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A HODGE TYPE DECOMPOSITION
FOR SPINOR VALUED FORMS

BY M. J. SLUPINSKI

ABSTRACT. - In this paper we define an action of the Lie algebra sl (2, R) on the space of spinor valued
exterior forms A 0 6' associated to a euclidean vector space (V, g). This action commutes with the natural action
of Pin (V, g) and we obtain a decomposition of A 0 5' in terms of primitive elements analogous to the classical
Hodge-Lefschetz pointwise decomposition of the exterior algebra of a Kahler manifold. This gives rise to Howe
correspondences for the pair (Pin (V), sl (2, R)) and Howe correspondences for the pair (Spin (V), sl (2, R)) are
also obtained. We prove some positivity results in this context, which are analogous to the classical, infinitesimal
Hodge-Riemann bilinear relations.

Introduction

For compact Kahler manifolds classical Hodge-Lefschetz theory gives a refined
decomposition of the cohomology. This is implemented in two steps. First, in modem
terminology, one proves that the representation in A(R2 n) 0 C of the unitary group
U(n) and the Hodge-Lefschetz gl(2, R) sets up a Howe correspondence (c/ [5]) for
the pair (U {n\ gl(2, R)) - i.e. gl(2, R) not only commutes with U {n) but generates
its full commutant. Then one globalises and proves that the above representation of
gl(2, R) induces an action of gl(2, R) on the cohomology of the manifold, thereby
providing decompositions of the De Rham and Dolbeault groups which refine their usual
decompositions in terms of degree and bidegree.

A pin or spin structure on a riemannian manifold is a weaker geometric structure than
a Kahler structure. In this paper we obtain an analogue of the first step above in these
cases. We find an action of sl (2, R) on the spinor valued forms associated to a Euclidean
vector space, which commutes with the action of Pin (n) and which gives rise to Howe
correspondences. All of the results are representation theoretic in character and are closely
related to the theory of dual pairs of R. Howe (cf. [5]). We do not consider any global
aspects here, although, by Pin (n)-invariance the sl (2, R) will act in the space of sections
of the bundle of spinor valued forms over any pin manifold. Let us now give a more
precise statement of the contents of this article.
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24 M. J. SLUPINSKI

If V is a real, n-dimensional, Euclidian vector space, A will be the exterior algebra on V*
and S a space of spinors (see § 0 for details). We define the operator © G End (A 0 S) by

i=n

© (uj 0 '0) == V^ e^ A cc; 0 e^.^
z==l

where c<; G A is an exterior form, ^ G 5 is a spinor, { ei, 625 • • • 5 ̂  } is an orthonormal
basis of V* and e^ is the action of ei on '0 by Clifford multiplication. The key observation
of this paper is that © and its adjoint ©* generate an sl (2, R), denoted sis (©). Furthermore,
sl2 (©) commutes with the action of Pin (n) on A 0 S. Applying the representation theory
of sl(2, R) and some invariant theory, we prove the

THEOREM. - For k <^ n,, the Pin (n) invariant decompositions

^(^8= g) ©^(P,) (neven)
0<r<min(fc ,n-fc)

(A^ 0 ̂ + = g) ©^ (P,+) (n odd)
0<r<min(A;,n-fc)

(A^5)-= Q) ©'-'(?,-) (nodd)
0<r<min (fc, n-fc)

ar^ r/i^ decompositions into irreducible, non-isomorphic Pin (n)-nodules.
Here the Pr = Ker©* H A7' 0 5 are the "primitive vectors" and, when n is odd, X±

denote the ±% eigenspaces of the central element of Pin (n) acting on X C A 0 S. An
alternative formulation (see 1.9) of this theorem says that the representation A 0 S when
n is even (resp. (A 0 5)4' or (A 0 5')" when n is odd) sets up a Howe correspondence
for the pair (Pin(n), sl2 (©)). In paragraph 2 and 3 we find Howe correspondences for
the pair (Spin(n), sla (©)) when n is even and odd respectively.

As an application of the above theorems we prove some positivity results which are
analogous to the infinitesimal Hodge-Riemann bilinear relations of the classical theory.
Recall that there the basic result is (see [4] for example):

THEOREM. - Let V be a real 2 m-dimensional euclidean vector space with a given
compatible complex structure and let A^'q be the space of exterior forms of type (p, q). Let L
denote the operation of multiplication by the Kdhlerform. Then ifx G P p ' q = Ker L* FlA^'q

is non-zero, the real (m, m)-form ^-g (-1)2 (P+9)(^+9-1) ^ A ^-^+9) (^) ^ a strictly
positive multiple of the volume element.

In our context, the corresponding result is the following (see § 5 for the notation):

THEOREM. - Let V be a real, oriented, 2 m-dimensional euclidean vector space. Then:

(i) ifx G P^ is non-zero, the real 2m-form ̂  (-1)2 s(s-l) x ^Q2^-28 (x) is a strictly
positive multiple of the volume element;

(ii) ifx C PL is non-zero, the real 2m-form i^ (-1)2 s(s-l) rcAQ2771-25 (x) is a strictly
positive multiple of the volume element.

The departure point for the above results was a real vector space equipped only with
a positive-definite inner product, or perhaps with an orientation for the results concerning
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A HODGE TYPE DECOMPOSITION FOR SPINOR VALUED FORMS 25

Spinn. In the case where the real (even dimensional) euclidean vector space also has an
isometric complex structure, we show in paragraph 4 how the above action of sl2 (R) on
A 0 S can be extended to an action of sl (3, C) which commutes with the action of U1',
the double cover of the unitary group. This is in fact the Lie algebra generated by sl2 (0)
and the Hodge-Lefschetz sl (2, R) (acting on the exterior algebra factor of A 0 S). There
are also Howe correspondences in this situation, described in Theorem 4.10.

In this paper [5], R. Howe gives a general procedure which constructs many examples of
dual pairs and Howe correspondences. Roughly speaking, he shows how one can construct a
"double cover" of some known examples of dual pairs and Howe correspondences involving
the complex classical groups, and obtain new Howe correspondences for essentially the
same dual pairs. In particular, his method applies to the known dual pair of complex
orthogonal groups (0 (n), 0 (2 m)) C 0 (C71 0 C2771) acting in C71 0 C2^ and produces a
dual pair (0(n), so (2m, C)) C 5o(C71 0 C27") acting in A(mC71), the exterior algebra
on the direct sum of m-copies of C71. R. Howe has pointed out to the author that the pair
(Pin (n), sl2 (©)) obtained in the present paper is probably to be the thought of as (a real
form of) a "double cover" of the known dual pair (0 (n), 0 (3)) C 0 (C71 0 C3) acting
in C" 0 C3. This point is investigated and clarified in [8].

The author would like to thank Daniel Bennequin, Nicole Bopp and Hubert Rubenthaler
for many useful conversations, and the referee for suggesting many improvements to the
original version of this article.

0. Preliminaries

In this section we will give a summary of the basic properties of Clifford algebras and
spinors which we will need in the rest of the paper. For more details and proofs, consult
the book of E. Cartan [3] or the article of Atiyah, Bott and Shapiro [1].

0.1. CLIFFORD ALGEBRAS. - The Clifford algebra C (V) associated to a finite-dimensional,
real, positive-definite, inner product space (V, g) is defined as the quotient of the tensor
algebra T (V) = eV^ by the two-sided ideal s of T (V) generated by elements of the
form v 0 v + 2 g (^ v) Id. The natural map A (V) -> T (V) ̂  C (V) (here A (V) is the
exterior algebra on V) is a vector space, but not algebra, isomorphism, equivariant for the
natural action of the orthogonal group 0 (V, g) and if ei, 62, . . . , en is an orthonormal
basis of V, the algebra C (V) is generated by their images subject to the relations

eiCj + e j e i = -26ij.

The natural Z2-grading of T (V) into even and odd tensors induces a Z2-grading
of the Clifford algebra C (V) = C+ C C-. More generally, any automorphism
or antiautomorphism of T (V) preserving 9 gives rise to an automorphism or
antiautomorphism of C(V). In particular, we will write x -^ x" for the conjugate
linear of the complexified Clifford algebra Cc (V) induced by vi 0 V 2 . . . S Vk -^
(-1)^ 0 Vk-l . . . 0 ^1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



26 M. J. SLUPINSKI

0.2. THE EVEN DIMENSIONAL CASE. - In this section we will suppose that V is of even
dimension 2m. The groups Pin(Y) and Spm(V) are defined as the following subsets
of the real Clifford algebra.

0.2.1. DEFINITION. - Pin (V) = { x G C (V) : xx" = 1 and xVx~1 = V } and Spin (V)
is the connected component of the identity of Pin (V).

