the canonical lattice chain M.r-t (see §3) in Er-t'

BM^ = ̂ ii n EndF(Er-i) = B^ 0 End^(^-,), i G Z.

Here, B.M^ is the Jacobson radical of A^ Ft End^(£^_t). If ^ == 0 and ^ = r — 1, then,
in order to make the notation consistent with the general case, set B'^ = B " ^ 1 ^ . As in
[Mor3], the notation A^\i) may be used in place of B ^ . Let C^ be the group generated
by a uniformizer WE^_^ m ^r-t and the roots of unity in Er-t of order prime to p.

Analogues of Lemmas 4.1 and 4.4 are proved below in the case i == 0 and r = 1. Let
the map A be defined as in the unramified case:

/g(o)^ - ,g(°)
\°i ) — °A(i)

/.g(O)-^ _ g(0)-
W >' — °A(t) •

Suppose 1 < m < p. If X G ^(0) H s and X^ is in B^ for some / > 1, define
p^f)W by (3.6).

LEMMA 5.1. - Suppose r = 1,£ = 0 and F ^ FQ. Set A = A^, B, = Bf\ i (E Z,
and Pi = P ' \ z > 1. Let 1 < m < p and f > 1. If ̂  is a linear character of G such
that 1^ | Pf-i is nontrivial and ^ \ Pf is trivial, then there exists c' in the centre ofQ such
that c' G A-{\(f)) - A-{\(f - 1)) and

^p^(X)) = ^(tro^X)),

for all X E An Q such that X^ € Bf.

Proof. - The proof is very similar to that of Lemma 4.1. We indicate a few of the
differences. As remarked above, if B is the Jacobson radical of A, then

B^^+i)/^ ^z.
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Since it is assumed that Pf / -Pf-i, / must be odd. Let e be the ramification degree of
FI over F. From tr(B) = p and wB1 = B^\ it follows that

tr^Cp^-1^/^1.

For z > 1, set Zi = Z D Pi, where Z is the centre of G. Then, via the identification of Z
with F1, Zn(l+B') is identified with F^_^^^, so Z^ is identified with F[^_^/2]/e]]+r
Arguing as in the proof of Lemma 4.1, we see that

det(P,) = Fr1 n , % > 1.
v l ) [[(,-l)/2]/e]+l'

Since the assumptions on -0 require that det(Pj_i) / det(P^), e must divide
[(/ - 1)/2] = (f - 1)/2, and

det(P^-i) - F^_i)/(2e) and det(Pj) = F^_i)/(2e)+i.

Set { , = { / - l)/(2e) + 1 and proceed as in the proof of Lemma 4.1 (replacing a(/) by
(/+i)/2). n

The proof of the next lemma is omitted as it is the same as the proof of Lemma 4.4,
except that Lemma 5.1 is used in place of Lemma 4.1.

LEMMA 5.2. - Suppose r == 1, i = 0 and F -^ FQ. Let the notation be as in
Lemma 5.7. In addition, set C = C^ and T, = T H Pi, i > 1. Let f > 1 and
c G C~ ft {A~{\{f)) - A~{\{f - 1)). Assume that c is in the centre of Q. Let ^ be
a linear character of G such that

^(7)=n(tro(c(7-l))), 7e^-i.

Then there exists c' in the centre ofQ such that c — c1 G A~(\{f — 1)) and

^p^(X)) = ̂ (troCT),

for all X G A H fl such that X^ (E Bf.
Write T = (^^T x T^, where ^-^T is an elliptic Cartan subgroup of
,r-l r-1 v

[7 ( ff^ fi, ff^ Ei ]. A T-cuspidal datum is defined inductively, in terms of a T^ -cuspidal^M7^/-
<i==i 1=1 /

datum and a ^"^T-cuspidal datum.
A T^-cuspidal datum ̂  (relative to (P(°\ {^(o)}^>l)) of rank no, is defined

([Mor3], §6) to be a set of objects as follows:
(a) A sequence /w > /w > ' . • > f^ of integers.
(b) If f^ > 1, a sequence c^,...,^ e C<°)-. Define F^ = F^) and

pW ^ ^(c^), 1 < i < no. Assume Er = F^\ Define

G^W=U{f^E^
G^\j)=ZGW(^{cw^ Kj<no
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and assume that T^ = G^no). Suppose there exist linear characters ^0) of G^Q')
([Mor3, p. 256) such that

^°)^) = ^tro^Cy - 1))), 7 C T^O)_^

where /, is defined by cf G ^-(A^^)) - A^-W^ - 1)). Here A^-W =
^(°)(z)nEndF(^)-. , ..

The notation fl^O') will be used for the Lie algebra of G^(j). For each ^] as above,
assume there exists ^(0) C £1;" such that

(5.3) ^(P^O))^)) = "(tro^X)),

for X G A^ H fl^O") such that X^ G B^). Here, d = 2[dimr(V)/2] + 1 and P(^(O))

is defined by (3.6).
(c) Suppose f^ = 1. Take a sequence c^\..., c^_i, c'/0^ . . . , cj^i, ̂ °\ . . . , ̂ -i

as in (b). Assume that P^^no - 1) = P(o) H G^\no - 1) fixes^a unique vertex in the
affine building associated to G^(no - 1). The Levi component P (no - 1) is a|rouP
of rational points of a reductive group defined over the residue class field of F(c^_i).
Let P^^no - 1) be its identity component, and let P^°(no - 1) be the inverse image
of this identity component in PW^o - l)_Set T^ = T^/{T^ H P^no - 1)). Take
a character ̂  of the minisotropic torus T^ n P(o)o(no - 1) in^general position and
such that the associated irreducible cuspidal representation a^ of P (no - 1) is fixed
by no element of P^no - l)/?^^^ - 1).

Remarks. - (1) Because each G^Q') is a product of (genuine) unitary groups over
field extensions of F, Lemma 5.2 can be applied to each of those unitary groups and the
resulting elements in their centres summed to obtain the c^ of (5.3).

(2) As in the unramified case, Morris' definition of T^ -cuspidal datum differs from the
above in that a condition weaker than that of (5.3) is imposed upon the c^^'s. However,
as remarked in (1), the existence of ^(0) satisfying (5.3) is guaranteed by Lemma 5.2.

(3) As in the unramified case, the condition A^-Wff)) / A^-W^ - 1))
implies that /J^ is odd.

(4) Morris includes more general representations a^ than we have specified in (c) (see
§11 for comments on this).

If f^ = 1, let Cn^ G Er be such that w^c'^ is a product of roots of unity of order
prime to p, and ^(o^no-i)^) = r(o)- Let ^0) be the character of the representation
p^ of P^ (no -1) obtained by inflating the representation of P^ (no -1) which is induced
from a^. As was seen in §4, if X G A^ H s^^o - 1) is such that Xd e B^\ then

X^{P^W) ^ r ^^Adh-\X)))dh.

X^W JpW^no-l)
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Note that /w > 1. Indeed, f^ = 1 implies that no = 1 and Er is generated (over
F) by 4 7 . This is impossible because w^c^ is a product of roots of unity of order
prime to p and e ( E r / F ) > 2.

A T-cuspidal datum \P (relative to (P^\ {P^}^)) consists of ([Mor3], §6):
(a) A T^-cuspidal datum ^°) (relative to (P^, {P^}^].)) of rank no.
(b) If r > i + 1, a ^-^T-cuspidal datum relative to (P^\ {Pr^L^) such that if

^ = (/^ - 1)/2 and ̂  = (A^ + 1)A

(i) ker^tro^.))) D P^ D P^ n [/('©^^£;^

(ii) B^ D £?%- n End^i 9 . • . C ̂ -i).s
l! ^l

(c)Ifr = i-\-l and^ > 0, a cuspidal datum of rank rir-i for the torus T^ = TnU(^,A^)
as in §4 and such that

(i) If f^ > 1, then the appropriate modifications of (i) and (ii) as in (b) hold (with
(1) replaced by u).

(ii) If ^ - 1, then P^ D P^ n U{f^ A,).^\
(d) We write the T-cuspidal datum as

^ = { ̂ (°)^(1)^ . . . ^ ^^-max{l,^}) 1

where ^-"^x{u}) = ^^ if ^ > Q, and each ^) is a T^-cuspidal datum of rank
Ut relative to (P^\ {P^^n^i) satisfying (b) and (c) (with (0),(1) replaced by (t),(t+l),
respectively, in (b) if t < r - i - 1, and with (0) replaced by (t) in (c) if t = r - i - 1
and i > 0). For a given t < r - i, or t = r - i,i > 0, and riu = Ur-a = Ut > 1 the
final condition is:

P.% c p^ n U(A e • • • e fr-t^E, e • • • e J^-i)^
for all s < t.

Remarks. - (1) In (b)(i) above, ^tro^/^-) denotes the character of P^) defined by
A -1

rr^^tro^^-l))).

(2) When defining c^\ resp. c^, (^ (5.3) and (4.5)), we take d = 2[dim^(y)/2] + 1
.r-t .

(rather than 2[dim^ ( ̂  E, j /2] 4-1, resp. 2[dimr(A^)/2] +1). This choice of d is dictated
^i=l /

by two conditions: that d > dimp^V) and that d be odd. We require d > dim^(V) in
order that Xd = 0 for all nilpotent X G End^V).

,r-l .-

In the proof of Proposition 9.1, it is necessary that X e End^(y^£s) and
^s==l ^

Xd e B^_^ imply X'1 e ^),,. If d is odd, then Xd e fl, that is, Xd £ ^^^^^
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Note that condition (b)(i) above is equivalent to

B^^E^f^E^cB^.
Jl \s=l )

Next we define a regular elliptic element c^_ associated to $.. Set
no

E /(o)
C^W = Cj •

J'-l

For 1 < t < r-i-1, c^(t) is defined similarly . m > 0, c^(r-^) = c^ is defined as in §4.
Given an element X of Endp(^-t), 0 < t < r - i - 1, or of End^AJ, whenever

convenient that element will be identified with its image (0, • • • , X , ' - • , 0) in End^V),
without any change in notation.

LEMMA 5.5 ([Mor3], Lemma 4.21). - Let c G A~{\{i)) - A~(\(i - l))for some integer
i Assume that c C C^\ IfX e (c + A-{\(i - 1))) n C[c], then ZcW C Zc^c).

LEMMA 5.6. - For 1 < j < no, T^ = Zc;(o)o-l)(^(o) + • • • + Cn^).
Proof. - The proof is the same as that of Lemma 4.8. In particular. Lemma 5.5 is applied

to the group G^U - 1), and the proof is by induction. D
To \&, we associate the following element of the Lie algebra T of T:

r-max{l,^}

(5.7) C^_= ^ C^(t).

t=0

LEMMA 5.8. - ZG^C^) = T.
Proof. - Conditions (b) and (c) in the definition of cuspidal datum imply that

^ - ̂ (o) G ^-(A^ - 1)). Also, c^(o) G c^ + A-W^ - 1)). Thus

^ec^+^^A^-l^nT).

Since T C C^], Lemma 5.5 implies that Zc(^) C ZG^). Set H =

v(@fs,Q)E\ As Moms showed in §4 of [Mor3], ZG^) = H x ^G(o)(o)(c(lo))•
Vs==l s==l /

It follows that

(r-max{U} \

ZG(C^) = ZH ^ C^t) X ZG'(O)(O)(C^(O)).

t=l /

By Lemma 5.6, ZG(O)(O)(^(O)) = T^\ By induction, since {^^ , . . . , ̂ r-ma^l^} is a
/ r—max{l ,^} ^

cuspidal datum (relative to (P^\ {P^}n>i)) for the group H, ZH ( ^ (^(D j=
v t=i /

(r-l)^ D
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6. Cuspidal data and inducing representations

Let ^ == { ^(0), • • • , ^-max{u})^ ̂  ^ T-cuspidal datum. The assumption r > i of §5
is now dropped, r + 1 - max{l,^} will be called the length of ^

Morris defines subgroups P^(<) and P^(<), 0 < t < r — max{l,^}, as follows ([Mor3],
§§5.4, 5.9, 6.6)

r (T^) n PW^ (n, - 1)... P% (1)P%, if ̂  > 1,

P^ = I P^^t- l)P^_^t-2)^-P^(l)P^^ iff^ = 1 andn, > 1,

P^\ i n = 0 , r =
<o)no ^ 1 and /f7 = 1.

p -IT^P^), if/^^l,
'^-tp^^-l)?^), if/^l.

As a consequence of the definition of P^ and Lemma 3.3,

pw c p(o) n GL(^i e • • • e ̂ r-t).
Since P^w C P^\ and P^(<+I) normalizes P^(<) ([Mor3], §6.6),

P^ '==- P»^(0)P^r(l) • • • P^(T'-max{l,^})

is a compact open subgroup of P^°\
Morris constructs a finite dimensional representation p^_ of P^ and proves that the

induced representation TT^ = Ind^ p^_ is an irreducible supercuspidal representation of
G ([Mor3] §7). p^_ is a tensor product

P^f_ = P^(0) 0 • • • 0 P^(r—max{l,^}) ,

where /o^(t), 0 < t < r — max{l,^}, is a representation of P^_ constructed from the
T^^-cuspidal datum ^^\ Each of the representations p^w is a tensor product

p^ =p^0...0^).

