A Hodge type decomposition for spinor valued forms
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 23-48.
@article{ASENS_1996_4_29_1_23_0,
     author = {Slupinski, M. J.},
     title = {A {Hodge} type decomposition for spinor valued forms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {23--48},
     publisher = {Elsevier},
     volume = {Ser. 4, 29},
     number = {1},
     year = {1996},
     doi = {10.24033/asens.1734},
     mrnumber = {97a:22022},
     zbl = {0855.58002},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.1734/}
}
TY  - JOUR
AU  - Slupinski, M. J.
TI  - A Hodge type decomposition for spinor valued forms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1996
SP  - 23
EP  - 48
VL  - 29
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.24033/asens.1734/
DO  - 10.24033/asens.1734
LA  - en
ID  - ASENS_1996_4_29_1_23_0
ER  - 
%0 Journal Article
%A Slupinski, M. J.
%T A Hodge type decomposition for spinor valued forms
%J Annales scientifiques de l'École Normale Supérieure
%D 1996
%P 23-48
%V 29
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.24033/asens.1734/
%R 10.24033/asens.1734
%G en
%F ASENS_1996_4_29_1_23_0
Slupinski, M. J. A Hodge type decomposition for spinor valued forms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 23-48. doi : 10.24033/asens.1734. http://www.numdam.org/articles/10.24033/asens.1734/

[1] M. F. Atiyah, R. Bott and S. Shapiro, Clifford modules (Topology, t. 3, Supp. 1, 1964, pp. 3-38). | MR | Zbl

[2] N. Bourbaki, Groupes et Algèbres de Lie 8, Masson, Paris, 1990.

[3] E. Cartan, Leçons sur la théorie des spineurs, Hermann, Paris, 1938. | Zbl

[4] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, 1978. | MR | Zbl

[5] R. Howe, Remarks on classical invariant theory (Transactions of the A.M.S., t. 313, 1989, pp. 539-570). | MR | Zbl

[6] Kudla, Automorphic forms of several variables (Taniguchi Symposium, Katata 1983, Birkhauser, 1984).

[7] M. J. Slupinski, Dual pairs and Howe correspondences in Pin (p, q). - Preprint, September 1993.

[8] A. Weil, Variétés Kählériennes, Hermann, Paris, 1958. | Zbl

[9] H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946.

Cité par Sources :