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DISCONNECTED JULIA SET AND ROTATION SETS (1)

By Genabpi LEVIN

ABSTRACT. — Let ¥ be the conformal isomorphism from the complement of the unit disc to the complement of

the Mandelbrot set M. We study the map V¥ at the roots of the hyperbolic components of M. It is shown that the

function (log |w — wo| ™)' describes ¥ at each periodic point wo of the map w — w?.

1. Introduction

Let f.(z) = 22+ c and let M = {c: {f2(0)}52, is bounded} be the Mandelbrot set
(f™ is n-iterated map f). It is a connected compact set in C with connected complement
[9]. The boundary of M is the bifurcation diagram for the simplest nonlinear holomorphic
dynamical system f. : C — C. The Mandelbrot set is an example of a fractal and it contains
infinitely many copies of itself. It is treated as the universal bifurcational set for analytic
one-parameter families [10]. The famous MLC conjecture says M is locally connected,
or, equivalently, uniformizing conformal isomorphism ¥ : D* = {w : |w| > 1} - C\ M
extends to a continuous map on S! = 9D*. J.-C.Yoccoz proved that M is locally
connected at many points (see [15]). In particular, it is locally connected at the points
of the boundaries of the hyperbolic components of M (see definitions in [9]-[11] and
in Sect. 7).

We will use some principal results of the Douady-Hubbard’s theory of the Mandelbrot set
[8]-[11] (they will be stated at the corresponding places). Let A be a hyperbolic component.
According to this theory, the root ca of A admits exactly two external arguments of M: ta
and t/y, 0 < ta < t/y < 1, which are periodic points of the map o : t — 2¢t(mod1) (except
for the main cardioid, where we set t5 = 0,t)y = 1). It means that the Uniformizing Map
U has the radial limit c, at the points wa = exp(2mita), w)y = exp(2mit,y) (we consider
the map U constructed in [9] so that ¥(w) ~ w at infinity). Conversely, for each periodic
point ¢y of the map o, the radial limit of ¥ at wy = exp(2mity) exists and is the root
of a hyperbolic component. A hyperbolic component is called primitive iff its root is not
a point in the boundary of another hyperbolic component. Note that the radial limits of
the map U at the points w = exp(2it), ¢ rational, play a special role in the theory of
the Mandelbrot set (see e.g. [11]) .

(') This is a revised version of the Preprint No.15,1991/1992, Hebrew University of Jerusalem (1992).
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2 G. LEVIN

Denote: a(z) < b(z) as © — =, if a(z)/b(z) and b(x)/a(x) are bounded in a
neighbourhood of xg.

THEOREM A. — Let wy, |wo| = 1, be a periodic point of the map w — w?, i.e. wy is either
wa or W'y, for some hyperbolic component A with the root ¢y = ca.
If A is not a primitive one, then

¥ (w) — co| < (—log|w — wo|)™*

as w — w.
If A is a primitive hyperbolic component, then

[¥(w) = co| = (= log|w — wo|) ™

as w — wo and argw/2m € [ta,th].

We derive it studying the behavior out M of the multiplier A(c) of the repelling periodic
point a(c), which was attracting in A. It turns out that this behavior is universal in some
sense (see Theorem 7.4). In the combinatorial part in Sect. 7 we describe rotation sets and
rotation numbers of the repelling periodic point a(c), when ¢ € C \ M. This generalizes a
well-known fact on the rotation sets and the rotation numbers of the fixed point [9], [14]. A
corollary is (see Theorem 7.3): the function \(c) extends from A to a holomorphic function
in the wake W (A) of the hyperbolic component A so that |\(c)| > 1 if c € W(A)\ A
(the wake W(A) is the domain in C containing A and bounded by the external rays of
M to the root ca).?

Main tools for us are the hedgehog and the Yoccoz-type inequality.

The paper is organized as follows.

In Sects. 2-4 we recall the notion of the hedgehog of equal slope 7 (“slanting” hedgehogs)
for polynomials. In particular, we describe the change of the slanting hedgehogs in the
language of wringing complex structures [6] and stretching rays [4]. The hedgehogs of the
standard slope 7 = 7/2 for quadratic polynomials f, with ¢ < —2 appeared in [5], [23].
This construction was studied and described in [20], [18] for the polynomials whose Julia
set is not connected. Note that for polynomials the Green function of the basin of infinity
agrees with dynamics, that is why the hedgehog of polynomial is, in fact, a realization
of a general construction of so-called Green’s star region [3], [24]. For polynomial-like
mappings see [19].

In Sect. 5 an estimate for multiplier is considered. Such kind of estimates were obtained
first in [21] and independendly in [26] and [17]. The Yoccoz’s inequality in [26], [15],
[22] relates the multiplier of a repelling fixed point of a polynomial and its rotation
number provided the Julia set of the polynomial is connected. In the present paper we
prove a similar (Yoccoz-type) inequality for polynomials whose Julia set is not necessarily
connected (Sect. 5). For this purpose we introduce a geometric characteristic of the rotation
set in the hedgehog: so called angle of access. To every slope 7 there corresponds a

(®) Another proof of this fact, in the spirit of Douady-Hubbard-Lavaurs’ theory [11], [16], can be found now in:
D. Schleicher, Internal Addresses in the Mandelbrot set and irreducibility of polynomials. Dissertation, Cornell
University, 1994.
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DISCONNECTED JULIA SET AND ROTATION SETS 3

disc D, (a) of possible values of log for the multiplier of the fixed point a. The estimate
itself does not depend on the slope: we take the intersection of the discs D-(a) over all
7. Later on we use this estimate to pass from combinatorial characteristics of periodic
point (rotation sets) to a nearness of a given polynomial to the polynomials with neutral
point. We would like to note that one can write down the corresponding inequality for
polynomial-like mappings with disconnected Julia set.