If /w > 1, the construction of p ' ^ involves the linear character '0( / of G^\j) appearing
in the definition of ^^. If f^ = 1, p^] arises from the cuspidal representation a^. For
complete details, see [Mor3]. In this paper, some information regarding the construction of
the various representations can be found in Lemmas 6.2 and 8.2. Let x^w be the character
of ^(t), 0 < t < r - max{l^}, and ̂ ) the character of p^\ 1 < j < y^.

If the length of \& is greater than one, then

^/ = { \I/(1) ^(r'-max{l,^}) l

is a ^-^T-cuspidal datum (relative to {P^\ {P^}i>i)) of length one less than .̂. The
notation V 1 will be used for Ei9- • '^Er-i, viewed as a vector space over F. Let P^', p^/,
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and ̂  be the group, representation and character attached to \&7. The group P^ is viewed
as a subgroup of G in the same way that GL(y') is viewed as a subgroup of GL(V).

If the rank no of ^(0) is greater than one (and the length of ^ is arbitrary), then

r={^\c;.o\^o\^.o)}^•<^

OF {{/JO\C;.o\^o\^o)}2<.<no-l. {VC^}}

is a T^ -cuspidal datum (relative to (P^l), {^(l)}^) ) of rank ^o - 1, and length
one. If r > £, set V" = Er, and if r = i, set V" = An. Let P^//, p^/, and ^// be
the various objects attached to the T^-cuspidal datum ^'/. The group P^' will viewed
as a subgroup of G.

LEMMA 6.1.

( P^ x P ^ ' , if r > max{l^} and no > 1.
P^n ZG^) = { P^ x T^, if r > max{U} and no = 1,

[ P^//, if r = max{l,^} and no > 1.

(2) Iff^ > 1, then P^ = (P^ H Z^^))?^.

Pwo/: - The only case not mentioned in (1) is r = max{l^} and no = 1. By definition
of c^ and P^ ZG^) = T^ = P^H T^, so (2) holds in this case.

Recall that, if the length of .̂ is greater than one, then ([Mor3], §4)

C^] = End^Y') C (C^] n End^(y//)).

Thus
f (^nGL(y'))x^(l) , i f r>max{l^},

P^nZ^^)^ < ̂ ^^ ll if^=max{l^}.
\ ^l

The inequality ̂  < z^ implies P%(1) C P?l). K "o = 1, then P%(1) C T^,

and if no > 1, then P^(l) C P^/If r > max{U}, then P% n GL(V'} C P% is
a consequence of condition (b)(ii) if r > ^ + 1, and (c)(i),(ii) if 'r = i + 1. By definition
of P^-, P.̂ ) C P^'. Therefore,

*i

( P '̂ x P^", if r > max{l,^} and no > 1,
P% n ZG^) C P '̂ x TW, if r > maxK 1} and no = 1,

11 P^», if r = max{l,^} and no > 1.

By definition,

( (P^- x P^")P^, if r > max{l, ̂ } and no > 1,
p^ = J (P^' x T(°))Pw, if r > max{l, ̂ } and no = 1,

PI'."P.% , if r = max{l, t} and no > 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



72 p. MURNAGHAN

Since P^/, P^// and T^ are all subsets of Z^c^), the lemma is immediate given the
above inclusion for P°^ n ZG^). D

l!

The next two lemmas concern the values of p^\ j > 2, and p^), t > 1, on certain
subgroups of P^_.

LEMMA 6.2. - Suppose no > 1. Then
(D (^^•••^p^)!?^ = p^'
(^^(^^^(tro^^-l)))^^ ^ G P % , 2 < j < n o

(3) Ifr > 1 and r > i, then p^ | P^ EE ^(l), 2 < j ^ no.

Pwo/. - To simplify the notation, the superscript (0) will be dropped from almost all
groups and indices. Fix j, 2 < j < no. Let p^ be the representation of P^' associated
to the linear character ^j.

Suppose fj / 1 and P^(j - 1) = P,' .{j - 1). According to Morris5 definitions ([Mor3,
§5.5, §6.8), if /„ > 1,

PjW = Pj(^) =^j{x\

x e TP^(no - i) • " P I ^ U ) = P^(O) n G^\j) = p^ n G^(j)
p^x) = fl(iTo(c^x - i))), x e P^j - i). • -P^(i)' 3 ^ > uu\v^u\^J \^ - ) ) ) i w — -1 Z j ; '

/p,(x) = f2(tro(^.(rr - 1))), x € P^ - 1)... P^(1)P^

Note that f^ = 1 is allowed (as long as j < no, since we've assumed fj ^ 1). If j < no
and fno = 1, in the above, TP^ (no - 1) should be replaced by P{no - 1).

Suppose fj / 1 and P^(j - 1) / P^(j - 1). In this case, the same Heisenberg
construction is used to produce pj and pj on the group TP^ (no - 1).. . Pi,(j - 1)
(/no > 1), or P(no - l)P^_,(no - 2)...P^.(j - 1) (/^ =1 and j < no)j:[Mor3],
§§5.6-5.9, 6.10-6.13, 6.16). Then pj and p^ are extended to representations of P^(O) and
P^//, respectively, by

p,(x) = n(tro(^.(^ - l)))p,(l), x G P^._,0 - 2) • . • P., (I)?,,
p^x) = ̂ iTo(c^x - 1)))^(1), x 6 P^._,(j - 2). • •P,,(l).

Next, if fno = 1 and j = no, the irreducible cuspidal representation any of a finite
reductive group which is given in the definition of cuspidal datum is used to produce
an irreducible representation of P(no - 1) (see §§4 and 5). This representation is then
extended trivially across P^(O), respectively P^// H Pi, ([Mor3], §§5.9, 6.16) to obtain p^
and p^. Note that n(tro(c^(.r - 1))) = 1 for all x <E P^, because zi > 1.

As seen above, (2) holds for all j > 2. Also, since P^// = P^(O) D G^0^!) (Lemma 6.1),

^.|P^ = p'^ 2 < j <no.

By definition p ^ ' = p^ 0 . . . (g) p^, so (1) holds.
(3) Assume that r > 1 and r > £. After ̂  is defined on P^(O) , pj must be extended to

a representation of P .̂ Note that pj is already defined on P,,, hence on P^/ n P^. Since
^ € End^V) and rr - 1 G End^(y') for rr <E P^/ n ?„, it follows from (2) that ^ is
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trivial on P^ H ?„. Because J^/ C GUV), P^ commutes with P^(O) H GW(1). Thus
the commutator of P^ and P^(O) = (P^(O) n G^(1))P^ equals the commutator of P^/
and P^. Let ^/ G P^/ and z = C(Z) e P^. Since P^/ C P, we have y^z^y G P^. Thus

y^z^yz = C(-Ady-\Z))C(Z) e C{Z - Ady-\Z))P^.

The character x ^ f2(tro(^(^ - 1))) is trivial on P^, and A > ^-, so the character is
trivial on P^-i = P^. It follows that

P^^yz) = »(tro(^.(Z - Ad^-^Z)))).

Because y C GL(r), Z - Ady-\Z) G 0^(0)^. By definition, ̂  G S^O) C 0^(0),
so it follows that p^y-^^yz) = PjW- That is, p, is trivial on the commutator of P^/
and P^(O) . Therefore the representation pj can be extended trivially accros P^/ to obtain
a representation of P^ ([Mor3], §§6.14, 6.16). D

LEMMA 6.3. - Suppose r > 1 and r > ^. TT^n
(1) (P^(l) 0 • • • 0 P^(r-max{l,^})) | P^ = R^'

(2) Ift > 0, r/^n p^)(.r) •=- 0(tro(c^)(a; - l)))p^)(l),/^ ^ ^ -P((oo))•

Pwo/. - As shown in §§6.15-6.17 of [Mor3], after using ^(t) to define p^\
1 < J < ^ on P^(t) • • < P^( -max{ l , ^ ) , ^t) is extended to P^(O) • • • P^(t-i) via
^ ^ ^(tro^.^rr - 1))). By definition, P^ = P^(D - • • P^(r-max{i,o), and so p ^ ' =
(/o^(i) (g) • • • 0 ^(.-n.ax{M})) | P^. Since p^d) = p^ 0 • • • 0 ̂ \ (2) is immediate given
the way the representations pf1 have been extended to Pp_. D

7. Adjoint orbits of linear functionals

Given a compact subgroup K of G, let & be Haar measure on K, normalized so that
K has volume one. If uj is an open subset of K, set

(7.1) Z(X,y;o;) = / ^(tro^Adrr-^y)))^ X,V C 0.
Jo;

We are integrating the linear functional ^(tro(X-)) over a subset of its Ad AT-orbit and then
evaluating the resulting linear functional at a point in fl. In §§8 and 9, relations between
integrals of the form I[X,Y\K\ and character values of p^ and p^_ will be derived.
This section contains results concerning the equality of I(X,Y;K) and T(X,Y\LO) for
various X, K and a;.

The following lemma is a collection of results from §4 of [Mor3].
r

LEMMA 7.2. - If i = r, let c = w^b <E C^, W^ & G ]^[Bz. 7f ^ < r, Z^r
t==i

c = zn^ b e C^", w/i^r^ 6 ^ a root of unity. Then
(1) gW = (fiW n C[c\) 9 (^(0) n C^^), i e Z. (Here, B^ = A^).
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(2) C[c] and C^ are a-stable.
(3) // c' e c + (< î n C[c]), r̂ n

ad c' : (^0) n C^)- —— (B^ n CM^

^ an isomorphism of 0-modules.
If S is a subset of 5, and -ff a subgroup of G, define

H { X , S ) = { x ^ H | Adx-^X^S} X e 0.

LEMMA 7.3. - L^r c 6in^ d be as in Lemma 7.2. Assume 2m is of the form 2m = \(f) for
some odd integer f > 1. Let j e Z, j < 1 if f > 1, and j < -1 iff = 1. Define

<s,=(z?f)-nc[c])+40^.

Let K be a subgroup of P^ containing P ( f _ - ^ \ / ^ ' Then

I(c\X^K)=I(c\X^K(X^S,))^ X e Bf~.

Proof. - To simplify the notation, the superscript (0) will be dropped. Set

^[(/- j+l)/2].

The following are easily checked and will be used later in the proof:

(7.4 i) 2t-^j>f

(7.4 ii) w - f ̂  -t =^ w > \f-^l\

(7.4 iii) ^>f^1

The conditions on j in the statement of the lemma imply that t > (f — 1)/2, so
Pt C P(j-i)/2 C K. Introducing an extra integration over P^ and changing the order
of integration results in

(7.5) Z^X;!^ / { / ^(tro^Ad^)-1^)))^}^
J K [ J p t )

= I I^.Adx-^X^P^dx.
J K

Fix x G K and set Y = Ad^-^X). Then X e Bj and x G P imply Y G B^ The
Cayley transform is a bijection from B^ to Pt ([Mor2], §2.12), so for each h G Pt there
exists a unique H e B'j~ such that h = C(H). It is easily verified that

Ad h-\Y) e V - 2[V, H} + B^.
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Thus it follows from c' G B^y (7.4 i), and the above inclusion, that

I(c/,Y^Pt)=^{cfY)) I ^(-2 trolly, H})))dH^
JB^

where dH is the measure on B^ corresponding to the measure dh on Pf. It follows from
tro(c'[V,ff]) = tro([^y]ff) that

I(c\Y^Pt)=fl(tTo(cfY)) t ^(-2tro([c^y]^))dJ:r.
J^-

The map H ^ 0(-2tro([ c ' , Y}H)) is a character of B,~. Therefore in order for I{c', V; PQ
to be nonvanishing, it is necessary that this character is trivial. That is,

(7.6) [c\Y}^{B^=B-^.

By Lemma 7.2(1), Y decomposes (uniquely) as

y = Y, + Y^ Vi e B, n C[c], V2 e B, n C^.

It follows from Lemma 7.2(1), (2) and a(Y) = -Y that a(V,) = -Yz, z = 1, 2. Because
c' and Yi both belong to C[c], [c^Vi] also belongs to C[c]. It is immediate from the
definition of C[c}1- that C[c}1- is invariant under multiplication on both the left and the
right by elements of C[c}. Therefore, [c'\Y^\ G C[c}1-. Applying Lemma 7.2 to [c^V], we
see that [c^Vi] and [c!\Y^ are the C[c} and C[c}^ components, respectively, of [c^V].
In order for (7.6) to hold, both of these components must belong to B^y In particular,
if (7.6) holds, then

(7.7) [c^Y^^B^y

Let w be such that

V2 e (^ nc^)- - (B,+i ncic]^)-.