The following facts are well known (cf. [1]:
(i) the image of the natural map TT : Pin (V) —^ End (V) is exactly the orthogonal

group of (V, g}\
(ii) if re is a unit vector in V, then x G Pin (V) and TT (x) is minus the reflection in

the hyperplane orthogonal to x',
(lii) every element of Pin (V) can be written as the product of unit vectors in V and every

element of Spin (V) can be written as the product of an even number of unit vectors in V\
(iv) the map TT is a two to one covering map and if m > 1, TT : Spin(Y) —> SO (V)

is a universal covering map;
(v) the group 0 (V) preserves the ideal Q and therefore acts naturally by automorphisms

on C (V) and if g G 0 (V), this action is just the inner automorphism corresponding to
gf G Pm(Y) where 7r(^) = g .

(vi) as representation spaces of 0 (V), C+ (V) ^ 1 C A2 C . . . C A2171 and C~ (V) =
A1 9 A3 <9 . . . (D A27'1"1 where A^ denotes the fc-th exterior power of V.

When the dimension of V is even it can be shown that the complex Clifford algebra
Cc (V) is isomorphic to a full matrix algebra and if we choose a complex vector space S
of dimension 2'm and an algebra isomorphism Cc (V) ^ End (5), the space S is called
a space of spinors. It can be written S = S'i 6 S'2, making it into a graded module over
the graded algebra C = C4" ® C~. (The spaces 6'i and S^, which are of dimension
^m-i^ .̂g sometimes called semi-spinors). More generally, any natural automorphism or
antiautomorphism of Cc (V) ^ End (5) can be realised by some geometrical structure on
S and in particular there is a unique (up to phase factor e^) positive-definite hermitian
form h on S such that h (x.^, (f)) = h (^, x*.^) for all x G Cc(V) and for all '0, (j) G S.
The hermitian form ft satisfies fa(5'i, S^) = 0.

The group Pin (V) acts on 5 and this action clearly preserves the hermitian product
h. In fact one can show that this representation is irreducible. The group Spin(Y),
however, preserves S-^ and 62 and in fact these are irreducible, non-equivalent unitary
representations of the same dimension.

0.3. THE ODD DIMENSIONAL CASE. - When dim V = 2 m — 1 is odd, the situation is a little
different. The natural action of the group 0 (V) on C (V) cannot be realised by inner
automorphisms; in particular, —Id G 0 (V) does not act by inner automorphism. Thus for
notational convenience we will embed the Clifford algebra in a larger Clifford algebra in
which the action of 0 (V) is realised by inner automorphisms.

0.3.1. DEFINITION. - Let Va denote the Euclidean vector space obtained by taking the
direct sum of (V, g) and R, equipped with its standard inner product. We will write e G R
for the canonical basis vector of unit length. Clearly the inclusion V —> Va extends to an
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A HODGE TYPE DECOMPOSITION FOR SPINOR VALUED FORMS 27

inclusion C (V) —> C (Va). We will consider V and Va as subsets of C (Va). The groups
Pin (V) and Spin (V) are defined by

Pin(y) = {x C Pm(Va) : xVx-1 = V}

and

Spin(y) = {x G Spin(K) : xVx~1 = V}.

The following facts are the analogues of those stated in O.I.I for the even dimensional
case but with significant changes in (iii) and (v):

(i) the image of the natural map TT : Pin (V) —^ End (V) is exactly the orthogonal
group of (V, g)\

(ii) if x is a unit vector in V, then x G Pin (V) and TT (x) is minus the reflection in
the hyperplane orthogonal to rr,

(iii) every element of Spin (V) can be written as the product of an even number of unit
vectors in V', the element e E Pin(V') is in the centre of Pin(Y) and 7r(e) is —Idy;
every element of Pin (V) not in Spin (V) can be written as the product of e with an
even number of unit vectors in V;

(iv) the map TT is a two to one covering map and if m > 2, TT : Spin(y) —^ SO (V)
is a universal covering map;

(v) the group 0 (V) preserves the ideal Q and therefore acts naturally by automorphisms
on C (V) and if g e 0(V), this action is just the restriction to C (V) of the inner
automorphism of C (Va) corresponding to g ' ^P'm(V) where TT {g1) = g.

(vi) as representation spaces of 0 (V), we have C^ (V) ^ 1 6 A2 6 ... 9 A277""2 and
C~ (V) = A1 C A3 C . . . 9 A27""1 where A^ denotes the fc-th exterior power of V.

The algebra Cc (V) is known not to be simple when V is odd dimensional, but rather
a product of two simple algebras. However, Cc (Va) is a simple algebra so let us choose
a space of.spinors for Va, that is an algebra isomorphism Cc{Va) ^ End (5). Then the
Pin (Y)-module S is not irreducible because the decomposition S = {^ £ S : e ('0) =
i ̂  } C { ^ G S : e W == -i ̂  } == 54- C 5- is Pin (y)-invariant, the element e G Pin (V)
being central. It is easy to see that S^ and S~ are of the same dimension and it can also
be shown that they are irreducible Pin (y)-modules. They are inequivalent representations
of Pin (V) since the central element e takes different values in S^ and 5~, but equivalent
representations of Spin (V) since, for any orthonormal basis { ei, 62, . . . , e^rn-i} of V,
the element ei 62, . . . , e2m-i of C (V) is a Spin (V) -intertwining operator.

The element e is a unitary operator on S and so S~^~ and S~ are orthogonal subspaces
of S and in fact S^ and 5'" are non-isomorphic, dual representations of Pin(y). Further
as Pin (n)-modules, (5+)* 0 5+ ^ (5-)* 0 S- ^ C^ (V) ̂  1 C A2 C A4 C . . . C A2"-2.

1. Definition and basic properties of the operators 6 and ©*

1.0. NOTATION. - We will now suppose that dim V = n and we will write A^ for the space
of real fc-forms, equipped with the Euclidean metric for which the forms e^ A e^ A . . . A e^
are an orthonormal basis. Here, ei, 62, . . . . e^ is a real orthonormal basis of V*, which
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28 M. J. SLUPINSKI

space we will now write as A1. The space A will be the direct sum of exterior forms in
all degrees. The real Clifford algebra of A1 will be denoted C and the complex Clifford
algebra (7c. If n is even, we choose a space of spinors 5, that is an algebra isomorphism
Cc ^ End (5), and we will choose a hermitian metric h on S as above. If n is odd, we
choose a space of spinors S for C (A^) and we write S == S^ 9 5'" as above. The groups
Pin(A1) and Spin (A1) will be denoted Pin(n) and Spin(n) respectively. If n is even
they are subsets of C (A1) and if n is odd they are subsets of C (A^), as explained above.

1.1. DEFINITION. - Define @ G End (A 0 S) by
a==n

8 (O; 0 -0) = ̂  Ca A UJ (g) 6a.'0

a=l

where uj 0 -0 G A^ 0 5 anrf ei, 62, ..., e^ is a real, orthonormal basis of 1-forms. It is
easily verified that Q does not depend on the choice of orthonormal basis. The operator ©*
is its adjoint for the tensor product hermitian metric.

1.2. PROPOSITION. - Let R : Pin (n) —^ End (A05') be the tensor product representation.
Then we have

(i) R (x) Q = 6 R {x), where x G Pin (n).

Thus the operator @ commutes with the action of Pin (n) on A 0 5'.

(ii) (66* - e* e) (c^ 0 ̂ ) = -(n - 2 fc) a; 0 ̂  where uj (g) '0 G A^ (g) 5.

Proof. - Part (i) is a straightforward calculation using the basis indpendence of © and the
fact that for x € Pin (n), the element TT {x) € 0 (A1) acts by TT (re) (z?) = xvx~1 onv ^. A1.

To prove part (ii), recall that if x G A1, then the adjoint of exterior multiplication by
x is given by the map ix : A —> A, where ix (C) = 0, %a. (v) = (^|^) for v e A1 and i^
is extended to give an antiderivation. Recall also that if x G A1 is of unit length, then x
is unitary and skew-adjoint when acting in S. Hence, taking tensor products of adjoints
(and denoting %ea by ia) we have:

a==n

9* (Cc; 0 ̂ ) = -^Za (^) 0 Ca^.

a=l

Hence,

Oe*(a;(g)^)= - ̂  e^A %6(a;)(g)e^e6.^
a and b

= - ̂  Co A %fc (O;) (g) Ca e&.'0 - ̂  Co A %a (^) 0 Co e^

07^ b a

= - ̂  e^ A %6 (a;) (g) e^ e^ + ̂  e^ A %„ (cc;) (g) ̂  (as e^ = -1).
a^ 6 a

A simple calculation shows that V^ Co. A %a (a;) = k uj if ^ G A^ and so finally:
a(i) ee*(o;®^)= -^ ea A ^ (^(gea^ .^+fco;®^.

a^6
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A HODGE TYPE DECOMPOSITION FOR SPINOR VALUED FORMS 29

On the other hand,

(2) ©* © (^ 0 VQ = - ̂  Zb(eaAa;)0ebea.^
a and b

= _ ̂  %b(ea)Ao;0ebea.^+ ̂  e^ A %6 (o;)0 e^e^
aandb aandb

= no; 0 ̂  + ]̂  ea A %& (a;) 0 efc e^ + ̂  Ca A %a (^) ® e^ ea.'0
a==b ^

=na;0^-fcci ;0 '0+^eaA ^(a;) 0efcea.'0.
a^b

Subracting (2) from (1), we get:

[©, ©*] (uj 0 VQ = (2 k - n) uj 0 ̂  (since Co e& + e^ Co = 0 if a 7^ 6).