By Lemma 7.2(3),

(7.8) [c'^\ e (^+A(J) nctc]^)- - (^+A(J)+I ncic]^)-.

We remark that, in order to conclude (7.8) from Lemma 7.2(3), we must have
0w+A(j) 7^ ^w+A(^)+i- I11 some cases' P^ of successive lattices in {BJ can coincide
(for example, when r = ^ and Cy, has period one). However, in such cases Bi = B^+i
only when i is odd. In this situation. By, -^ B^+i implies w is even. By assumption,
\{f) = 2m, so w + A(/) is even, which guarantees that B^\^ / B^+A(J)+I-

In view of (7.8), (7.7) implies B^^ C B^ylfB^ / B^-i, then w+A(/) > A(t).
Otherwise, \{t) is even (>y^ above) and B^-2 ̂  ^A(t)-i "^plythat W+A(/) > ^(^-:1- If
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this is the case, since \{t) - 1 is odd and w + \(f) is even, we must have w + \(f) > \{t).
By Lemma 4.18 of [Mor3],

A(z) = 1 - i - 2eeo, % G Z,

where eo is the ramification degree of F over Fo, e = 1 if r = i, and e is the ramification
degree of Er over F if r > L Thus, in order for (7.7) to hold, we require

w + A(/) = w + 1 - / - 2eeo > 1 -1 - 2eeo = \(t).

By (7.4 ii), this last condition implies that w > [(/+j)/2], which is equivalent to V e Sj.
We have shown that if I{c^Adx~\X)',Pt) does not vanish, then x G K(X,S,\ Thus
(see (7.5))

I(c\X^K)= { f ^o{c'Ad{xh)-\X)))dhdx.
JK{X,Sj} J p t

Suppose x e K(X,Sj) and ^ = C(H) e P*. It follows from Adx-^X) ^B~, H e ̂ -,
and (7.4 iii), that 3

[H,Adx-\X)}^B^cB7.
[CW)/2]'

Therefore, since B^^^^ and Bj are subsets of <S^ and we are assuming that
Adx-^X) e 5,,

Ad^-^X) e Adx-\X) - 2[Adx-\X),H] + Bj C Sj.

Thus K(X,Sj) is invariant under right translation by elements of P^. To finish the proof,
reverse the order of integration above and then absorb the Pf integral into the K{X,Sj)
integral. Q

COROLLARY 7.9. - Suppose f^ > 1. Let X e A^-. IfX ̂  (A^- H C^}) + B%-,
then I(c^X;P^) = 0. 21

Proof. - Let 5o be as in Lemma 7.3 (where c = c^). Recall that ^0) = [y^^/2]. Hence
the conclusion of the corollary can be stated as follows: if X G A^~ and X / So, then
Z(c^X;P^) = 0. Since

Adh-\Y) - Y e B ,̂ y e ̂ °)-, h e P^,

it follows that AdP°^(5o) = <?o. Also, by definition P^ c P^^ and it is easily checked

that Ad (P(°) n Zc^^So) = So. Thus, by Lemma 6.1(2), Ad P^(5o) = So. Therefore,
to prove the corollary it suffices to show that Lemma 7.3 applies with K = P^, c = c^,
c' = c^, and j = 0 or 1. By definition (§§4, 5) c^ e C^0)-, and c^ G'S^^Q) . It
remains to verify that 1

^0) ,̂,,,
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In particular, (see (5.7)), we will show that

c^oec^+B^o)^
c^G^^ Kt<r-L

From the definitions of c^ and c'/^ (§4 if r = ^, and §5 if r > i\ it follows that
^(o) _ ^o) ^ g(°)-^ = B^0)^ . For details, see Lemmas 4.4 and 5.2.

Suppose no > I1 Let 2 < j < no. By definition, c^ C B^y Since /^ < /^ and

A is order reversing ([Mor3], §4.18), B° ^ C: S^o)^-
no

Because c^ = ̂  c^\ the proof is complete if the length of ^ equals one.

Assume that the length of .̂ is greater than one. By induction on the length, since ̂
has length one less than \P, we may assume that

C^/ = C^(l) + • • • + C^(r-t) G GI + ^ ^ . ( l ) ^ -

By definition, c^ € ^TD. Thus c^/ G B^y By condition (b)(i) r > i + 1, or (c)(i),
r = ^ + 1, in the definition of S,

?w nGUVOcP^,
Ji - •'i

which is equivalent to

B^nEnd^CyQcBgr.

Hence B%'-,^B%'-»nE•l•i^(n^BS'/;•))^?•
We have shown above that C^(Q) G c^ + B^w^. The desired result now follows from
Cvj/ = C^(o) + C^f/.

"We will say that the cuspidal datum ^ is uniform if /^ > 2e{Er-t/F) + 1 for every
t < y. - i - 2. Note that if \&. is uniform and r > max{l,^} + 1, then ̂  is also uniform.
\i r < i-\-l, then every cuspidal datum attached to T is uniform.

Define VQ : End^V) -> Z by

^(X)=j ^ XeBf-B^,.

LEMMA 7.10. - Assume that ̂  is uniform. Let e be the ramification degree of Er over F
if£<rande=lif£=r. Suppose that X G 0 and 2em < i^o(X) < 2e(m + 1) for some
integer m < 0. 7/Z(c^X;P^) / 0, then limt-.oo ̂ o^"*^1^) = -°°-
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Proof. - Assume that Z(c^_,X;P^) / 0. For j == J^o(X), let Sj be as in Lemma 7.3,
with c = c^ } and / = /} ). As shown in the proof of Corollary 7.9, Lemma 7.3 may
be applied with cf = c^_ and K = Pp_. Thus Adw~l(X) e <?j for some w e P^_. Note
that P^ C P(o) implies" j^o(X) = ̂ (Adw~\X)) for all w G P .̂ The set P^_{X,Sj) is
invariant under right multiplication by P^H ZG(C ) because ^[q']-1-" is AdZc^c- ))-
invariant. Introducing an integration over P^(X, Sj) into Z(c^_, X; P^), and then reversing
the order of integration results in:

Z(c^X;P^)= f ^(tro^Adw-1^)))
JP^(X,5,)

xZ(^-q(o\Adw- l(X);P^n^c;(^o)))dw.

Fix w C PF_(X,<S^) such that the inner integral above is nonzero. Set X == Adw'^X).
By definition of <Sj,

X - U € ̂ )^.)/,] for some £/ G Ctc^] n B^-.

Apply Lemma 7.2 with ? = [(/}0) +j)/2] and c = c^, to conclude that

X - U = W ^ Z ^ where ^^^)^nC[cH, ^^^)^n^[W

SetV =(7+W. Then X = y + Z . Since ^o(X) = '̂ and ^o(Z) > [(/^+J')/2] > j + l
(recall that f\>. 1 and j < 0 by assumption), it follows that i^o(Y) = j. As a consequence
of the AdZc^^-invariance of C[c^}1- and c^ - c'/^ G C[c^\ we may replace X by
Y in the inner integral. That is,

(7.ii) J(^-c/o\x;p^n^^(cio)))=z(^-c//o\y;p^n^^(cw

Suppose that the length of ^ is one. We will prove by induction on the rank no of
^ ^ ^(o) ̂  ^(X*) = '̂ for all integers t > 1, where j = ^o(X).

If no = 1, then C^} = T^\ The equality T^ H B^i = T^0) n B^\ i e Z, ([Mor3],
§4.21), implies that j is even. Thus Y = rj3/2^ + W, where IV G B^\, 77 = w if r = ^
([Mor3, §4.6), and r] = WE, if r = 1 and i = 0 ([Mor3], §4.1). If r = 1 and i = 0, <

^
is a root of unity in T^. Otherwise, C, = V^ Cs ls a nonzero element of T^ such that

s=l
each nonzero (^s is a root of unity in Eg. Observe that

^^O^tj. ^oW>J+l, ^{Z)>j+l

=> ^(rf^/2^ - X^ >{t- l)j + (j + 1) = tj + 1.

Thus ^(Z*) == ^(X*) = '̂ when no = 1.
If no > 1, then c^-c7/0^ = c^/. By Lemma 6.1, P^nZG(c^) = P ^ " . Thus the integral

in (7.11) is Z(c^,y,P^). Note that ^// is a cuspidal datum of length one and rank
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no -1. By induction, ^(V*) = '̂ for all t > 1. Along with y^Z) ^ [(/^ +j)/2] > j+1,
this implies ^(Z* - Y^ > {t - l)j + j + 1 = '̂ + 1. Therefore, ^o^*) = ^o(^) = '̂.

We can now conclude that if the length of \P is one, then

^(w-^^X') = 2et(-m - 1) + tj < -t,

and the lemma follows.
Turning to the general case, assume that the lemma holds for all cuspidal data of length

strictly less than that of .̂. Since ([Mor3], §4)

C^] = Endr^) C (C^] n ElK^y'Q),

we can write Y = Vi + Y^ with Vi e Endr^)- and ^ G (C^] H End^V))-.
Applying Lemma 6.1 and the fact that Endj^V) and End^Y") commute and are
orthogonal with respect to trace results in

Tin ,/(°)v.p n7 .(o)^_f^(c^,yi;P^)Z(c^//,y2,P^/), i fno>l^^c^-Ci ,r,^nzG(A jj — < „
- - (^(c^/,^^), n rio = 1.

By (7.11), all of the above integrals are nonzero.
If ^0(^2) = J\ then the arguments in the length one case imply that i^o(Y^) = tj.
Otherwise, ^0(^2) > 3' + 1 and ^o(V) = j imply that ^0(^1) = J- Let the integer

valued function v\ on End^V) be defined in the same manner as i^o, but relative
to {B^hez. The inequality j < 2e(m + 1) is equivalent to Yi / ^z7m+l^(o).
Also A^ C A^ n E^dF(^/) (Lemma 3.3(6)). Thus Yi ^ wm+lA(l). That is,
^(Vi) < 2e/(m +1). It follows that

(7.12) 2eW < ^i(Yi) < 2e'(m' + 1), for some rn1 < m,

where e' is the ramification degree of £r-i over F if r > i + 1, and e / = = l i f r = ^ 4 - l .
For the moment, assume that r = ̂ +1. The length of^7 = ^u is one, so the nonvanishing

ofZ(c^/,yi;P^/) implies that i^i(Y-f) = v\(Y^)t. The argument in the rank one case also
implies that ^1(^1) is even. Since e' = 1, from (7.12) we have ^i(^i) = 2m'. The
equality ^(Yfl = 2m't is equivalent to Y{ e w^^^^) - B^). Recall that A^ C ^(0)

and^ D ^0) n End^(y/) (Lemma 3.3(7)). Thus Yf G CT^^^0) - ̂ 0)). That is,
;/o(y^) == etm''. Assumptions on j in the case t = 1 then force j = cm' and m7 = m.
So ^(V^) = ^ (when ^0(^2) > '̂ + 1).

We can now conclude that if r = i + 1, then ^o(^7) = ^J\ ^ ^ 1» for at least one
i e {1,2}. Because Yi G Endr(V) and ^2 G End^V^), this implies ^(^t) = tj,
t > 1. By the same argument as in the length one case, ^o(^) = ^o(^*) = tj- Thus
v^w^^^ X*) = 2et(-m-l)+tj < -t and the lemma is proved in the case r = -^4-1.

Suppose that r > i-\-1 and ^0(^2) ^ J +1- Thus ^o(^i) = J- In this case, e' > 1, and we
do not have an explicit relation between { B ' ^ i ^ z and { B ' nEnd^(y')}^z5 so it is not
possible to determine ^(Vi) precisely. The length of ^/ is one less than the length of 3/,
^ is uniform, and I(c^Y^P^) / 0. By induction, lim^oo ^(w-^^+^Y^) = -oo,
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where m' is as in (7.12). That implies lim^oo ̂ o^'^'^Y^) = -oo. If m' < m,
then 2e(m/ + 1) < 2em < ^(Vi) implies that w-^'^Y^ G ^(0). This leads to a
contradiction because W e ̂ 0) implies Wt e A^ and hence ̂ (W^ > 0. Thus m' = m
and lim^^o^"'^1^!) = -oo.

On the other hand, if ^0(^2) = J\ then, as remarked above, ^o(^) = ^' This implies
that y^w-^^Y^ < -t.

We have shown that lim^oo i^o^'^^Y^) = -oo for at least one i G {1,2}.
Therefore lim^oo ̂ (w-^^Y^ = -oo. Recall that ^o(Z) > [(/^ + j)/2]. Since
^ is uniform, /w = 2^0) +1 > 2e + 1. Also j > 2em, and m < -1. Therefore
^(W71-1^) > 0. That is, w-J^-^X - w-^-^Y G A^. The lemma now follows from
the result for Y and from ^o(^) == ^o(^). D

COROLLARY 7.13. - Suppose that ^ ^ uniform. Let d = 2[dimr(V)/2] + 1. //'X G S ^
^c/i ̂ r X^ G B^) and X / A^\ then I(c^X',P^) = 0.

A
Pwo/. - By Lemma 7.9, if Z(c^ X; P^) ^ 0, then ^(-^t) < 0 for all t > 1. However

X^ e B^) and y}^ > 1 imply that ^o(^) > 0 for t large. D
J!

Remark. - It is possible that the conclusion of Corollary 7.13 holds if \P. is not uniform.
However, the proof of Lemma 7.9 requires that ^ be uniform. Hopefully further analysis
of the lattice chains will allow us to drop this condition on ^ in the future.

8. The character of p^

The content of the main result of this section. Lemma 8.3, is as follows. If the linear
functional ^(tro^/'-)) is integrated over its Ad P.%-orbit to produce a new linear
functional which is then evaluated at a certain type of point in fl, the value obtained
coincides, up to the degree of the representation p ' \ with the value of the character
' ) C / of p^ at a related point in P^. It follows from Lemma 6.1 that the Ad P°^ -orbit

1!

of f2(tro(c^ )-)) is the same as its Ad P^-orbit. This relation between ^ v ^ and the
Ad P^-orbit of a linear functional resembles the relations between characters and orbits
of linear functionals which appear in Howe's Kirillov theory for compact j?-adic groups
([H2], Theorem 1.1). However, here the elements of g and G are related via a truncated
exponential map ((3.6)) rather than via the exponential map. Furthermore, our result does
not hold for the values of ̂  at arbitrary points in Pp_.

We begin with a preliminary lemma concerning the decomposition of elements in Q
and G relative to C^].

LEMMA 8.1. - Let X e C^] + B^ be such that X6- G B^, where d =
z! A

2[dim^(^)/2] + 1. Assume /w > 1. Choose j G Z such that X e B^\
(1) Then there exist Y, Z € B^ such that

x = y + z, ye C[c^\ z e c^Y n B^\
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where s € {i^,^}. If X £ 0, then Y, Z € fl. Furthermore, X £ .4^ ;mp̂
yd p K?(0)
Y e -s+i^'

(2) IfX G A^" and a; £ P^/0))^)' rAe" ̂ re ex^ V and z such that

-=y^ ^^.^))^)n^(cio))' zepw ' ^-I^T+^O),

v^rc y ^ ̂  m ̂ . // s = i'^, then ̂ (^{z - 1))) = 1. // x G P ,̂ rnen

y £ P^ n ZG^).

Proo/. - (1) By Lemma 7.2(1),

X = Y + Z, forsomeV G C^} n ̂  Z £ C^Y n B .̂

Since X € C^] + B% and Y e Ctc^],
^l

Z = X - V e (C[cH + B%) n Ctc^y = fi% n C^0^.

If Z ^ B^o), let s = ^0). Otherwise, let s = ^(0).
Supposed € 0. By Lemma 7.2(1) and (2), -X = -Y - Z = a(Y) + a{Z) implies

-Y = a{Y) and -Z = a(Z). That is, Y, Z € g.
Suppose that X € ^(0). Because C'tc^]-1 is invariant under multiplication on the left

and right by elements of C^], any monomial of the form V^ZY^-3, 0 ^ j ̂  d - 1,
belongs to C^}^. If Z occurs at least twice in a monomial, then, since Y e ̂ ^ and
Z C B^, that monomial lies in B^. Writing X'1 as a sum of monomials involving
products of powers of Y and Z, and decomposing the monomials into sums of elements
in C^} and C^0^, it follows that the C^} -component of Xd belongs to V* + B^>.
Then ̂  £ B^, C B^.o, and 2s ^ s + i^ imply that V^ € B^,. This finishes

/I S+l^ 1

the proof of (1).
(2) Assume that X e A^- and let a; £ p^ ̂ W)(X) (our assumption p > dim )̂

implies p ^ d, so p^ ̂ (X) is defined, cf. §3).' Let Y and Z be as in part (1). Because
V € Cfc^] and V^ e ̂ ^ (o), there exists R G C^} n fi^.o, such that e^V) + E € G.

L i J S+Z^ ' S-r-t^

That is, p-^(o))(y) intersects ("[c^]. Set y = e^V) + J? and z = y^x.

XLeY3+ B^ + {C^V n ̂ °)), 1 ^ ̂  d - 1.
J' J'

This was shown above in the case j = d, but without dividing by j\ If j < d - 1, then
|j!| = 1 (recall d < p), so Q"!)-1^ = ^(0). By definition, x € ed(X)+B^,. Combining
this with the above information about X-'/(j!), we obtain

xee^+B^+^Y^BW).
;(0)s-^-i'i
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Because^/-1 G A^nC^}, K^.w andCtc^nB^ are invariant under left multiplication
_i SJV~^1

by ?/ . Thus

. = y-^ € y-^y) + B^ + (C^T n Z?W).
S-|-^

It follows from ^-1 <E ^(-V) + B^o) (Lemma 3.7) that ^e^V) G 1 + B^.co).
S-}-'l^ S-^-1^

Finally, if s = z'/^,

c'W € C^] n Z ? ^ , . and . - 1 G C[c^Y + B^, =^ ̂ °\z - 1)) e Oo.
MJi ^ Ji

For the final assertion of the lemma, note that z G P^o) C P^_. Thus a; G P^_ implies
y = XZ-1 <E P^. By definition, ^ G ^^(c^). D

As in §6, if the length of ^ is greater than one, set V = E^ C • • • 9 -Er-i and V" = Er.
If the length of M/ equals one, then V" = E^ if i = 0, and V = A^ if ^ = r. Recall from
the definition of T^ -cuspidal datum in §5 that G^(l) denotes the centralizer of c" in
GHGI^y7') and Pj0^!) = P^ nG^(l). The notation ^^(l) is used for the Lie algebra
of 0^(1). The next lemma shows how elements of Cl^']" and ZG^C- ) decompose
relative to End^(V) and End^(y//). The second part of the lemma will be used in §9.

LEMMA 8.2. - Let X, Y, y, d and s be as in Lemma 8.1. Assume that X G A^°\
(1) Suppose that r > max{l,^}. Then

Y = Yi + V2 for some Vi G A^~ U ^dF(^), ^2 e A^ H ^^(l).

anJ ?/ = yiy'2 where

yi e P(d,s+i[°^ n GL(y') and 2/2 e P(d,,+4°))(^) n ̂ ^(i).

Furthermore, if X € B^, f/ien Vi, V2 € Bi anJ yi, y^ <E P^.
(2) A55Mme that the rank no of^^ is strictly greater than one. Ifr= max{l,^}, let

Y'2 = Y. Otherwise, let Yy, be as in (1). Then

(P^O)/^) n p(°)(i))P^(i) = p^o)/^) n p(°)(i).

Proof. - Let Bj = B^, j £ Z, and P, = Pj^, j > 1.
(1) Apply ([Mor3], §4)

C^} = EndF(V') ® (CIc^l n End^V")),

and Lemma 3.3(4) to obtain Vi and Y^. Choose R e Ctc^jn^^^o) such that y = ed(Y)+R
(as in the proof of Lemma 8.1). Arguing as for Y, we can write

R = Ri+R'2 for some Pi G EndF^nB^o) and ?2 € ^(oinCtc^nEnd^y7').
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Let 2/1 = erf(Vi) + Pi and 2/2 = e^) + ?2. Note that 2/1 - 1 <E EndF(y/) and
2/2 — 1 € Endj^y77). Using the fact that the product of an element of EndpfV7) with any
element of End^(Y77) equals zero, we obtain

yiV2 = (ed(Vi) + Pi)(^(V2) + ?2) = e^edW 4-^+^2= ^(Vi + y^) + J? = ,/.

Because a preserves GL(y7) and GL(V7'), it follows that a{y) = y~1 implies cr(yn) ==
2/;,-1, n = 1,2. Since Yi and V2 lie in different blocks, we have V^ = Yf + Y2f e ^+^°)
implies V^, y2d C B^(O). Also V G ^(0) (by Lemma 8.1) implies Y^Y^ ^ A^\ Therefore
P^d^i^}^^ is defined and Vn e P^^+,(o))(yn). ri = 1,2. By definition, 2/1 e GUV)
and 2/2 G G(°)(l).

Finally, if X G Bi, then Y e 0i by Lemma 8.1. By Lemma 3.3(4), we have Yi,
Y^ e 0i. That 2/1, 2/2 E Pi now follows from their definitions.

(2) Observe that 5 + ̂  > 2^w = y}^ - 1 > f^\ which implies P^(O) D P^^(O) and
y2ĉ  G B . C O ) . Suppose that J?2 ^ B5+^(o) n S^^l) and ^2 e B.(O) H fl^^l) are such that

y2d=fed(Y,) + R, e p^^^o)^(y2) n P^(l)
^^2) + ^2 e p^o)^(y2) n pW(i).

Then

y2deB^o), J?2^^o)n^°)( l ) , ^eP^^l) =^ 2/2 e^o^nP^l).

This implies 2/2'1^2 ^ Pr(o)(l). Thus

^2 e 2/2?^) c (P(^^o))(V2) n ̂ °)(I))P^O).

Note that both sets in (2) contain P,(O)(I). As we have shown that 2/2 and $2 belong to•̂
both sets, the desired equality holds. D

LEMMA 8.3. - Suppose X E ^(0)- is such that X^ G B^ and p . , .(Q)JX) C P .̂j^ v '•'i /

Then, if x € P^(O)^(X),

^(^^fz^^;?^), .y/}0^!,
^(i) lz(c/°\x;p(°)), ^A^-I.

Pwq/: - Set A = A^\ Bj = B^\ j G Z, and P, = Pj^, j > 0.
Suppose no = 1 and /^ = 1. Then r = ^ and P^ = P(0) = P. Since x e P(^,I)(X),

by (4.6) and c^ = c^0^

X^W =x(lo)(l) / ^(tro^Adh-1^)))^^^^^;?).
JP

Henceforth we assume that / v / > 1. The proof is broken up into several steps.
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Step 1. - Let ^0) be the linear character of G^^l) given in the definition of ^°\
In the first step, ^0) is used to define a linear character of (P^ D ^(c^))?./^). In

§6.10 of [Mor3], Morris defines a character (^0) of (P^(O) H G^ (!))?./ (Q) by:
'l!

^KP^n^i))^
^(w) = ̂ (tro^/V - i))), w e P,(O).

"i

I f r > max{l, ^}, set H = P^nGI^y') and ffi = ffnPi. Because H c P,H normalizes
P/(O) . Also, ff C GL(r) and c^ G End^Y77) imply that Adh^) = c^. Thus,

^{h-^wh) = ̂ ^^(h^wh - 1))) = ^(tro^^w - 1))) = ^(w),
^ G ff, w e P/(O).

l!

As H C GI^V) and GW(1) C GI^y"), it follows that H commutes with G^°)(l).
Thus H normalizes (P^(O) H G^^l))?^^^, and (^0) is trivial on the commutator and on
the intersection of these two groups. This means that (f)^ can be extended trivially across
H to a character of H{P^w n G^ (!))?./ ( Q ) . Set

l!

L = J^x(^ (o )nG(° ) ( l ) ) , i f r>max{l^} ,
1 P^(O) n C?(°)(l), if r = max{l, ̂ },

and Li = £ n Pi. By Lemma 6.1, £ = P^ H Zc^c^) and P^ = £P(O). The character
(,6^ is defined on LP/(O).

The restriction of p^ to £iP^/(o) is a multiple of (^w. There are two cases to be

considered. In the first case, P(O) = P/(O) and p^ = ̂ w. In the second case, P(O) / P/(O)i i ^\ ^\
and a Heisenberg construction is used to produce p " . The next remarks show that both
cases can occur.

Recall that /^ is odd (see Remark(3) following the definition of ^(0), resp. ^, in
§5 if r > i, resp. in §4 if r = t).

In certain cases, 02j-i = ^2.7 / ^2j+i. j ^ Z. For example, this happens if r == ^ and
the period e(Cu) of £„ is one, or if i = 0 and r = 1. In this situation, B.w = £L(O) is

l! l!

equivalent to i^ = (/}0) - 1)/2 odd, that is, to /w congruent to 3 modulo 4. Otherwise,
B.(O) 7^ B,/(O).

l! ^l

If r = i and e(£^) = 2, or r > max{l^}, then in most cases ^_i / By, j e Z. If
so, /^ odd implies i^ = i^ - 1, so B.w / B.,(O).

l! l!

5'̂ p 2. - Let X and re be as in the statement of the lemma. By Lemma 6.1, X G A
and x G P^ imply that re - 1 C (^4 H C^]) + ̂ (Q). Applying Lemma 3.7(2), and the

fact that |j!| = 1 for j < d - 1 (recall d < p\ we see that X <E (A H C^]) + B^o).
Thus we may apply Lemma 8.1.
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Let V, Z, s, y and z be as in Lemma 8.1. If r > max{l, i}, apply Lemma 8.2(1) to write

Y=Yi+ V2, Yi e EmW) n A-, V2 e fl̂ l) n ̂ ,
y = 2/12/2, yi e ̂ ,^))W n G^)' ^ e P(<,,^))(^) n G l̂).