1.3. COROLLARY. - The following identities hold in End (A 0 S):

[[Q, ©*], ©] = 2© and [[©, ©*L ©*] = -2©*.

T/i^ the real Lie subalgebra o/End(A 0 5) generated by the operators 6 anrf 6* ^
isomorphic to sl2 (R). As from now, it will be denoted by sl2 (6).

Proof. - This is an immediate consequence of Proposition 1.2 (ii).

1.4. DEFINITION. - For 0 < k < n, write Pk = (A^ 0 5) H KerQ*. Nor^ that PQ = S
and that the Pk are Pm{n)-invariant.

The proof of the following proposition will be omitted and is a standard application
of the representation theory of sl2 (C) (cf. [7], Ch. 4 for example), the point being that
[6, e*] acts on A^ 0 S as (2k - n)Id.

1.5. PROPOSITION. - The following hold:
(i)Pfc = { 0 } ifk > j;
(ii) the map ©r : A^ 0 S -^ A^ 0 S restricted to Pk is injective if r < n - 2k

and e—^4-1 (Pk) = 0;

(hi) A^S= © e^-^P.);
0<r<min (fc, n—fc)

(iv)Ker6* = ffi Pfc and the operator (9*)^ map^ 6^ (P^) isomorphically
0<fc<|

onro Pr ^ 0 < r < min(fc, n - fe).
By Proposition 1.2, each one of the subspaces in 1.5 (iii) is invariant under the action of

Pin (n) and hence we have decomposed A^ 0 S (and A^ 0 S) into fc +1 Pin (n)-invariant
subspaces when k < n. The natural question now is whether this is the decomposition of
A^ 0 S into irreducible Pin (n)-components. However we see that we have to distinguish
the cases n even and n odd because the space S (= Po) is Pin (n)-irreducible if n is
even but not if n is odd (cf. 0.2 and 0.3 above). In fact when n is odd, the central
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30 M. J. SLUPINSKI

element e € Pin (V) (c/: 0.3) acts by R (e) = (-1 d)^ 0 e on A^ 0 5 and so commutes
with © and 6*. Its eigenspaces in A 0 S are therefore invariant both by Pin(n) and
the operators © and ©*.

7?
1.6. DEFINITION. - Suppose n is odd. For 0 < k < -, define

z

( A 0 5 ) ± = { a : G A 0 5 : R{e)(x)=±ix},

( A k ( S ) S ) ± = { x e A k ( S ) S : R(e){x)= ±ix}

and

P^ = { x e P k : R(e)(x) =±ix}.

Note that dim P^~ = dim P̂ ~ since the operator Id 0 ei 62 . . . On (cf. 03) exchanges
these spaces.

We now have the following theorem.

1.7. THEOREM. - (i) For 0 < k < n, the Pm{n)-invariant decompositions

A ^ 0 5 = g) ©^(P,) (ne^en)
0<r<min(fc, n-k)

(Ak®S)+= @ e^^P/) (nodd)
0<r<min(fc,n-fc)

(A'8 05)-= ® e^^P^-) (nodd)
0<r<min (fc, n—fc)

ar^ r/i^ decompositions into irreducible, non-isomorphic Pin (n)-modules.
(n) L^r sl2 (©) ̂  ̂  L^ subalgebra of End (A (g) 5) fn ^v^n^ or End (A (g) 5)± (n odd),

generated by © and ©*. TT^n, 05' a representation of the product Pin(n) x sis (0),
we have isomorphisms:

A 05^ ^ (Pfc 0 c^+i_2fc) (neven)
0<fc<^

(A 0 ̂  ̂  © (P^ 0 a,+i_2,) (n odd)
o<fc<i

(A 0 5)- ^ ® (P,- 0 a,+i-2fc) (n odd)
0<fc<-^

w/i^r^ 0'r denotes the unique irreducible sis (C) module of dimension r.

Proof. - These results in the case n even can also be deduced from Theorem 7 in [5].
77

(i) It is sufficient to prove (i) when 0 < k < - since by 1.3 (ii), ©^^ : A^ 0 S —^
- 2f

A71"" 0 S is a Pin (n)-equi variant isomorphism which preserves the corresponding
decompositions. We will give the argument for the case (A^ 0 S)~^ and n odd, and
then indicate how to modify it in the other cases.
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A HODGE TYPE DECOMPOSITION FOR SPINOR VALUED FORMS 31

If V C (A^ 0 S)+ is a Pin(n) invariant subspace, then Try, the orthogonal projection
onto V, is a Pin (n) invariant element of End ({Ak 0 S^). If we have a Pin (n) invariant
decomposition (A^ 0 S')'1' = Vi (B V2 ^ • • • ® K» then the corresponding projections
are linearly independent in End^A^ 0 S)^). This gives an upper bound for s : s <
dim { End ((A^ 0 S^) }pin(n). If we have equality s = dim { End ((A^ 0 5)4-) }pin(n),
then the Y{ must be irreducible and pairwise non-isomorphic as Pin (n)-modules.

Consider the canonical isomorphism

End ((A^ 0 5)+) ^ ((A^ 0 5)+)* 0 (A^ 0 5)+.

If fc is even, (A^ 0 ̂  == A^ 0 S4- and if k is odd (A^ 0 fi^ = A^ 0 5-, since the
actiof of the central element e e Pin(n) on A^ is (—Id)^ and its action on 5^ is ±%Id.
Hence this isomorphism becomes.

( End ((A^ 0 5)+) ^ (A^ 0 ̂ +)* 0 A^ 0 54- ̂  (A^)* 0 A^ 0 (5+)* 0 54-
(1) or

End ((A^ 0 5)+) ^ (A^ 0 5-)* 0 A^ 0 5- ^ (A^)* 0 A^ 0 (6'-)* 0 5-

depending on whether k is even or odd respectively. Using the Pin (n)-isomorphisms
(c/. 0.3)

(2) (^+)* 0 s^ ^ (S-Y 0 s- ^ c^ (Y) ^ i e A2 e A4 e... e A71-1 = A^
and the fact that A^ is a self dual Pin (n)-representation, we deduce a Pin (^-isomorphism:

(3) End^ 0 ̂ +) ^ (A^ 0 A^ 0 A^)*,

which is valid for k odd or even. This representation factors through TT : Pin (n) —^ 0 (n)
and so the complex dimension of the space of invariants {End^A^ 0 S)^) ^P111^) is
the complex dimension of the space of 0 (n) -invariant linear maps from A^ 0 A^ 0 A
to C, which is in turn the real dimension of the space of 0 (n)-invariant linear maps
from A^ 0 A^ 0 AR to R. By the main theorem of H. Weyl for 0 (n) (c/. [10]), the only
possibilities are linear combinations of contractions of indices. In this case these are:

A^0A^0A^ R : a;0a0A-^ o;ai 02...0^0102...^ A

A ^ 0 A ^ 0 A ^ - ^ R : a ;0(70A-» Ci ;a ia2 . . . a fc- iaCTaia2 . . . a fc- i6Aab

A^ 0 A^ 0 AR -> R : 0; 0 0- 0 A -^ U;^ ... afc-2 a6 Crai ... afc_2 cd >abcd

upto

A^0A^0A^ -^R : ^0(70A-^a;ala2.. .afcC^blb2.. .bfcAala2.. .afcblb2.. .^•

Hence there are exactly fc+1 possible contractions and so dim { End ((A^eS^) }pm(n) <
k-\-1. Since the given decomposition already has k-\-1 components, we are in the limit case
described at the beginning of the proof and therefore the components of this decomposition
are irreducible, pairwise distinct Pin (n)-modules. This completes the proof.
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The argument for the case (A^ 05')", and n odd is completely analogous. For the
case n even we have to modify the equations (1), (2) and (3) slightly but then the rest
of the argument stays the same.

(ii) If we sum 1.5 (iii) over all k < n, we get:

A* 05= Q) (Pfcee(Pfc)e...een-2 fc(Pfc))
0<k<-j

and more or less by definition, the Pin (n) x sla (©) representation

Pfcee(P,)e...een-2fc(P,)

is isomorphic to the product representation P^ 0 an-^-i-2k since every element of P^ is
primitive for sl2 (C) and © commutes with the action of Pin (n). The result follows.

1.8. COROLLARY. - The ring of complex invariants of Pin (n) in End (A 0 S) when n
is even, and in End ((A 0 S)^~) or in End ((A 0 5')") when n is odd, is generated (over
C) by s^ (©).