Also,

x = y z ^ LP^O), z € P^O), y € Za^) ==^ y £ LP^o, n Za^) = L. (Lemma 6.1)

Thus yi € £ n GL(VQ and y^ £ L n G'(°)(l) = P»(O) n G'W(l). If r = max{U}, set
Va = V and 1/2 = V- The above statement that y e L is still valid.

5rcj9 3. - Consider the case P(O) = P^(O). Because B^m = B^m, we have Z £ 2^(o).

That is, s = i'^. Recall from step' 2 that 2/2 e p^m^). This implies that

î0 )̂ = ^(troCc/0^)) ((4.5) or (5.3)). Also, z - 1 G C^T + ̂ °> ^Pl̂

^(0)(^) = ^(tro^0^ - 1))) = 1. Since ^0) is trivial on H, ^(yi) = 1. In this
case. p^ = <^>w. Therefore p^\x} = fl^c^Y^). Note that

c^ € Endr^), VieEiKW) ==^ tro^ri) = 0

c^GC^], ZGC^0^ =^ tro(c//o)^)=0.

Thus t^o(Cl(o)y2) = tro^^X). It follows that

x^)=^(.)=0(t^o(c//o)X)).
Xi (1)

Recall that ((7.1))

Z^X;?^ I ^(c'^Adh-^X^dh.
11 ^^(O)'1

Conjugation by P(O) = P-(O) has no effect on x^ = P^' and thus ^(tro^'i^X)) =

^c^,^;?^). 1

5'teo 4. - For the remainder of the proof, we assume that P^(O) / P^m- In this case, a
Heisenberg construction must be used to produce p ' 1 ' on all of P^ = ^P^o).

Let ker ̂  be the intersection of the kernel of ^ with Li. Morris ([Mor3],
Corollary 6.11 and §6.16) showed that (P^m n G(°)(l))P^o)/ker ^0) is central in

P^toi/ker ^w. If r > max{l,^}, then ffi C ker ^0). Hence

LiP.,(o)/ker ̂ ) = (P^(O) n GW(l)P,(o)/ker ̂ ,
l! 1

^IP^(O) /ker ^^ = LiPw /ker ^^ = P^(O) /ker ^0).
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Therefore, £iP^/(o)/ker (f)\ is central in £iP^(o)/ker ( ^ v ) . From properties of the
Heisenberg construction, it follows that p " \ L^P.(O) is the unique irreducible component
of the representation 6{ ) of L]_P^O) induced from (j)" \ £iP/(o).

\\ | L-^P^O) is therefore a positive multiple of the character of S ' \ In particular,

^ X^H^ K°W i f w G £ i P / ( o ,
v ' / ^°)(1) ^ 0 i f w G £iP|o) - LiP^o.

To obtain p[ ) on all of £P(O), the theory of the Well representation is used to produce a
unique extension p\ ) of 6{ ) . This will be discussed in step 5.

Suppose that x G L^P^O). Since x G Pi, it is a consequence of Lemma 3.7(2) that

X G fii, and yi, y2 ^ P I ' As seen in step 2, y e L. Thus ?/i, 7/2 G £1. If 5 = %^ (that is,
Z 7^ B^(O)), then z ^ P/ (O) , so x / 2.iP/(o). By (8.4), ^(.r) = 0. Applying Lemma 7.3
with j = 1, c' = c/(o) and K = P(O), we get

l!

Z^^X;?^)) ̂ Z^^;?^)^^)).

Because X G 0i, it follows that Adw-^X) G X + B./ (O) for all w e P.(O). But 5 = i^^\ l\
implies that X -^ <?i. The fact that <?i is invariant under addition of elements of B. / (O)l\
then guarantees that P(o)(X,5i) = 0. Therefore, Z^^X;?^)) = 0. This proves the
lemma for x G L^P.w — L^P.iw.z^ z^

If s = i^ \ then x G £iP^/(o) and exactly as in step 3, ( / ) ' \x) = ^(tro^^X)).

Applying (8.4) and (^)([)\h~lxh) = ̂ (x) for all h e P.(O), the lemma now follows
z!

for x G LiP./(o).
l!

5'̂  5. - It remains to prove the lemma for x G £P(O) — £iP./(o). (Recall that we
t! x!

are assuming that P^(O) / P^(O).) The group L acts by conjugation on the Heisenberg

group associated to LiP^(o)/ker (f)" and this action factors through the action of the
symplectic group (over the finite field Fp) associated to the Heisenberg group. Because
V ^ PU s+^°))(^) an(! ̂ d G ^s+i(°) c ^1' me ^age of 7/ in this finite symplectic group
is unipotent. Let U be the group generated by y and by Li. The image of U in the finite
symplectic group is the cyclic group generated by the image of the element y . Remarks
on page 295 of [HI] imply that

p^lE/P^^Jnd^^),

where J is a subgroup of P^(O) containing P^/ (O) , and the image of L^J in Z/iP.(o)/ker (^0)

is a maximal abelian subgroup which is fixed under the action induced by conjugation by
y. Also, (f)\ is any character of UJ which coincides with (f)" on [/P./(O). Set

^\C{W)) = ̂ (^tro^W)), W G C-\J\
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Recall that C is the Cayley transform. After checking that (^0) | U n J = (^0) | U H J,
(Lemma 8.5(2)) ^0) can be extended to all of UJ by taking ^0) | U = (^ | C/. As will
be shown in Lemma 8.5(3), (j)" is a representation of UJ.

Set ^(rc) == { w G UP^O) | w~lxw e (7J}. From the Frobenius formula for the
character of an induced representation,

^=/ ^(w-^w)^.
^(l) J^w

Since conjugation by ?7 fixes (f)[ ) and C/ normalizes P.(O), ^(x) may be replaced by
^(x) = ^'(^c) n P.(O). The choice of the subgroups U and J depends only on y modulo^\
Li, so if x is replaced by w~ xw, w G ^i(^), nothing is changed. Thus there is no loss
of generality in assuming that x G U J . In Lemma 8.7, we will prove that

^(w^xw) = ̂ o)(rr)0(tro(q(o)(Adw- l(X) - X))), w G ^(x)

and also

I(c[{o\X^P^)=I(c[{Q\X^,(x)).

Hence

^ = ̂ \xW-^{c^XWc^\X-,P^.

Howe ([HI]) proved that ^ v ) is supported on conjugacy classes in UP.w which intersect
UP.f(o). Replacing x by w~lxw for some w £ P.(O) such that w~lxw G UP.,wz^ z^ ^ i^
if necessary, we see that to complete the proof, it suffices to show that (j)'\x) ==
^(tro^'/0^)) when x G E/P/(O). Recall that ̂  \ UP^w = ̂  \ UP^O). From s = i[^
(Lemma 8.1), we conclude that

^\V2) = ̂ 0)(^) = ̂ tro^^))

^\z)=^t^°\z -!)))=!.

It follows that

^0)^) = ̂ io)(^)^io)(^ = ̂ {c^Y^ = ̂ T^X)). a

LEMMA 8.5. - Let U, J , £i, 0^ anJ ^0) be as in the proof of Lemma 8.3. Set
J = C-^J). Then

(1) ^-J == J for any positive integer m which is not divisible by p.

(2) ^0) coincides with ̂  on U n J .
(3) (j)[ is a representation of UJ.
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Proof. - (1) Note that mj C J (J is a group) implies ^ = {l/m)(mJ) C {l/m)J.
Thus

J C (l/m),7 C (l/m)V, 5 > 1.

Since 1/m G C^, there exists 5o such that (l/m)50 G 1 + -p. From J C B.(O), it follows
that (1 + p)J = J . Hence (l/m)80^ = ^r. Setting s = SQ above, we obtain (1).

(2) By definition of [7, ZG^) H P(O) C U C ZG^). Also, J C P(O). Thus
£/ H J = ZG^) n J. Let w e (7 n J. Set W = C-^w). Since J C B.(O), it follows that

l!

W3 G B^(O) C B.CO). This implies that w = C7(W) G p^ ,(o)J-2W). By the same type
of argument as for Lemma 8.2(1), if r > max{l,^}, we can write

W=W^+W^ W^ G End^(y'), ^es^^l),
w = wiw2 wi e p^^o)^(-2lVi) n GL(y') w^ G ̂ ^0)^-2^2) n G^i).

Then (^^(w) = ^\w^) = ̂ (-2tro(c//o)lV2)) by (4.5) or (5.3). If r = max{l^}, then
(4.5) or (5.3) may be applied directly. In any case, ^(w) = ^(-^tro^/0^)), for
w = C(W} G U n J. Recall that ^^^(T^)) = n(tro(-2q(o)IV)), W G J .

(3) By (2), it suffices to show that (f)" \ J is a representation. Let wi = c(TVi),
W2 = c(W^) e J. Then

^0)(W1W2)^0)(WO-1^0)(W2)-1

= ̂ (C^i + ̂ 2 - [Wl^2]))"(-2t^o(c//o)(lyl + W^)))-1

= ̂ tro^^i,^])) = ̂ \C(-[W^W,})).

Set wi = C7(VFi/2). By (1), wi € J. By definition of J, the element w^w^w^w'z
belongs to the kernel of 0 V ) . It is easily checked that

w^w^wi^ e C{-[W^W^)P^),

Therefore (^\C{-[W^,W^)) = 1, which implies (see above) that ^ is a
representation. D

The next lemma will be used in the proof of Lemma 8.7, which itself consists of a proof
of facts used in the proof of Lemma 8.3. Lemmas 8.6 and 8.7 are similar to Lemmas 3.17
and 3.20 of [Mul]. The main difference is that in Lemma 8.7, use of Lemma 8.1 is avoided
where it is not necessary, which makes some of the formulas look simpler than those in
the proof of Lemma 3.20 of [Mul].

LEMMA 8.6. - Assume f^ > 1. Let X G A^~ n (C^] + B^O)), and let Y,
Z, x, y, and z be as in Lemma 8.1. Assume x G P^. Let Bj = B • , j G Z. Set
V = (B^(O) n EndF(^)) + Bi'w tfr > max{l^}, and V = B^w otherwise. Then

d-1 (_-[\m

(1) Adx-\R)^ ^v—^-(ad^^+P-, R e £^^CI^L^I^ ^i.y -r ^ , -tC ^_ <^.(o)
Tib. ^1

m=0
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d-1 (_-\\m

(2) [ X ^ R } e y^—^-^Adx^-irW+V-^ R^B-^
\ f L 7 J ^__^, ^ z^

m=l

/ _1 d-2 ^—1^m+ l

(3) ^cRE^^n^8.-
m=0

d-2
iZ

m+ 1
(4) z e -2 y ^^(Adrr-1 - inc-1^)) + 07•,'w\ / /_^ vn -\-1 l!

m==0

Remarks. - (a) In (1)-(4), x and X may be replaced by y and V, respectively. This is
immediate from y G xP\ and V - X G B]~.

(b) Suppose r > max{l^}. In (3) and (4), there is no B^w H End^Y')-component
because Endp^) C C^} and Z, ^ - 1 G C^}1- +^/ (Q) . Thus B^(O) appears, not P-.

Proof. - Analogues of these results were proved in [Mul] with y and Y replacing x
and X. The difference here is that r may exceed max{l, i}. (For the general linear group,
^ ^ ^ ̂  The proofs differ very little from those in [Mul], so we include only the proof
of (1). Let R G B~^y Since x e P^(O)^(X),

' • (O) , ^ )( d-1 ( Y\t\ /d-1 yn\

Adx-\R)^ V{——J- }n E— +^°4/°^ t! 1 v^o ^! y ^ + A
d-l d-1-^ (-X)^^1E V-^ ^-^; ̂ ^ ^= ^ —ir~t——+ D,(O) .(o).Z-^ t\u\ ^ IJl^ t\u\ ' ~^^ /+AV"
u=0 t=0

Isolating those terms with t + u < d - 1, we get

d-l d-l-t . WDyn d-1 rn r-n7'1E ^-^ ^—^V J 2ty^ ^ '̂ ^ ^-^ V J - ) -\7-n D -vm-n

^ t W . ~ 2^ 2^ n\(m - n)\
1=0 u=0 m=0n=0 v /

= y^ izl^fr-n-y'r-n-f^x^x7"-"^
^ m! V ' / 2—; \^/ /
m=0 \ n=0 v / /

d-l ^—l^

= E L-L-(adX)m(J^).^-^ m!
m=0

To complete the proof of (1), it remains to show that the sum S of the terms
(-X)tRXU/(t\u\) over 1 < t,u < d - 1 and t + u > d, belongs to V. As \t\u\\ = 1
for 1 < t,u < d - 1, we need only prove that XtRXU G P for t + ^ > d. At this
point, it is convenient to work with Y rather than Z. Because Y - X G 23i, we have
X^X^ - YtRYU G B . ( O ) , , = B . / ( O ) . We will show that YtRYU G V.

z-^ +i »i
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If r > max{l,^}, by Lemma 8.2(1),

y = Yi + Y^ Vi G ^(0)- n Endr(V'), ^2 e ̂ (0)- n ̂ (l).
Let di = dimV and c?2 = dimY". Otherwise, set Y^ = V, d^ = d and di = 0.