Proof. - This follows from a generalisation of Schur's Lemma:

1.9. THEOREM (Folklore but see the appendix of [8] for example). - Let X be a finite
dimensional, complex vector space. Let G C End (X) be a real, semisimple or compact
Lie group and let 1) C End {X) be a real, reductive Lie algebra which commutes with G.
Then the following properties are equivalent:

(A) as a representation of G x (}, there is is an isomorphism

X^Q)R^S^
id

where the Ri (resp. Si) are distinct, complex irreducible representations of G {resp. t});
(B) the commutant in End (X) of G is generated (over C) by t).

1.10. REMARK. - In the language of representation theory, one says that the representation
X sets up a Howe correspondence (cf. [5]) between irreducible representations of the group
G and the Lie algebra (} when condition (A) holds. Thus Theorem 1.7 provides us with
some examples of Howe correspondences which in the case n odd are new. Many other
examples are to be found in [5] including the case n even of 1.7. As pointed out to the
author by R. Howe, the examples of this paper are probably members of a family of
similar Howe correspondences involving real orthogonal groups of various signatures and
their double covers. This point is examined in [8].

1.11. REMARK. - If the representation X sets up a Howe correspondence for the pair
(G, f)), any G x ^-invariant subspace of X also sets up a Howe correspondence since it
must be a sum of the G x ^-irreducible modules Ri 0 Si.
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1.12. REMARK. - Instead of considering the operators 6, Q* G End (A (g) S) as defined
in 1.1, one could have considered their "graded" analogues:

Q {uj (g) V;) == ̂  (-1)^ Co A 0; 0 Ca.^

a=l
a=n

0* (^ 0 V;) = ̂  (-1^ %a A Cc; 0 Ca.^.

a=l

It is then easily verified that these operators commute with the action of Pin (n) on A 0 S
and generate a Lie isomorphic to sl(2, R). Since Ker9 = Ker6 and KerQ* = KerO*^
all of the theorems of this chapter remain true mutatis mutandis for the operators 6 and 6*.

2. Decomposition of A 0 S for the action of Spin (2 m) x sl2 (©)

In this section it will be shown that when the vector space V is oriented and even-
dimensional, we can write the space A 0 S as the sum of two subspaces which are
invariant under Spin (2m) and the sl(2, R) generated by 6 and 6*. The decomposition
of either of these subspaces into irreducible components for the product action provides
analogues of Theorem 1.7.

For the rest of this section, V will be a real, oriented, Euclidean vector space of even
dimension 2 m. The real Clifford algebra of V* will be denoted by C, the comple^Clifford
algebra by Cc and we fix a space of spinors S and an algebra isomorphism Cc = End S.
We will consider V* as a subset of its Clifford algebra.

2.1. DEFINITION AND NOTATION. - (i) If c^ c^ . . . , e^m is positively-oriented, orthonormal
basis of V*, define e C Spin (2m) C C by e = ei 62 . . . e^. Then it is easily verified
that e2 = (-1)^

(ii)7/ X is an Pin(2m)-module in which -1 G Pin (2m) acts as Idx, we set:
X+ = { ^ G X : eW =irn^} andX- = {^ G X : e W = -z^}.

One verifies that e does not depend on the choice of positively-oriented, orthonormal
basis and that e = (-I)7" £*. The operator e is in the centre of the group Spin (2 m) C C
but not in the centre of group Pin (2 m) and hence X+ and X- are Spin (2 m)-invaria^t but
not necessarily Pin (2 m)-invariant. Note also that e acts on A^ (g) S by R (e) = (-1)^ 0 e.

The condition in (ii), that -1 G Pin (2m) acts as -Idx, is equivalent to the
condition that the representation of Pin (2 m) does not factor through the covering map
TT : Pin (2m) -> 0(2m). Thus, for example, the representation in S satisfies this
condition, whilst the representation in V does not.

2.2. LEMMA. - (i) Let X be an irreducible, complex Pin (tmYmodule in which -1 acts
as -Idx. Then the decomposition

X = { x ^ X : e { x ) = i r n x } e { x ^ X : e(x)= -i^ x } = X+ C X-

is the decomposition ofX into irreducible components as a Spin (2m) -module. The two
factors are irreducible, non-isomorphic Spin (2m}-modules of the same dimension.
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(ii) LetX and Y be two such Pin (2 m)-modules. Then X^ ^= Y^~ as Spin (2 m)-modules
if and only if X ^ Y as Pin (2 m) -modules.

Proof. - If p : Pin (2m) -^ EndX is the representation, then p(e)2 = p(e2) =
p((-l)^) = (p(-i)^) = (-l^Idx and so the possible eigenvalues of p ( e ) are
i^ and -i^. Let A e C be an eigenvalue of p{e\ let WA be the associated
eigenspace and let x e W\ be an eigenvector. If v e V* is such that v2 = -1,
we have p (e) (p (v) (x)) = -p (v) (p (e) (x)) == -Xp (v) (x), and hence p (v) defines an
isomorphism of W\ with W- \. Notice that this also implies that W\ is a proper subspace of
X. The subspace W\ 9 W-\ is Pin (2 m)-invariant since it is invariant by both the element
v and the group Spin (2m), which together generate Pin (2m). Hence X = W\ 9 W-\
by Pm(2m)-irreducibility. The subspaces W\ and W_\ are Spin(2m)-invariant and
easily seen to be Spin (2m)-irreducible. As representations of Spin (2m) they are not
isomorphic because the central element e takes the values ̂  in one and the value -^
in the other. This proves (i).

In one direction (ii) is obvious so suppose that / : X^ —> V4" is a Spin (2m)-
isomorphism. Then it is straightforward to check that g : X~ —> Y~ defined by
g ( x ) = z.f^z^.x) is a Spin (2m)-isomorphism and that / + g : X —> Y is SL
Pm(2m)-isomorphism. Here z is any element of V* H Pin (2m).

The representation of Pin (2 m) in Ak^)S satisfies the condition of 2.1 (ii), i.e. the element
-1C Pin (2m) acts as -Id. Parts (i) and (ii) of the following theorem are immediate
consequences of Theorem 1.7 and Lemma 2.2 and part (iii) follows from Theorem 1.9.

2.3. THEOREM. - (i) For 0 < k < 2m, the decomposition

Ak(S)S= g) (e^ (?,+) e e^ (P^-))
0<fc<min(fc , n-fc)

is the decomposition into Spin (2 m) -irreducible components. No multiplicities occur.
(ii) We have the following isomorphisms of Spin (2m) x sis (0) modules

k=m k=m

(A 0 5)+ = Q) P^ (g) a2^+i-2fc and (A 0 S)~ ^ Q) P̂ - 0 02^+1-2^,
fc=0 fc=0

w/z^r^ cr^ denotes the unique irreducible s\^ (@)-module of dimension of dimension r. The
P^ (resp. P^~) are distinct irreducible representations of Spin (2m).

(iii) The ring of Spin (2 m)-invariants in End (A0 S) is generated by s\^ (©) and R (e).
The ring of Spin (2 m) -invariants in End ((A 0 S)^) or End ((A 0 5')") is generated
by sl2 (6).

When the vector space V is oriented, one defines the Hodge star operator * : Ak —>
^2m-k^ ^]^h is an isomorphism of SO (2 m)-modules, but not of 0 (2 m)-modules since
for g e 0(2m) and x G A, we have g ( ^ x ) = (deig) (^g (x)). By taking the tensor
product with the identity on the spinors 5, we get a Spin(2m)-equivariant isomorphism,
which we will also denote by * : Ak (^ S -^ j^rn-k ^ ^ ^ ̂  restrict this to a
Spin (2 m)-irreducible subspace of A^ 0 5, the image must be an isomorphic subspace of
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p^m-k ^ g ̂  hence by Theorem 2.3 (i), we have Spin(2m)-equivariant isomorphisms
(for 0 < k < m and for 0 < s < k):

* : Q8 (P,tJ -^ e2771-2^8 (P,tj and * : ©s (?,-_,) -^ e2771-2^6 (?,-_,).
Since the operator Q^-2^ is another Spm(2m)-equivariant isomorphism between the
same pairs of irreducible Spin(2m)-modules, it must be proportional to the Hodge star
operator when acting on them. We will postpone the calculation of the constants of
proportionality to paragraph 5 but we can make the following observation:

2.4. COROLLARY. - If for all rr+ G 0s (P^_J, Q2^-^ (rr+) = A(*rr+), where X G C,
then for all x- G 6s (Pfc_,), we have Q2^-^ (x-) = -X^x-).

Proof. - Let v G V* be a real 1-form such that z?2 = —1, considered as an element of
Pin (2 m) and let Ry e End (A(g) 5') denote its representant in End (A(g) 5). If x^ G P^,
then Rv (^+) G -P^Lg as in the proof of Lemma 2.2. (i). Hence,

Q2m-2fc ̂  ̂ +^ ^ ̂  Q2m-2fc ^+^ ^ ̂ ^ (^+) = -A * ̂  (a;+).

The first equality follows because © commutes with Pin (2 m) and the final equality
because Ry acts as a reflection on A.

2.5. REMARK. - The referee has pointed out that this corollary means that the Hodge *
together with sl2 (©) generate the full commutant of Spin (2m) in End (A 0 5).

3. Decomposition of A 0 S for the action of Spin (n) x sla (C) (nodd)

When the dimension of V is odd, the decomposition of (A^ 0 S^ obtained in
Theorem 1.7 (i) is in fact irreducible for the group Spin(n). This is a consequence
of the following lemma:

3.1. LEMMA. - Suppose n is odd and let X be a irreducible, complex Pin {n)-module.
Then X is an irreducible Spin {n)-module.

Proof. - The central element e e Pin (n) (cf. 0.3 (iii)) acts as a scalar in X by Schur's
lemma. Any Spin (n)-invariant subspace of X is therefore Pin (n)-invariant since every
element of Pin (n) can be written as a product of e and an element of Spin (n).

This lemma. Theorem 1.7 and Theorem 1.9 imply:

3.2. THEOREM. - Let n be an odd integer. Then:

(i) (A^^)^ Q) ©^(P^)
0<r<min(fc,n-fc)

(A^^)-^ Q) ©'-'(?,-)
0<r<mm(k,n-k)

are the decompositions into Spin (n}-irreducible components and no multiplicities occur;
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(ii) we have the following isomorphisms of Spin (n) x sis (Q)-modules

k=^ k=^
(A(g)5)+^ (g P^0^+i-2fe and (A®S)-^ (Q P^ ® a^i-2k,

k=0 fc=0

w/^r^ oy denotes the unique irreducible sla (0) -module of dimension of dimension r. The
P^ (resp. P^~) are distinct irreducible representations of Spin {n}.

(iii) The ring of Spin (2 m)-invariants in End ((ACx)*?)"^) or End ((A(g)5')~) is generated
by sl2(6).

4. The case of a Euclidean vector space with compatible complex structure

When the Euclidean vector space V has additional geometric stmctures the group of
symmetries of the situation becomes smaller but the space of invariant objects becomes
larger. In this section we suppose that V has an isometric complex structure and consider
a Lie subalgebra of End (A 0 S) which contains sis (©) and which is [/'-invariant, where
V is the (connected) subgroup of Pin (V) which covers the unitary subgroup of 0 (V)
defined by J.

4.1. DECOMPOSITION INTO TYPES AND THE CLIFFORD ALGEBRA IN THE PRESENCE OF A COMPLEX

STRUCTURE. - Suppose that V is a real, 2 m-dimensional, vector space equipped
with a positive-definite inner product, g , and a compatible almost complex structure,
J : V -^ V ( J 2 = -Id and J is isometric for g). We define A^9, the space of
forms of type (p, g), and its natural hermitian metric in the standard way (cf. [4] or
[9]). Thus, for example, (a|/3) = g(a, /3) where a, /3 are complex 1-forms, defines
the hermitian form on V* (g) C. Hence if { z\, z^, . . . , Zm} is an orthonormal basis of
A1'0, the forms { z\^ z^^ . . . , Zm } give an orthonormal basis for A0'1 and the real forms
j ^a 1~ ZCL ^a ^a \ . i -, i i • r TT-*^ ——-,=—, ——-,— f give a real orthonormal basis of V .
L V2 i V2 J Ka<m

Now as in 0.1, let Cc denote the complex Clifford algebra associated to (V*, g) and
let S be a space of spinors for Cc. If { ^i, ^2? • • • •> ^m } is an orthonormal basis of A1'0,
the following relations hold in Cc'.

Zi Zj + Zj Zi = 0 for 1 < z, j < m,
Zi z[ + z[ z^ = 2 Id for 1 < % < m,
Zi z^ + z^ Zi = 0 for 1 < % 7^ j < m.

The "number" operator N is defined by
a=m

^=jS^
a=l

s=m

and if Ss = {^ G S : N (-0) = s ̂ } then S = ̂  Ss. This operator does not depend
s=0

on the choice of orthonormal basis of A150. It is well known that dim So = 1 and that
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if ^o ^ 5o, then { z^ z^ . . . z^.^o : 1 < %i < ^2 < • • • < ^fe ^ m } is a basis for S k '
In the language of E. Cartan, ^o is a pure spinor and the subspace SQ of S is uniquely
characterised by the property: -0 G -So if and only if Zi.^ = 0 for 1 < i < m. More
generally, the operators Zi map Ss to Ss-i and the operators z^ map ̂  to Ss-^-i.

4.2. DEFINITION AND BASIC PROPERTIES OF THE OPERATORS Z AND Z.

4.3. DEFINITION. - Let {j^i, ^2, . . . , ^m } be an orthonormal basis of A1'0. Define Z,
Z € End (A 0 S) by:

a=m a==m

Z (a; 0 '0) = V^ 2^ A UJ 0 ̂ a.'0 and Z {UJ 0 '0) = V^ ^a A a; 0 ̂ .'0

a=l a=l

where uj G A* and '0 C S. It is easily checked that these operators do not depend on the
choice of orthonormal basis <9/A1 '0. Their adjoints are given by:

d^^fTI CL^-tTi

Z* (c<; 0 '0) == — -̂ ia ̂  0 ̂ a-'0 ^^^ Z* (a; 0 '0) == — V^ %a ̂  0 ̂ a-^

a==l a=l

w^^r^ ia, ia '- A —^ A ar^ rn^ interior products along Za and ^a respectively.

4.3.1. Remark. - In terms of the decomposition into types and spin states, we see that
the operator Z maps A^'q 0 6g to A^15 g 0 S^-n and that the operator Z maps A^ 9 0 5s
to A^'^1 0 5,-i.

The operators Z and Z do not commute with the action of Pin (2m) on A 0 S since the
complex structure J is invariant only under the unitary group U (V, ^, J) and not under
the full orthogonal group 0 (V, g). However if U ' denotes the subgroup of Pin (2m)
covering U (V, p, J), we have the following

4.4. PROPOSITION. - (i) 6 = Z + Z where 6 is defined in 1.1.
(ii) Let u G V be an element of the (non-trivial) double cover of the unitary group

(acting on A 0 S by the tensor product representation). Then Z u = uZ and Z u = u Z
in End (A 0 S).

Proof. - (i) By definition,
a===m _ _ a=m _ _

Q^y f^^^^^^+^^+y ^^Aa;0^—^
~i ^ V2 ' z^ iV2 iV2 r

since ^ -—, -a—j— > is a real orthonormal basis. This simplifies immediately
t V2 i V2 J i<a<m

to give the result.
(ii) Since U/ is contained in Pin (V) and since the group Pin (V) commutes with © by

Proposition 1.2, we have uQ = Qu and so u(Z + Z) = (Z + Z)u. Decomposing the
forms into types and comparing components, we see that Z u = u Z and Zu = u Z .

Now we would like to identify the Lie subalgebra of End (A 0 S) generated by the
operators Z, Z, Z* and Z*. The first step is the following proposition.
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4.5. PROPOSITION. - On A^'^Ss) the following identities hold:

[Z, Z*] = Z Z* - Z* Z = 2 (j? + 5 - m) Id

[Z, Z*] = Z Z* - Z* Z = 2 (q - s) Id.

Proof. - If uj 0 ̂  e A (g) 5, we have

(1) Z Z* (a; (g) '0) = - ̂  ^A^(^)(8)^.^^
a and b

= - ̂  Za A %a (^) ̂  Za^a'^> - ̂  ^a A %fc (a;) (g) ̂ .^.^.

a a^fc

On the other hand,

(2) Z*Z(o;(g)^)= - ̂  n(Za ALL;) ^Zb.Za^

a and &

= - ̂  %b (^a) ̂  <^ Zb.Za^ + ^ ^a A ̂  (^) (g) ̂ .^.^

a and 6 a and 6

a=n

= -UJ 0 Y^ ^a-^a- '0 + y^ ^a A %a (^) ^) ^a'^a'^

a=l a

+ Y^ ^a A %5 (a;) 0 Zb.Za.^.

a^b

Subtracting the equation (2) from (1), we get:

a==m

(3) [Z, Z*] {UJ 0 ̂ ) = UJ 0 ̂  ^a.^a. ̂  - ̂  ^a A ̂  (^) 0 (^.^ + ̂ ^a)'0.

a=l a

a=-rn

(i) The number operator TV is given by N = - V^ z^ Za and N (^) = s^ if and
0=1

only if '0 G Sg where 0 < s < m. Using the fact that Za = —z^, this implies that
a=m

^ ^a.^a.^ = -2 5^.

a=l

(ii) By definition, ^^ ^a A Za (^) = 0 and V^ Za A z^ (^b) = z^. Now since the interior
a a

product is an antiderivation, we deduce that ^^ Za A ia(^) = q^ if ^ ^ A^'9.
a

(iii) For each a (1 < a < m), we have Za Za + ZaZa = —^a^ ~ ^^a = —2 Id.
Substituting (i), (ii) and (iii) in the equation (3), we find

(Z Z* - Z* Z) (a; 0 ̂ ) = 2 (^ - 5) (^ (g) -0).