Let Fi = F^) and a = [Fi : F]. By definition, Y^ G Ctc^] H End^Y") =
End^(V"). By Lemma 3.3(8), A^ H End^ (V) is a principal order in End^^') with
Jacobson radical Bi nEnd/,, (V"). Therefore ([BF]) the quotient (A^ HEnd^ (Y^))/^! H
Endri^")) is isomorphic to a subalgebra of the algebra M of d ^ / a by c?2/^ matrices
with entries in the residue class field of Fi. Since Y^ G B^_^ C 0i, the image of Y^
in this quotient is nilpotent. Any nilpotent element of M. has order at most d^ /a. Thus
y2wa G 61. As a > 2, we have [^2/2] > d ^ / a , and so Y^2^ G Bi.

If di > 0, then, since Yf C 6..(o)_^ C Bi, the image of Vi in the quotient
(A^ n Endr^'))/^! H End^(y/)) is nilpotent. This quotient is isomorphic to a
subalgebra of d\ by di matrices with entries in the residue class field of F ([Mor2],
2.13). Hence Y^ C 61.

Suppose di = 0. The inequality t + u > d = d'z implies that at least one of t and u
is greater than or equal to [^2/2], so at least one of Yt and Yu belongs to B[°\ Thus
YtRYU e £^o)^ = £^(o) = P.

Suppose d[ > 0. If1 t < [^2/2], then d < t + u < [^2/2] + u implies that
u > di + [(^2 + 1)/2], that is, Yu G Bi. Similarly, u < [^2/2] implies V* G Bi.
Therefore, if one of u and ^ is less than [0(2/2], V^V G 0^/(o) C P. Finally, if t,
^ > [d2/2], then Y^ Y^ G Bi implies that YtRYU C V^V^ + ^/(Q). Since V^ and Y^
belong to ^(0) H End^Y'), we have

Y^RY^ G ^(o) H End^(y/) C P, ^ <E ^(Q) . D

LEMMA 8.7. - Let X and x be as in Lemma 8.3. Suppose that x G P^, — L\P.{O). Let U,
J , (j)^\ ^i(x), etc. be as in the proof of step 5 of Lemma 8.3. Assume that x G U J . Then

(1) ^(w^xw) = ̂ (xW^c^^Adw-^X) - X))), w G ^i(rr).
(2) I{c^\X^P^) = I(c^\X^,(x)).

Proof. - We start with some preliminary results.
Let u e U and w G J be such that uw G P^(O) . By definition of J, resp. E7, w G P^(O) , resp.

u G ^(c^)- Thus ^ ^ ^(^ n ̂ (c^). On the other hand, P(O) n ZG^} C L ^ C U .
Therefore

(8.8) (UJ) n P^O) = (t/Li) n P^) = (Pw n ̂ (c^))^

Recall that the image of L\J in £iP.(o)/ker (f)" is a maximal abelian subgroup which
is fixed under the action induced by conjugation by y . Since x G yPi, it follows that x
normalizes (P^(O) n ZG^^J. Thus

(8.9 i) Adx-\(B-^ nC^]) + J) C (fi^ nC^]) + J.
l! ^l
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Let I> be as in Lemma 8.6. By definition, D C C^} + B^w. Applying Lemma 8.5(1),
and Lemma 8.6(2), we obtain

(8.9 ii) adX((B7o) H C^]) + J) C (^o) H C^]) + J.

Let w C ^i(^). Recall that this means w <E P,(O) and wxw~1 C (7J. By assumption,
x G E/J. Since x G P^ and w G P.(O), rz^wa; G P(O). Thus x^w-^-xw e U J H P^(O) ='^i i 1

(P^O) n ZG^^J (by (8.8)). Indeed,

(8.10) x-^w-^xw=C{-^x-\W}}C{W}
€ C(W - Ada--1^) + [Adx-^W^W^P^w.

Note that

.c-^-^w e (P,(O) n ZG^))^ =^ W - Adx-\W) e (B^) nC^]) + J.

Combining this with Lemma 8.5(1) and Lemma 8.6(2) results in

(8.11) [X,W]e(B^nC[40)])+.7.

The next step is to prove that

(8.12) ^(tro^ [(adX)"*^), W})) =1, m ^ 1, I? £ (C^] n £^o)) + J .

Because -LiJ is abelian modulo the kernel of ^w, it follows that
(8.13) ^(tro^'/0^)) is trivial on the commutator of (B~^ n Ctc"]) + J .

Suppose that m and R are as in (8.12). It follows from (8.9 ii) and (8.13) that

^(^[(adXr-^U^X]])) = 1.

Furthermore, writing X = Y + Z, Y E C^}, Z £ B~(»), as in Lemma 8.1,
^\.

^(cw[X,[^dX)m~lW^}\)
€ troCc/^y, [(adV)"1-1^), W}}) + i^(c\B-^) C Oo.

Here we have used tro^^y,^']) = ̂ ([c'^W) = 0 for all X' £ fl. Note that

[(adZr(fi),^] = [^[(adXr-^^^ll+KadX)"1-1^),^^]].

Combining this with the above remarks yields (8.12).
By definition of U, y G U. Let y and z be as in Lemma 8.1. Therefore x = yz e UJ

implies that z £ (7J. By Lemma 8.1, z e P,(O). Thus z <S ((7J)nP^(o) = (P^nZG^))./,
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by (8.8). This implies C~\z) € (B~^ nC^]) + J . Combining this with Lemma 8.5(1),l!
(8.9 i), and Lemma 8.6(4), we get

(8.14) ^e(B^nC[40 )])+.7.
l!

Fix w = C(W) G ^i(^). Recall that y e ^(c^) and c^ belongs to the centre of
ZG^I )• Thus Ady(c[' )) = GI . Together with properties of tro, this implies that

iro^^W - Adx~\W))) = tj'o^c^^Adz^W) - Ady~\W)))

=tIo(c[{o\Adz(W)-W)).

LetZi =C- l(^).ThenZl e B~^ implies Ad z{ W) -W G - 2 [Zi, l^]+0(o). Therefore^i •/i

n(-2t^o(Cl(o)(ly-Ad2:-l(lV)))) = ̂ (4tro(c/l(o)([^l,lV])))
d-2

- TTO^r ^^[(ad.Yr^"1^2^^
-11 I <1 [( ) IT-TDT/m=0

For the second equality above, we have used Lemma 8.6(3) and the fact that W e B~^
implies [B~,^,W} G B~^ ^ = B~^. By (8.14) and Lemma 8.5(1),

^l z-^ +z^ Ji

/_ -i ^mo y

^^, e (^o, nC^Dn^, l < m < d-2.

Applying (8.12) (with 7? = (-^"^^/(m + 1)!), we conclude that

(8.15) n^tro^^W-Adx-^W))) = ̂ ^^(^([Z^W})))
^(^tro^^W])).

Here we have used tro (c^V, W}) = ̂ ([c^ ,Y}W) = 0 (recall [c'/^y] = 0).
From the definition of 25, and End^V) C C^},

tro^IP-,^]) = tro([cl,P-]Ty) C tr^, B-, ̂ }B-^) C tro(c[B.^ C Oo,
^l ^l •ll

Applying Lemma 8.6(1), we obtain

^(^tro^^Ad.r-1^)^])) = ̂ (^iio^^Adx-^W) - W,W}))
d-l

^^^xr^
m=l \ \ L \

Let R = (-^adJ^WQ/m!. By (8.11) and Lemma 8.5(1), R <E (B~^ nC^]) + J .
Applying (8.12) with m - 1 instead of m, we see that the terms corresponding to
2 < rn < d — 1 in the above product are equal to one. Thus

(8.16) n(-2tro(c //o)[Adrr- l(W),ly])) = ̂ (^tro^/0^ [X, W}])).
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Proof of (1). - By definition of (^0), and (8.10),

^(x^w^xw) = ̂ (^tro^/0^ - Adx-^W) + [Adx~\W), W}))).
Using (8.15) and (8.16) this can be rewritten as

^(x^w^xw) = ̂ (-211^ ^([X^W} + [^[X,W]]))).

Putting this together with

Adw-\X) £ X + 2[TV,X] + 2[W, [W,X}} + B-̂
•fi

we obtain (1).

Proof of (2). - Introducing an integration over J into Z(c^ ,X;P.(O)) results in

Z^^X;?^)) = / ( I ^(tro^^Adw^Ad/r^X)))^) d/i
'1 ^ P ( O ) \JJ )^\

= /t I{c^\Kdh~\X^J}dh.
^P(O)

Fix ft G P(O) and set X = Adh~\X). We will show that if Z^^X;./) / 0, then
h G ^(^.'Let W = C-^w), w G J. Then

Z^^;^^^^^0^) / n(tro(c'/o)(2[^X]+2[^[^X]])))dw.
^^

By definition, X <E X + B^). It follows from (8.9 ii) and (8.13) that
z!

^(tro^0^ [̂  X]])) = ^(tro^^^^ [̂  X]])) =1, W e J .
Write X = V + Z, with Y and Z playing the same role relative to X that V and Z
do relative to X (see Lemma 8.1). Similarly, write x = yz for x G p^ AO)^{X). Since
V e C^], tro^p^X]) = ̂ (^[^Z]). We have

I^^X^J^^^c^X}} ( ^^^[W^Z^dW.
J j

Suppose that the above integral is nonvanishing. Then n(tro(c^ 2[W, Z]) must equal one
for all W e J . However, it is easily checked that

(^(^(-^w^C^iQw) = ̂ (tro^0^^ Z])), w = C7(WO G J.

By definition of J, £iJ is a maximal abelian subgroup modulo the kernel of ( ^ ' / .
Thus we must have C(Z) € LiJ n P^(O) = (P(O) n ZG(c(lo)))J (by 8.8). This implies
that Z <E (B^o) H ^[c^)) + J . Applying Lemma 8.5(1), (8.9 ii) and Lemma 8.6(3), we

conclude that z G (P,(O) H ZG^^J = (£iJ) H P.(O). From

^ = xz~1 = y^y^h^yh^h^zh)^1 e 2/P(o),^\
and ^/, ^ G ZG(cw), we get ^ <E ^/(P(O) n ZG(cw)) C U. We have shown that if
Z(c/°\ X; J ) / 0, then h-^xh = x = y z G U J . That is, h G ^(a:). D
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9. The character of p^_

In this section, we show that, on the nilpotent set, the composition of the character
\^_ of p^_ with the exponential map, agrees (up to degree) with the Ad P^-orbit of the
linear functional ?2(tro(c^ • ) ) .

If \ is the character of a representation of Pp_, let \ be the function on G which is
equal to ^ on Pp_ and vanishes elsewhere.

Recall that \& is said to be uniform if r < t + 1, or f^ > 2 e ( E r - t / F ) + 1 for all
t < r - i - 2.

PROPOSITION 9.1. - Assume that \P is uniform. Suppose X G Af and x = exp X. Then

Xii(^) = x^Wl{c^X',P^).

Remark. - For x = expX e Pp and X G A^, the above relation between \^{x} and
the value of the AdP^-orbit of fi(tro(c^-)) at X is similar to Howe's Kirillov theory for
compact groups ([H2], Theorem 1.1).

Proof. - Let d = 2[dim^(V)/2] + 1. Recall that d < p. Since X e Af is equivalent
to X^ = 0, it follows that expX = e^(X) and expX € p^,i)(X) for any % > 1. Thus
(see Lemma 3.7(2)), X e A^ is equivalent to x e P^. If X / ^^°), by Corollary 7.13,
Z(c^_,X;P^) = 0. Also, x / P^°^ implies re / P^_. Therefore, both sides of the above
equality vanish if X -^ A^°\

Because it suffices to prove the proposition for X G Af H ̂ °\ and X G At implies
Xd = 0 G B"O), the proposition is implied by the following statement:

A
(9.2) Suppose X G A^- is such that X'1 G B^y Then x e P^.(O)JX) implies
X^(x) = ^(l)Z(c^X;P^).

We shall prove (9.2). Let X and x be as in (9.2). Set

S=(A^-nC[cw})+B^-.
l!

If a; £ (P^nZc^))?'%, then a;-1 e (^WnClc^D+B^, which, by Lemma 3.7(2),

implies X e <?. Conversely, if X <E 5, by Lemma 8.1, x e (P^ n ^(c^))?.^. As

^(.r) = 0 if x ^ (P(°) n ZG^^P^ (Lemma 6.1(2)) and Z(c^, X; P^) = 0 if X + S
1!