This proves half of the proposition, the other half following from a similar calculation.
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4.6. COROLLARY. - The following equations hold in End (A 0 S):

[ZZ* - Z* Z, Z] = 4Z and [ZZ* - ̂ * ̂  ^*] = -4Z*
[ Z Z * - Z * Z , Z ] = 4 Z and [ Z Z * - Z * Z , Z*] = -4Z*.

Thus the complex Lie subalgebra of End (A (g) 5') generated by the operators Z, Z* (or,
taking conjugates, by the operators Z, Z*) ^ isomorphic to s\^ (C).

Pwo/. - This is immediate from 4.5.
This means that there are two s^C^s acting in A 0 S but these actions do not

commute, as the next proposition shows.

4.7. PROPOSITION. - The following identities hold:

(i) [ Z , Z * ] = 0 and [Z\ Z\ = 0;

(ii) [ Z , Z ] = 2 z L ,
a=m

w/^ L ^ multiplication by the Kdhlerform k = i ̂  Za A ^a: L (c^ 0 ̂ ) = k A ̂  0 ̂ .
a=l

p^^ _ (i) This is straightforward.

(ii) We have:
Z Z ( U J ^ ^ } = V Zb ^Za^^^zb^a^

a and b

= V ̂  A Za A 0; (g) ^a.^a.^ + ̂  ^fc A ̂  A 0; (g) ^b.^a.^

a a^6

In the same way,

Z Z (O; (g) ̂ ) = Y^ Za A ̂  A UJ 0 ̂ a.^a.^ + ̂  ̂  A ̂  A 0; 0 ̂ ^a.^-

a a^6

Hence,

[Z, Z] (^ 0 7^) = ̂  Za A ^a A ̂  (g) (^a.^a + ^a^a).^ (silICe Za A ̂  + ̂  A ̂  = 0)

a

= - 2 ( y ^ ^ a A ^ a ) A a ; ( g ) / 0 (since Za ^a + ^a ^a = -2 Id)
v a

= 2ik /\uj (g)^-

We now have the following 8 operators in the Lie subalgebra of End (A (g) S) generated
by Z, Z*Z* and Z:

Z, Z*, Z*, Z, ffi = [Z, Z*], ff2=[^*L 2zL=[Z ,Z ] , 2 z L * = [ Z * , Z * ]

and we have calculated some but not all of the possible commutators. The following
proposition gives the remaining commutators but the proof is omitted since all of the
calculations are straightforward.
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4.8. PROPOSITION. - (i) The operators H^ and H^ are self adjoint and [ffi, H-^} = 0.
The following identities and their adjoints hold in End (A 0 5');

(ii) [H,, Z] = 4 Z, [^i, Z] = -2 Z, [H,, £] = 2 L;
(iii) [^2, Z] = 4 Z, [̂  Z] = -2 Z, [^2, £] = 2 £;
(iv) [L, £*] = J (ffi + ^2), [£, Z] = [L, Z} = 0, [£, Z*] = z Z.

We can now conclude that the linear subspace of End (A 0 5') generated by the operators
Z, Z*, Z*, Z, I:fi, ^2, ^ and £* is closed under Lie bracket.

4.9. THEOREM. - (i) The complex Lie subalgebra of End (A 0 S) generated by the
operators Z, Z*, Z*, Z, - which will be denoted by sis (Z) - is isomorphic to sl3 (C).

(ii) The real form X —> X corresponds to the real form su (2, 1) ofsi.^ (C) and the real
form X —>- —X* corresponds to the compact real form su (3) of sis (C).

(iii) The subalgebra sl2 (0) = (6, ©*, [©, 0*]) is a principal sl2 (C). The associated
grading of sis (Z);

Sis (Z) = Q-2 C ̂ -1 C ^0 C ^1 C ^2 (WZ^ [̂  ^m] C Qn+m),

where H = [Q, 6*] and Qn = [X G sla (Z) : [ff, X] == 2nX}, ^ m order, the
decomposition:

s i 3 ( Z ) = ( L * ) e ( z * , z * ) e ( ^ i , A T 2 ) e ( z , z ) e < £ ) .
77?^ subalgebra QQ is a Carton subalgebra, the subalgebra QQ 9 Q\ 0 ^2 ^ ^ 5^r^J
subalgebra and Z, Z ar^ simple root vectors.

Proof. - (i) Consider C3 with hermitian forms (in the canonical basis) h = z\ z\ +
^2 ^2 + ^3 ^3 and ^ = z\ z\ + ^2 ^2 — ^3 ^3- If A is 3 x 3 complex matrix, then adjunction
with respect to the first is given by A —> A* and with respect to the second by

A = ( , ) —> A' -==- [ . _ ) , where X is a 2 x 2 complex matrix, v and\w* aj \-vt a )
w are 2 x 1 complex matrices and a is a complex number. Define (f) : sis (C) —^ Q by:

( f ° ° °\\ f ( ° ' '\\<^> ( 1 0 0 = Z; <f> 0 0 0 = Z*;
< V 0 0 /7 \\0 0 O / /
^0 -1 1\\ / / O 0 0 \ \
0 0 0 =Z; <j) -1 0 0 =^*;

<o o o77 \ \ i o o77
//-2 0 0 \ \ / /2 0 0 \ \

^> 0 1 1 = ffi; </> 0 -1 1 = ffa;\ \ o i i77 \ \o i -i77
/ /O 0 0 \ \ / / O 0 0 \ \

^ I I 0 -1 1 =2?£ ; ^ 0 1 1 ) ) =2iL*
<0 -1 i77 \\0 -1 -1,
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Calculation now shows that the matrices above form a basis of sla (C) and that the map
(f) : sis (C) —^ sis (Z) is a homomorphism of Lie algebras; since sl3 (C) is simple, it is
necessarily an isomorphism. This proves (i) of the proposition.

(ii) To prove part (ii), we remark that (f) (A*) = ^ (A)* and that ^ (-A') = (f) (A).
(iii) The subalgebra sl2 (0) = { © , © * , [©, ©*]} is isomorphic to sl2 (C) by

Proposition 1.3. To prove that it is principal in the sense of Kostant (cf. [2]), we have to
show that © is a nilpotent element of the Lie algebra sla (Z) and that its centraliser in
sis (Z) is of the same dimension as that of a Cartan subalgebra, namely 2 in our case. Now

/O -1 1\
© = Z + Z so that <f)~1 (©) = 1 0 0 . The result follows by direct calculation.

v o o/
Note that the operators © and L give a basis of the centraliser of © in sis (Z). The rest
of the proposition also follows by calculation.

Analogues of Theorems 1.7 and 1.8 hold in this situation.

4.10. THEOREM. - The Lie algebra sla (Z) ® (C ) (^= g^ (C)) generates the commutant of
V in End (A05) (and therefore (cf. 1.11) also in End ((A^S^) and in End ((A05)-).
(Here C G End (A 0 5'), denned by: C (u 0 ̂ ) = i (p - q) uj 0 ̂  + % uj 0 ( — - s\ ̂
on A^'9 0 65, is the action of the complex structure of V viewed in the centre of u ' .
By the theorem, the representations (A^ 0 5')4" (A^ 05')" set up Howe correspondences
(cf. 1.10) not only for the dual pair (Spin (2m), sis (©)) (by 2.3) but also for "see-saw"
pair (cf. [6]) ((U^ sis (Z) C (C)).)

Proof. - Following a suggestion of the referee, we rewrite the [/'-representation A 0 S
as follows:

A 0 5 ^ A ( A 1 ' 0 © A 1 ' 0 ) 0 A ( A C U ) 0 ^ 2 ^ A ( A 1 ' 0 ) 0 A ( A O ' 1 ) 0 A ( A O ' 1 ) 0 A : 2

^ A: 0 A (A011) 0 A (A051) 0 A (A051) 0 A^

^(^(A^^C3^^.

Here K 2 is the square root of the [/'-representation AT = A"^0 and we have used
the U ' -isomorphisms Ap'o ^ K 0 A05772^ (realised by the complex linear Hodge star
operator) and S ^ A(A°'1) 0 K2 (cf. 4.1 above). The Lie algebra gl(C3) acts naturally
on K (g) A(A°'1 0 C3) 0 X2 and commutes with the action of U ' . One can recognise
this as precisely the action of sis (Z) C (C). Since End (K 0 A (A0'1 0 C3) 0 K 2 ) ^
End (A (A011 0 C3)) and since the action of U ' on A0'1 factors through the action of its
quotient the unitary group, proving the theorem is equivalent to proving that the V (A0'1)
invariants in End (A (A011 0 C3)) are generated by gl(C3).

Applying Theorem 7 in Howe [5] (with U = (0), W = A051 0 C3, G = GL(A°'1)
r = gl(A051), r = gl(C3), 0 = 0(WeW) (=the complex orthogonal group
preserving the canonical symmetric bilinear form) and End0 == End(A°'1 0 C3)), we
deduce that gl(C3) generates the algebra of G£(A°'1) invariants in End (A°'1 0 C3).
Since this representation of GL (A0 '1) is holomorphic, the algebra of GL (A0'1) invariants
is the same as the algebra of [/(A051) invariants.
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5. The Hodge star operator and positivity

Recall that in section 2 we remarked that if dim V = 2 m and if 0 < k < m, the two
Spin (y)-equivariant maps Q2771-2^ and the complex Hodge star operator are proportional
when restricted to 0s (Pj^_s) (or 0s (P^_J). In this section we will calculate the constants
of proportionality by evaluation on particular elements of these spaces and deduce some
positivity results, analogous to the infinitesimal Hodge-Riemann bilinear relations on a
Kahler manifold. In order to do this we fix an isometric complex structure J on V and
use the results of paragraph 4.

5.1. PROPOSITION. - (i) Ifuj G A 0 S and Z (^) = 0, then 0s (a;) = ps (Z, L) (cc;), where
s C N and ps (^, k) is a complex polynomial in two variables. (The operators Z and L
commute by Proposition 4.9 so that this makes sense.)

( J ' T )
(ii) The polynomials ps satisfy ps-\-i = zps — 2ik —— and po = 1.

Proof. - The proof depends on the following lemma:

LEMMA. - For all s G N, we have [Z, Z8} = -lisLZ8-1.

Proof of lemma. - If s = 1, from Proposition 4.7 we have [ Z , Z} = -2iL and the
formula is true. Now suppose that it is true for 0 < s < n and proceed by induction.
We have

Z Z^ - Z^ Z = Z Z7^1 - Z" ZZ + Z71 ZZ - Z^ Z

= [Z, Z"] Z + Z" [Z, Z\

= — 2 i n L Z n — 2 i L Z n (by the induction hypothesis)

= -2^{n^l)LZn.

Now we can prove the proposition by induction. Since 0 = Z + Z, applying 0 to
uj e Ker Z gives 0 (a;) = Z (a;) and the righthand side is a polynomial in Z acting on uj.

Suppose now that for 0 < s < n, 0s (cc;) = ps (Z, L) (c<;), where ps is a complex
polynomial in two variables. Then 0n+l ̂ ) = (Z + Z) 071 (cc;) = Z p n ( Z , L) (a;) +
Z pn (Z, -L) (a;). The first term is clearly polynomial in Z and £; as for the second term, by

— — C^T)
the lemma Z Z8 (u;) = -lisLZ8-1 (a;) and so Z pn (Z, L) (a;) = -2%L-—(Z, L) (a;).
Thus the second term is also polynomial and by induction the proposition is proved.

5.1.1. COROLLARY. - For s G N the polynomial ps (^, k) of 5.1 above is given by:

^ 0s -^ps ( z , k) = (-2 ik)8 e^ik —— (e ^k ).
6z8

(2s) (

In particular, p^s (0, fc) = (-%)8 -——k8 .s .
Proof. - The solutions of the differential equation (ii) are more or less classical Hermite

polynomials.
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5.1.2. COROLLARY. - // uj G A (g) S and Z (a;) = 0, r/z^z

e25 (c^) = ("Z25 + ̂  ar U Z25-27^ (c^) {where Or C C).
\ r=i /

Proof. - This is immediate from the formula for ps.

5.1.3. COROLLARY. - Suppose 0 < s < m. If uj G A6 '0 0 S and Z {uj} = 0, r/^n

e2—26 (a;) = (-z)— (2m"2g)! £— (c^).(m — s ) !
/ r=m-s \

Proof. - From 5.1.2, we have e2771-25 (a;) = Z2—28 + ̂  a, 27 Z2—26-2- j (a;).
^ r=l /

The form part of the term 17 Z2171-28-^ (a;) is of type {s + r + 2m - 2 5 - 2r, r) ==
(2 m - 5 - r, r) and so vanishes when r + s < m, that is when 0 < r < m - s. Hence
only the last term in the series is left, namely dm-s ̂ m-s (^). and from Proposition 5.1.1
we know the value of dm-s {= Pirn-is (O? k)).

5.2. DEFINITION. - If ^i, z^, . . . , Zm is an orthonormal basis of A1'0, the associated
onentation/volume form is denned as e = z771 z\ A z\ A z^ A z^ A ... Zm A Zrn' This is a real
2 m-form type (m, m) which does not depend on the choice of orthonormal basis. If we
set ca = za+za and J Ca = z a - z a , then e = ei A Jei A 62 A J e^ ... Cm A J e^ in

V2 % v2
terms of the real orthonormal basis { ei, Jei ... e^, Je^ }. We will also write £ for this
form viewed as an element of the Clifford algebra or the group Spin (V) (cf. 2.1.1).

5.3. PROPOSITION. - Let '00 ^ So be a pure spinor fcf. 4.1) and let uj G A610 0 5 te r/^
element defined by uj = z\ A ^2 A ... A Zs ̂  '̂ o. 7^ ^^ following hold:

(i)£.^o = {-i^^o and R(£){^) = (-l)771^771^.
(ii) uj G Ker O* H Ker Z.

(iii) k^-8 A ^i A ^2 A ... A z, = (-1)2 ̂ s-1) %5 (m - 5)! * (^ A ̂  A ... A ^), w/i^r^
a=m

k = i N^ ^a A Za is the Kdhlerform and * denotes the complex linear Hodge star operator.
a=l

5.4. COROLLARY. - For 0 < s < m, the following identities hold:

Q2m-2s ̂  ̂  (_i)J^-i) ^m (2m - 25) ! (*^) for all x^ G P^;

Q2m-2.^-^ -(-l)js(s- l)^m(2m-25)!(*^-) f^^1^ ep^'

Proof of 5.3. - (i) The identity £.^o = (-'O^o is straightforward. The element e of
Spin (V) acts on V* as -Id and hence on A5 as (-Id)5. Taking the tensor product we get
R(s){u) = A ( £ ) ( ^ i A ^ A . . . A ^ 0 ^ o ) = (-l)6^)771 = (-l)77^771.

(ii) From the defining formulas of 4.2, we see that Z (a;) = Z* {u) = Z* (a;) = 0
because Za.^o = 0 and %a Oi A z^ A ... A ^) = 0 for all 1 < a < m.

(iii) This is a standard calculation for the complex linear Hodge star operator (cf. Weil).
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Proof of 5 A. - Suppose that m + s is even. Then uj G P^ by Proposition 5.3 (ii) and
Definition 2.1. By Corollary 5.1.3 and Proposition 5.3 (ii), we have:

Q2m-2s ̂  ̂  (-,)——— (2 m ~ 2 s) ! I——— (a;)
(m — s ) !

=(-.)-^^(-l)^-1)^ -.)!*(.)

= irn{2m-2s)\(-l)2s^~^ * (a;) (since m- s is even).

Since we already know that Q2771-25 and * are proportional when restricted to P^, this
gives what we want on P^ and thus by Corollary 2.4, also on P^".

These formulas give the action of the Hodge star operator on primitive elements of
fixed degree s in terms of the operator ©. In order to give its action on the other Pin (n)-
irreducible components of A8 0 5 we need the following lemma, whose proof is left as
an exercise to the reader:

5.5. LEMMA. - Let A^ denote the space of real k-forms on V, an m-dimensional vector
space. Let x € A1 be a non-zero 1-form and let i^ '. A* —> A*""1 denote the interior
product along x. Then, if y E A^, we have

^{x/\y} = (-1)^ (*?/).

5.6. COROLLARY. - Ifuj 0 -0 G A^ 0 S, then the following hold:

(*(e (^ 0 ̂ )) = (-i)^1 e* (*(c^ 0 ̂ )
and

^Q28 {uj 0 VQ) = (-1)' (©*)2' (*(^ ̂  ^)).
Proof. - By definition of the operators ©, ©* and the above lemma, we have:

a=2m a==2m

*(6(c<;0^))= ̂  *(eaAa;)0ea.^ = (-1)^ ^ %a(*^)0ea.^
a=l a=l

^(_l)fc+ie*(*(a;0^)) .
The other identify follows by iteration.

One can now. generalise Corollary 5.4 to obtain the following (compare Well [9],
Theoreme 1.4.2):

5.7. PROPOSITION. - Let x^ € P^ and x~ G Pg~ be primitive elements and let r be an
integer such that Q < r < 2m — 2s. Then the following identities hold:

(i) *er(a:+)= (-^ -——r-——^(-l)is(s-l)+jr(r+l)+rse2m-2s-r(^+);
(2 m — 2 s — r ) !

(ii) ^0r{x-)= -(-^7————^———-(-l)^^-1^^^1)^^^-2^^-)
(2 m — 2 s — r ) !