(Corollary 7.9 if /} > 1), there is no loss of generality in assuming that X e S.
Suppose no = 1 and the length of ^ is one. If / v ) = 1, then (9.2) is equivalent

to Lemma 8.2. Assume /w > 1. Then c^ = c^°\ p^_ = p^ and P^ = T^P^} =
l!

ZG^C^P^, so (9.2) is again equivalent to Lemma 8.2.
h

From now on we assume that if no = 1 the length of ^ exceeds one. If no > 1. X.2
is supported on P^_, and if r > max{l,^}, ^(i) is supported on P^_. Thus, applying
Lemma 8.2,

x^)=x?(l)^(o\x;pp(x?•••^)x^)•••x^-'))^).
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Here, it is understood that if no = 1, then there are no terms pf\ j > 2, and if r = i,
then there are no terms ̂ ), 3 ̂  1. Because P^ is a subgroup of P^ and characters are

class functions, the value of x?', J ^ 2, or x^o, t^ 1 at x is the same as at w-^xw,
w € P^. Therefore, the integration over P.% above extends to give

i\' l!

(9.3) ^-^(l) L ^tro^Adw-1^)))^-"^)
t/p^oo))

x (x^i) • • • X^-^X^"1^) dw<

For the remainder of the proof, assume thatj ̂  < no and 1 < t < r - max{l^}.
Fix w e P.^), and set x = w-^w. Let X, Z, ^ ^ and s be as in Lemma 8.1. As

was shown in1 Lemmas 6.2(1) and 6.3(2),

pW^^^tro^^-l)))^0^!),

p^(z) = n(tro(c^(t)(^- l)))^(t)(l).

By Lemma 8.1(1),

i-l6C[ciT+^)_,-

Recall that /w ^ f^ - 1. Thus

c'W G C^} and troCc^0^^,^) C tro^0^) C Oo,

imply that ^(F) = ^^(l).
Given the form of z - 1 (see above),

^«) € C^], tro^oy") = 0, B r̂.i n End^Y') C ̂ )^

and orthogonality of End^V)- and Endp(y)+ with respect to tro ([Mor3], 4.17) imply
that

tro(^«)(i- 1)) £ tro(c^)(B^ +End^(y')+)) C Oo.

Therefore p>s/w(z) = P^(<)(I).
Because z £ P.̂ ) and y £ ^(ci0'), by Lemma 6.1,

l!

{ P '̂ x P^", if r > max{l, i} and no > 1»
(94) x ^ P ^ ̂  y € P~9- x TW, if r > max{U} and no = 1,

P»", if r = max{l, ̂ } and no > 1.

Combining this with the fact that ^0) and p^w are trivial at z, results in

(9.5) x;0 )̂ - ̂ (y)'
x's'w(x) = x^/w(y)-
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If r > max{l,^}, applying Lemma 8.2(1) allows us to write

y = Vi + V2, Yi G End^(r) n A^-, V2 c A^ n 0^(1),
^=^2, yi e^^o)^yl)nGL(y/), ^ ep^^o)^) nP^(l).

If r = max{l,^}, set y^ = y and 5^ = V. If r > max{l,^} and no > 1,
p^ | p^/ = ^(l) (Lemma 6.2(3)). Thus if y e P^, we have

(o)/~^ (o)/~ \
P} (^) = Pj {V2\

If r > max{l,^}, then, applying Lemma 6.3(2), if y G P^_,

p^w(y) = p^w(yiW^o(c^t)(y'z - i))) = p^w(yi),
the final equality resulting from iio^c^V^) = {0}.

We may now write

(9.6 i) (^0) • . . ̂ )(20 = (^0) • • • X^)(V2) = X^" {m}
(9.6 ii) (^(i) • • •x^ (^ -^ ) ) (^ ) = (X^d) - • •X^(-^)(^i ) = ^(^i)-

In obtaining (9.6), we have used (9.5), (9.4) and^Lemmas 6.2(1) and 6.3(1).
Assume no > 1- By Lemma 8.2(2), p^ .(o)Jy2) is defined, and

(P^^0^) n G(°\l))P^ (l) = P(^o))(V2) n PW(I).

Thus y ' z G p^ ..w^Y-^). This means that the hypotheses of (9.2) are satisfied by Y^ and
y^, relative to the cuspidal datum ^[lf. Note that ^", being of length one, is uniform. The
rank of ^// is no - 1. Recall that (9.2) has already been proved for rank one. By induction
on rank, we may assume that

(9.7) ^/(^) = X^WC^^P^),

From P^/ C ZG^) H GUY"), it follows that AdP^/ stabilizes both C^0^ and
End^VQ. Also, tTo^C^}^) = {0} and tro^/End^y')) = {0}. Thus

troO^Adn-^))) = tTo(c^(Adu~\X))), u G P^/.

Putting this together with (9.6 i) and (9.7), we obtain

(9.8) ( x ^ ' - ' X ^ x ) =^(1W^^;P^).

Suppose that ^ has length one, that is, r = max{l,^}. We still assume that no > 1.
In view of (9.8), (9.3) becomes

X^W = X^WX^W I "(tro(q(o)Adw-l(X))))Z(c^,Adw-l(^);P^)dw
Jp

î=x^Wc^x-,p^).
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Here, we have used the facts P^// C ^(c^), c^ belongs to the centre of ZG^),
c^_ = c[' ) +c^//, and Lemma 6.1(1). Hence (9.2) holds for a cuspidal datum of length one.

We will now complete the proof of (9.2) via induction on length. Assume that the length
of \&. exceeds one (r > max{l,^}), and that (9.2) holds for any uniform cuspidal datum
of length less than r + 1 — max{l,^}. By definition of uniform, ^ uniform implies ^
is uniform. Note that no may equal one. Assume X € S. Fix w G P ' o ] , and define x,

X, etc. as before. By Lemma 3.7(2), y^ G P^ is equivalent to Vi e ^1(1). If Vi / A^\
then d odd implies that Yf G s» an(! from

y^G(B (o^nE^d^(y /))c^
Jl 1 Jl

and Corollary 7.13, applied to c^/, Vi, and P^/, we get Z(c^/,yi; P^/) = 0. Furthermore,
as i/i 7" P^ and P^/ C P^^ we have x^(^i) = 0. If Vi G ^1), then Yf e B^^^ and

^ A
P (\) C P^/ imply that y\ G j?^ ,,(i)Jyi) Fi P^. By induction on length, we may assume
that (9.2) holds when applied to \^{y\).

We conclude that, regardless of whether or not Yi e A^\

(9.9) x^i) = ̂ (?^1;?^).

Because P^/ C EndF(^), AdP^ stabilizes Ctc^]-1 and EndF(V//). Also,

c^/ G CIc^] and c^ G E^dF(y/) C EndF(y//)J-.

Thus
tro(c^/(Ad^6 - l(yl))) = ^(^(Adn'^X))), u e P^/.

Along with (9.6 ii) and (9.9), this yields

(X^(i) ' - ' X ^ - ^ ) ( x ) = ̂ /(l)Z(c^/,X;P^).

It follows that (see also (9.8) if no > 1). (9.3) reduces to

(9.10) x^) ̂ WX^WX^W I ^(tro^Adw-1^)))
Jp

î
xZ(c^,Adw - l(X);P^)^(c^,Adw- l(X);P^/)dw,

where it should be understood that if no = 1. no terms involving ^ ' appear. P^/ and P^i
commute with c^\ so both of these integrations can be extended to include the part of
the integrand involving f^{iio(c[' • ) ) .

If no = 1 (recall / v ; > 1), then c^_ = c ^ ' + c^/ and we have

X^x) = ^(l)Z(c^X;P^P.%).
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To finish the proof in this case, it suffices to recall that T^ commutes with c^, allowing
us to replace P^/P.% by P^_ (Lemma 6.1).

Suppose no > 1. Since P^//, resp. P^/, commutes with c^/, resp. c ^ " , we have

J(c^,Adw- l(X);P^)J(c^,Adw- l(X);P^) = Z(c^+c^,Adw- l(X);P^ xP^/)

for all w G P.%. Combining this with (9.10) and comments following it. Lemma 6.1, and
l!

c^_ = c^/ + c^// + c'/ \

we obtain (9.2). D

10. Main Theorem

The character 67,. of an irreducible supercuspidal representation TT as a locally integrable
function on G which is locally constant on the regular set. This was proved by Harish-
Chandra ([HC2]) for G connected, and generalized to non-connected G by Clozel ([C]).
Let G° = G°(Fo), where G° is the identity component of G.

Let ^ be a cuspidal datum as in §5, and let p^_ be the representation of P^ constructed
by Morris. As shown in §7 of [Mor3], TT^ = Ind^p^_ is irreducible and supercuspidal.
Recall (§2) that we are assuming p > dim^(Y).

Since G has compact centre, a Haar measure on G yields a G-invariant measure on
the AdG-orbit of a regular elliptic element in Q. We assume that all measures on regular
elliptic Ad G-orbits, and also the formal degrees of supercuspidal representations of G,
are defined relative to the same Haar measure.

THEOREM 10.1. - Let TT = 7r^_. Assume that ^ is uniform. Then there exists an open
neighbourhood V^ of ^ero in Q and a regular elliptic element X^ G Q such that

e,(expX) = d(7r)/2o(x,)(X), X G V, n 0,ep.

X^ can be taken equal to c^, where c^_ is as in {5.7). Here, d(7r) denotes the formal
degree of TT.

Remarks. - (1) As can be seen from the proof, V^ is taken small enough that the
exponential map is defined on V-rr.

(2) The requirement that ̂  be uniform (that is, /w > 2<°(£^/F)+1, 0 < t < r-i-2)
is necessary because the proof of Proposition 9.1 depends on Corollary 7.13, which was
proved only for uniform ^. If the conclusion of Corollary 7.13 can be verified for each of
the cuspidal data { ̂ \ . . . , ̂ -max{v}) ^ o < ^ < r - ^ - 2 , then Proposition 9.1 and
hence Theorem 10.1, hold without the assumption that ̂  is uniform.

Proof. - Suppose for the moment that G is not connected. The restriction 71-0 of TT to
G° is a finite direct sum of irreducible supercuspidal representations of G°. Recall that
the function ̂  equals ̂  on P^_ and zero elsewhere in G. The restriction of ̂  to
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G° is a finite sum of matrix coefficients of 71-0. Harish-Chandra's integral formula for the
character of supercuspidal representation on the regular set ([HC1], p. 60) applies to a
finite direct sum of supercuspidal representations of G°, hence to 71-0. Because TT^ = 71-0
for all g G G, it is easy to see that, the integral formula for 671-0 is actually an integral
formula for the restriction of ©7,- to G°.

Let KQ be an open compact subgroup of G. If G is not connected, take Ko to be a
subgroup of G°. Then if x C G° and x is regular, Harish-Chandra's formula for Q^^x)
is as follows:

Q^)=^-f I X^y~lh-lxhy)dhdy.
X^1) JG JKQ

Let fl* be an open and closed Ad G-invariant subset of Q containing zero, such that
exp : 0* —^ G is a homeomorphism of 0* onto an open subset of G, and

exp(Adrr(X)) =x(expX)x~\ x <E G, X G 0*.

Let log denote the inverse of exp. Recall that Af denotes the set of nilpotent elements in
Q. Let Vo be an open neighbourhood of zero in Q satisfying:

(i) Vo C B^

(ii) (A^ H At) + Vo C s* and N e A^ H ̂  => exp(^V + Vo) C (exp AQ^) •
•/i

Clearly (i) holds for any sufficently small neighbourhood of zero. Because g* contains
zero, g* is open and Ad G-invariant, and zero belongs to the closure of every nilpotent
AdG-orbit, it follows that Af C 0*. Since A^ r\J\f is compact and exp is continuous, if
Vo is small enough, (ii) holds. Take Vo to be the intersection of two open neighbourhoods
of zero satisfying (i) and (ii), respectively.

Next, we take Vi to be an open neighbourhood of zero such that:
(iii) Vi C fl*
(iv) AdG(Vi) C A ^ + V o
(v) log(P^0) Hexp(AdG(Vi))) C A^°\

We indicate why such a Vi exists. By Lemma 13 of [C], there exists a lattice L such
that AdG(Vo) C A/" + L. Let WQ be a prime element in po- Choose m > 0 such that
w^L C Vo_ Note that w^M = AT. Thus, if we assume that Vi C ^Vo, then (iv)
holds. Let AT be the nilpotent subset of End^(V). Since d < dimp^V) + 1 < p, we have
log(l + A/" H A^) C A^°\ This implies that, if Vo is a small enough neighbourhood of
zero in End^(V), then

log^ n (l + A/" + Vo)) c ̂ (0).
Arguing as above, we choose an open neighbourhood Vi of zero in End^(V) such that

AdGL(Y)(Vi) cA/ '+Vo.

If Vi is taken so that exp Vi C 1 + Vi, then, by definition of Vi,

P^ H exp(Ad G(Vi)) C A^ n (1 + At + Vo).

By definition of Vo, this is enough to guarantee that Vi satisfies (v).
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Fix X C Vi D flreg, y ^ G, and fa G ^o- Let x = expX. By condition (iv),
Ad {hy)-1^) = N + XQ, where TV e JV and Xo ^ Vo. Recall that ?% is contained in1
the kernel of p^,. Therefore, by (ii) and Proposition 9.1,

TV e ^(0) =^ x^y-'h-'xhy) = ̂ (exp(Ad(^)-l(X)))
= ^(expAQ = ̂ (l)Z(c^7V;P^).

If TV / .4^, then (v) implies that y^h^xhy / P^. Since P^ D P ,̂ we have
X^^/"1^"1^^) = 0- Since TV e A/' and ^ is uniform. Corollary 7.13 applies, so
Z(c^,A^P^) = 0. Therefore,

X^y^h^xhy) = ̂ (l)J(c^^;P^) = ^(l)Z(c^Ad(^)-l(X);P^),

the second equality holding because, B \^ is AdP^-stable, tj'o(c^B\^) C OQ, and, by
A — ~ fi

(i), Jfo ^ ^ oo)-• I1 now follows that the integral formula above can be rewritten, for
X G Vi H ^e<p as

e^(exp^) =<TT) ( { ( ^(tro(c^Ad{hyw)~\X)))dwdhdy.
J G J K Q Jp^

As observed in Lemma 4.1 of [Mul], the order of the P>p_ and KQ integrations can reversed,
and the P^_ integration may be absorbed into the G integration, giving

e^(expX)=d(7r) ( ( ^(tro(c^Ad (hy)~\X))) dhdy.
JG J K o

This last expression coincides with Harish-Chandra's integral formula for /2^(c^) ([HC2],
Lemma 19). We remark that Harish-Chandra derived the formula for G connected, but it
is straightforward to show that it holds in this setting if G is not connected. Therefore, we
conclude that the theorem holds for X^ = c^_ and V^ == Vi. D

As each regular semisimple Ad G-orbit is a union of finitely many regular semisimple
Ad G°-orbits, and Harish-Chandra proved the existence of a Shalika germ expansion for
regular semisimple Ad G°-orbital integrals ([HC2]), we obtain a Shalika germ expansion
for an AdG-orbital integral simply by adding the germ expansions for the various
Ad G° -orbital integrals. That is, there exist functions To on Qreg^ on^ to1' each nilpotent
Ad G° -orbit 0 such that, given a locally constant compactly supported function / on g,
there exists a neighbourhood Vf of zero in Q such that

/^(y)(/)= ^ ^oWo{Y\ Y^VfUQre^
oe(AO°

Here, (A^)0 denotes the set of nilpotent Ad G°-orbits, and IJLO is a G^-invariant measure
on such an orbit 0. 0(Y} is the full AdG-orbit of V. As in [HC2], Lemma 18, there is
an analogous expansion for Fourier transforms:

(10.2) ?O(Y)W= ^ To{Y)iloW
oe(AO°
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where, if X is a fixed regular element, the equality holds for regular Y in some
neighbourhood of zero.

The local character expansion of TT at the identity expresses 6^ o exp as a linear
combination of Fourier transforms of nilpotent Ad G° -orbits on a neighbourhood of zero
([HC2], [C]):

@^(expX)= ^ co(7r)/2o(X),
0€(AO°

if X G Qreg is sufficiently close to zero.
On any open neighbourhood of zero intersected with Qreg. the collection of functions

{/2o | 0 G (A/")0 } is linearly independent ([HC2]). Therefore, a comparison of the local
character expansion of TT at the identity with the expansion obtained by combining (10.2)
(with V = XJ and Theorem 10.1, yields the following:

COROLLARY 10.3. - Let TT == 7np_ and X^ = c^_. A^Mm<? that \& ^ uniform. Then

co(7r)=d(7r)ro(X,), Oe(AO°.

Remarks. - (1) Waldspurger ([W]) has proved a result giving a set 5^ on which the
local character expansion of an irreducible admissible representation TT at the identity is
valid. This set is defined in terms of the size of a particular compact subgroup K such
that the space of 7r(Ar)-fixed vectors is nonzero. If TT is as above and if it is possible to
compute d(7r), Fo(X^ and the functions /2o, 0 G (A/")0, then Corollary 10.3 combines
with Waldspurger's result to give the values of ©^ on S^.

(2) In the special cases where Howe's Kirillov theory for compact groups ([H2]) applies
to the inducing representation p^_, it may be possible to simplify the proof of Theorem 10.1,
using an argument similar to that used by Kazhdan in the beginning of the appendix to
[K2]. However, in general, Kirillov theory does not apply to p^_.

11. Cuspidal data involving representations of finite classical groups

A supercuspidal representation for which the conclusion of Theorem 10.1 is valid will
be called a Kirillov representation.

As remarked in [Mor 3], one way to produce supercuspidal representations other than
those arising from \&. as in §5 is to modify the definition of the cuspidal datum ^ slightly
to allow representations of reductive groups over finite fields which do not correspond
to characters of minisotropic tori. This section consists of a brief discussion of examples
of this type.

Suppose 0 < t < r - max{l^} and fff = 1. In the definition of ^(t) (see §§4 and
5), in order that p^] be irreducible, it is necessary that the cuspidal representation a^
of P^0^ - 1) be irreducible and fixed by no element of P^(ni - l)/P^°(nt - 1).
In addition, we required that:

(11.1) a^ is associated (via the construction ofDeligne and Lus^tig [DL]) to a character
^rtt °f tne minisotropic torus T H P (n^ — 1)-
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In §§4-5, the requirement that ^^ be in general position guarantees that a^ is
irreducible. The condition (11.1) allows us to use Kazhdan's proof of Springer's hypothesis
to define Cn' so that (4.6) or (5.4) holds. In general, not all irreducible cuspidal
representations of P (r^ — 1) will satisfy (11.1). According to Morris, ([Mor3], §§5.10,
6.5), if the condition (11.1) is dropped, the cuspidal datum \I/ still gives rise to an
irreducible supercuspidal representation TT^ of G. Without (11.1), it is not clear whether
7np_ is a Kirillov representation.

Cuspidal unipotent representations of reductive groups over finite fields do not satisfy
(11.1). Let G be an unramified unitary group. That is, the form / is hermitian and F
is an unramified quadratic extension of FQ. Then, if dimp^V) = (n2 +.n)/2 for some
positive integer n, there exists a cuspidal unipotent representation a- of G = G(Oo/-Po)
([L]). If T is a minisotropic torus in G, let R^- be the virtual representation attached to
the trivial character of T. The character ̂  of a is a linear combination of the characters
-)(— of the -R—'s, as T runs through the minisotropic tori ([L]). Kazhdan's result ([K])
can be applied to express the restriction of \— to the unipotent subset of G as a certain
trigonometric sum. This was done in §4 in the case of a nontrivial character of T, but it
works the same way here because the restriction to the unipotent set is independent of the
choice of character of the torus. Thus, on the unipotent set, ̂  is a linear combination of
the various trigonometric sums attached to the tori T. Suppose p is the representation of
G(0o) obtained by inflating a. Then we have a generalization of (4.6) which gives values
of ^p at certain points in G(0o) as a finite linear combination of integrals of the type
appearing in (4.6). From this it follows that, if TT = Ind0^ ^p, on a neighbourhood of
zero, ©7,- o exp can be expressed as a linear combination of Fourier transforms jSc^, where
{Oi} is a finite collection of regular elliptic adjoint orbits in Q. The details of this when
dim^(V) == 3 appear in [Mu2] (in this case, there are two orbits involved).

If G = Sp4 (dim^(V) = 4) or GSp4, the same type of result as for the 3 x 3 unitary
group is valid for the supercuspidal representation induced from the inflation of the cuspidal
unipotent respresentation of G(0/p) (again, there are two orbits).

Suppose G is symplectic and dim^(V) •==- 2, that is, G = SL^(F). Let o-i, i = 1,2 be the
two irreducible components of the cuspidal representation a of G = G(0/p) associated
to a character of a minisotropic torus, where the character is not in general position. All
irreducible cuspidal representations of G which do not satisfy (11.1) are of this form
(and they are not unipotent representations). If TT^ is the supercuspidal representation of G
obtained by induction from the inflation of c^ to G(0), then, as was shown in [Mu3], TT^
is not a Kirillov representation. Moreover, the restriction of ̂  to the unipotent subset
of G does not lie in the span of the set of all Deligne and Lusztig virtual characters,
so the procedure outlined above for unitary groups cannot be applied here. However, the
reducible representation TT = 71-1 9 TT^ is induced from the inflation of a to G(0), and
is a Kirillov representation.

We remark that all of the supercuspidal representations of S'Ln(F), n > 2, which are
not Kirillov representations arise in a similar manner (as shown in [Mu3]). That is, some
part (not necessarily all) of their inducing data involves an irreducible component of some
reducible cuspidal representation associated to a character of a minisotropic torus in a
reductive group over a finite field. Again, certain finite direct sums of these supercuspidal
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representations are Kirillov representations. (The set of representations occurring in each
such direct sum is a subset of an L-packet.)

Summarizing, if the condition (11.1) is dropped, in some cases there exists a
generalization of Theorem 10.1 expressing 6^ in terms of an explicit linear combination
of Fourier transforms of measures on elliptic adjoint orbits. In certain other cases, there
are supercuspidal representations which are not Kirillov representations (and for which no
similar generalization of Theorem 10.1 is known), but certain finite direct sums of these
representations are Kirillov representations.

12. Other supercuspidal representations

The representations TT^_, \1/ as in §6 of [Mor3] (see §5 and §11), do not exhaust the
irreducible supercuspidal representations of G. In the afterword (§8) of [Mor3], Morris
outlines a method for combining the constructions of [Morl] with those of [Mor2-3] to
obtain a more general method of constructing supercuspidal representations of classical
groups. Morris gives an example ([Mor3], 8.6) which shows that this more general
construction yields supercuspidal representations of the 4 by 4 symplectic group which do
not arise via the earlier construction. r

Let T be an elliptic Cartan subgroup of G with commuting algebra A = ff^Ei. As
i=l

before, we assume that Ei, i < i is unramified over F and each Ei, i < i < r has some
ramification over F. In [Mor2-3], the lattices and cuspidal data are built up inductively
from lattices and cuspidal data attached to the tori T^\ 0 < t < r — max{l,^}. Recall

a
that the commuting algebra of T^ is Au = V^ Ei if t = r - i and i > 0, and Er-t

otherwise. All of the unramified extensions are grouped together, and the other extensions
are taken one at a time. If the ramified extensions are taken in a different order, then the
lattices and cuspidal data obtained will change ([Mor3] 6.2), but the general procedure by
which they are constructed does not change.

The idea behind the modifications of [Mor 3] §8 is that, under certain conditions on T
([Mor3], 8.1-2), several of the fields Ei having the same ramification degree over F may
be grouped together, rather than taken separately, in the definition of cuspidal datum. This
is where the results of [Morl] come in. The definition of cuspidal datum in the unramified
case is based on definitions in [Morl]. Also considered in [Morl] are data arising from tori
whose commuting algebras consist of fields having the same ramification degree. Suppose
that E i , m < i < n ( £ < m < n < r ) have the same ramification degree over F, and

n

that the condition (8.2) of [Mor3] is satisfied. Let Am,n = ff^ Ei. Then, as described in
i=m

[Mor3], 8.3-4, a self dual lattice chain Crn,n m End^(Ay^), a hereditary order, a filtration
of the associated parahoric subgroup, the notion of principal element in Am,n. and a group
CA^ ̂ , may be defined in such a way that the results of [Morl] yield analogues of the
results of [Mor2], §3 and of [Mor3], §4.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



104 F. MURNAGHAN

The procedure of summing lattice chains ([Mor2]) can be carried out with lattices of the
form £rn,n. and according to [Mor3], 8.5, the results of [Mor2], §3 regarding the associated
hereditary orders and nitrations of parahoric subgroups remain valid.

If definition 3.18 of [Morl] is used to define a cuspidal datum attached to each of the
tori of the form T H Am,n (and the usual definition (§4) is used in the unramified case),
then a cuspidal datum ^ attached to T may be defined inductively, as in definition 6.5 of
[Mor3]. Using ^, an irreducible supercuspidal representation TT^ of G is constructed along
the same lines as in [Mor3], §§6-7 ([Mor3], 8.6).

Suppose that ^ has the property that all of the cuspidal representations of finite classical
groups occurring in ^ satisfy (11.1). We define a regular elliptic element c^_ in the
same manner as in §5, that is, by adding the elements arising from the cuspidal data
attached to the tori T D Am,n' The results of [Mor2-3] which have been used in this paper
generalize to this setting ([Mor3], §8). Consequently, it is likely that if the analogue of
Corollary 7.13 holds, then these results of Morris can be used to prove that Theorem 10.1
and Corollary 10.3 are valid (with X^ = c^).
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