Proof. - This depends on the following calculations:
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5.7.1. LEMMA (See Weil [9], 1.4 formula (11)). - Let p : s\^ (Q) -^ EndV be an
irreducible representation of sla (©) of dimension n + 1 and let p € V be a primitive
element (that is p (Q) (p) = 0 and p is an eigenvector ofp ([©*, ©]). Then for 0 < r < n,

n\r\p (e*)- /, (e)" (p) = —— p (e)"- (p).^ra f j .
Proof of Proposition 5.7. - We have:

*@r{x+)= *e (e^1 (a;+))
= (-l)8^ e* (^e"-1 (a^)) (by 5.6.1)
= (_l^+r)+(s+r-l)+...(3+l) (Q*y (^

= (_l)i " (-+D+- (e*)*- ((-,)"1 1 (-l)is (s-1) e27"-28 (a;+))
l^ 7T2' — ^ 5 j I

(by Corollary 5.4)

— (—1\rn —————r——————— /<_1^os(s- l )+2^(^+l )+ys Q2m-2s-r / +\
- v ; ( 2m-25 - r ) ! 1 ; [ )'

This last step comes from Lemma 5.7.1 and the fact complex vector space spanned by x+,
Q (^+), Q2 (^+), • . . , ©2m-2s {x^) is an irreducible representation ofsl2 (Q) of dimension
2m — 2s + 1. This completes the proof of 5.7 (i) and the proof of 5.7 (ii) is the same
except for the fact that an extra minus sign is acquired when we apply Corollary 5.4.

5.8. DEFINITION. - I f x = u } < ^ ^ e A S ^ S and ^^a^^eA^S', then the hermitian
exterior product x / \ y G A84^ is defined by:

x f^y == cc; A a ('0|<?!>).
This can clearly be extended to give a complex linear map

A : A8 (g) S 0 A71 05 -^ A^

w^/i ̂  properties:

'xT^y = {—1}^ x f^y and x / ^ ^ x ' = {x\x'}v^

-where v 6 A^ ;5' ̂  volume form and x, x' € A8 0 5, and ^/ G A7' 0 5.

5.8.1. LEMMA. - For a E A" 0 5 and /3 e A6 0 S, we have

©fc (c0 A/3 = (-1)^ fc (fe+l)) a^ (/3).

Proof. - Let a = a; 0 ̂  and /3 = a 0 ^). Then we have:
a=2m

6(a)A/3= ̂  eaAa;Aa(ea.^|^)
0=1

and
a=2m

aA©(/?)= ̂  ^ AeaAa(^ |ea .
a=l
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Now Clifford multiplication by the unit vector ea is skew adjoint so that
6 (a) A/3 = (-l)^1 aA© (/3).

By induction, the lemma follows. D
We can now formulate a positivity result which is analogous to the classical Hodge-

Riemann bilinear relations as stated in [Well], p. 77, corollaire IV.7.6.

5.9. THEOREM. - Let p be an integer such that 0 < p < 2 m and let r be an integer such
that {p-m)^ < r < p. Let p, (p, r) be strictly positive constants. Take a, /3 G ^^S and let
^ = ^ ©r (o-r) and /3 = ^ ©r (/?r) be the canonical decompositions,

(j>—m)+<r<p {p—m)+<r<p

where Or and f-fr ^e primitive elements in (A^"7' 0 5)+. Define

A+ : (A^ 0 5)+ 0 (AP (g) 5)+ -> A^
:̂

A+ (a, /?)

= ^ /'^ r) im (2m-r2p - r} ! (-l)^-^——^ a.Ae2-2^ (^).
(p—?n)+<r<jp f ) '

Then we have:
(i) A"1" is Spin (2 m)-invariant;
(ii) A+ (a, /?) = A+ (/?, a);

(iii) A4' ^ a positive-definite hermitian form in the sense that A4' (a, a) is a strictly
positive multiple of the volume element if a is non-zero.

5.9.1. Remark. - Similarly, the complex linear map

A- : (A^^-^AP^)" -^A2771

defined by minus the formula above has the properties (i), (ii) and (iii) above.
Proof. - Consider the expression:

A(a, /3)= ^ /.(^r) (9- (a,)^ (/?,)) v,
(p—m)+<r<p

where v is the volume form. This obviously has the properties (i), (ii) and (iii) of the
theorem. We will show that this is precisely A4' (a, (3).

A(a, /?)= ^ /^ (P, r) (0-(a,) 16-(/?,)) v,
(p—m)+<r<p

= ^ A* (P,^) ©r (a) A * ©'(A.)
(p—m)+<r<p

= ^ ^(p,r)e'-(a)
(p—yn)+<r<p

/\ (—^)m c_nr(p-r)+2r(r+ l)+2 (^-'r)(p-r-l)

y ______!_:______ r\2m-2p-^-r / o \

^m^p+r)!0 (pr)
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(by Proposition 5.7, since f3r is primitive of degree p — r)

= E ^ r) im (2m -'2' 4- r}' (-l)lp(p"l)+r ̂  (^)A e27"-2^ W
(p-m)+<r<p v ' /

( since r (p - r) + . r (r + 1) + . (p - r) (p - r - 1) = . p (p - 1) + r j

= E ^^m-^+r)!
(p-m)+<r<p v /

X (_1)JP(P-1)+^+(P-^)^+J^(^+1)^^ ©2m-2p+2r^^

(by Lemma 5.8.1)

= E ^'^(^^pTT)'
(p-m)+<r<p v ' /

x (-i)!^-7^-71-1)^^ e2771-2^271^)
since - j? (p — 1) + ̂  + (jp — r) r + - r (r + 1) = - (p — r) (p — r — 1) + 2 pr + r — r2.

^ ^ JU

This proves the theorem. D
There is another way to express these positivity results which is the infinitesimal analogue

of the way the Hodge-Riemann bilinear relations are formulated in [4] and which can be
summarised in the

5.10. THEOREM. - Let p be an integer such that 0 < p < m. Define

Ap : (A^ 0 5) 0 (AP 05)-^ A^ by : Ap (a, /?) = ̂  (-l)!^-1) a^ Q2^-^ (/?)

-where a, /3 G A^ 0 5. T/z^n ̂  following hold:
(i) Ap ^ Pm (2 m) -invariant. If we choose an orientation e G Pin (2n) fcf. D^ 2.1),

then A(o;+, rr_) = 0 if x^. G (A^ 0 5)+ <2n^ rc_ G (A^ 0 5)-;
(ii) A^+i (6 (a), 6 (/3)) ^ -A^ (a^) if Q < p + 1 < m;

(iii) Ap (/?, a) = Ap (a, /?);
(iv) If a = e^ (ap-^) andf3 = O5 (/3^_,), w/i^ ap-r e A^^-^^ and (3p.s e A33-5^

ar^ primitive, then Ap (o^ /?) = 0 w/z^n r ^ s.
(v) 7fa;+ G Pp1" is primitive, then Ap (a:+, rc+) is a positive multiple of the volume element.
Ifx-^z Pp is primitive, then —Ap (x-, x-) is a positive multiple of the volume element.

Proof. - It is clear that Ap is Pin (2 m)-invariant. By definition, if x^. G (A^" 0 5)4" and
a;_ G (A^ (g) 5)- then £(rr+) = i171 x^ and £^-) = -%m^-. Hence

Ap (a;+, x-) = Ap (£CT+), £ (x-))

^Ap^x^, -i^x.)

= -^(-z)771 =Ap(x+, x-)
=: /ip ^^4-5 X — ) .
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To prove (h), we have:

A^+i (6 (a), 9 (/?)) = ̂  (-l)i ^+1)^ e (a) A O^-^-2 (6 (/3))

=^(_l)J(^+i)p+P+i^^e2m-2^ (by Lemma 5.8.1)

= -Ap{a,(3).
To prove (iii), we have:

^Q2m-2^ ^ (_i)P(2m-^)Q2m-2p(^^^ (by Definition 5.8)

= (_1)P (2m-2p)+p (2m-2p)+j (2m-2p) (2m-2p+l) ^^Q2m-'2p (Q\

(by Lemma 5.8.1)
= (—1)^ (2m-;p)+(m-p) (2m-2p+l) ̂  Q2m-2p (//^

= (-1^ a^Q2^-2? (f3)
since m = p (2 m - p) + (m - 7?) (2 m - 2p + 1) modulo 2. The result follows directly
from the definition of Ap.

To prove (iv), note that it is sufficient to prove that Ap (a, (3) = 0 when a, /? e (A^S^
(or a, /? G (A^ 0 5)_) by part (i) above.

By definition,

Ap (a, /?) = ̂  (-l)J^-1) e- (a^,)A e2—2^5 (^_,).
By Proposition 5.7, ^Q8 (f3p-s) is proportional to Q2171-2?^8 (f3p_^ and hence Ap (a, /3) is
proportional to a A* A that is to (a|/3) v (c/^ Definition 5.8). But {a\(3) is zero because the
canonical decomposition is orthogonal for the hermitian metric (.|.). This proves part (iv).

Part (v) is a direct consequence of Proposition 5.7 and the fact that x^ A * «^+ is equal
to (a;+|rc+)v. D
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