Sect. 6 is devoted to a description of mainly known results on the rotation sets with
two symbols [25], [7].

In Sect. 7 the hyperbolic components of the Mandelbrot set are considered and main
results are proved. We apply here the slanting hedgehogs and the Yoccoz-type inequality.
The combinatorial part is resumed in Theorem 7.1 that describes the rotation sets and
numbers along boundaries of hyperbolic components. To every periodic point ?, of
o : t — 2t(modl) of period m we associate other periodic point ¢, of o and the
periodic point a(c) of f. of the same period m such that, when the external argument ¢,
goes from ¢, to t,, the rotation number of a(c) changes between 0 and 1 monotonically
and the rotation set of a(c) contains exactly two digits in 2™-expansion of its points. In
fact, ¢, and ¢, are the external arguments of a root of the hyperbolic component of a(c),
and the two-digit property is closely related to the description of small copies of M in
M in terms of external arguments [8].

The short Sect. 8 extracts some ideas of proofs.

In conclusion let us note that the main results of Sect. 7 hold for the bifurcation set of
the family z — 2¢ + ¢, for each integer d > 2.

2. The Bottcher function and the hedgehogs of polynomials

Fix a polynomial T of degree d. Let A(co) = {z : T"(2) — oco,n — oo} be the basin
of infinity. We always assume that the Julia set J = 9A(0o) is not connected. Denote
by u(z) = up(z) Green function of the domain A(oco) with the pole at infinity. Define
u = 0 outside A(o0), then

w(T(2)) =d-u(z), z € C.

Let B(z) be the Béttcher function of 7" in a neighbourhood of infinity (i.e., B o T'(z) =
[B(2))? there), so that u(z) = log|B(z)| in the neighbourhood. We choose B such that
B(z) ~ z,z — oo. Denote:

C is the set of all critical points of 7" in A(o0),

Umax = max{u(q) : ¢ € C},

K(r) = {z : u(z) < r},

I(r) = 0K(r) = {2z : u(z) = r},

G(r) = C\ K(r).

If 7 > Upax, the Bottcher function B(z) is well defined in G(r) and gives a conformal
map of G(r) onto {w : |w| > r}. The function B(z) satisfies the functional equation
B(T(z)) = [B(z)]%. This equation yields an analytic ( infinitely valued ) continuation of
the function B(z) on the whole domain A(0o). The continued function has branch points

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



4 G. LEVIN

at the points of the set
C(e0) = | J T7mC.
m=0

We obtain a sinle-valued analytic extention of B(z) cutting the domain A(co) along
certain lines (7-cuts). Fix an angle (slope) 7 € (0, 7). Let z € A(o0) \ C(c0). There exists
a unique maximal (i.e., is not contained inside of other) C-curve, T-curve R(z), passing
through z such that it meets any level line I'(r) crossing R(z) at the same angle 7. The
direction of the 7-curve is chosen so that the Green function u(z) is decreasing along it.
The origin of every 7-curve is either co or some point from C(o0). In the former case the
T-curve is called the 7-radius, or smooth T-ray (of T), in the latter case it is the T-cut.

Bottcher function B extends along every smooth ray. Denote by A. a set composed
by all smooth T-rays. Then A, U {oo} is simply-connected in the Riemann sphere. Its
complement K, is the filled in Julia set of 7" completed by the 7-cuts. The extended
univalent function B™ maps the domain A, one-to-one onto a hedgehog-like domain U..
The boundary S, = QU is called the 7-hedgehog or slanting hedgehog.

It is convenient to straighten the hedgehog with the help of log-coordinates. Consider
exterior D* of the unit disk and its universal covering H = {¢ : Im{ > 0} with a covering
anti-conformal projection p : H — D*,

p:w > exp(2mi).

For every w € H let L, be a straight line through w which intersects the real line at the
angle 7 (7-straight line). Let X, (w) be the point of the intersection. We define

arg.(w) = X;(w)(modl).

The pre-image H, = p~(U,) of the hedgehog-like domain U, is a universal covering
of U,. Moreover,

HT = F \ QTa
where Q, = p~1(S,) is a one-periodic comb, 7-comb. The map
®=(B")top:H, — A,

is an analytic unbranched covering.

Let R be a 7-ray. Let us define its external T-argument, or just T-argument as follows.
The full pre-image ®~!(R) = L + Z, where the straight ray L is a 7-straight line or part
of such a line. The T-argument of R is the arg, of the points of L. Conversely, to each
t € T there corresponds unique 7-radius R of the 7-argument ¢:

R = Rt.
Denote by A, (q) the set of the T-arguments ¢ of the radii R} with the end at q € C.

4° SERIE — TOME 29 - 1996 — N° 1



DISCONNECTED JULIA SET AND ROTATION SETS 5
Denote
o4(z) = d.x(modl), 04 : w — dw, pa(z + 1y) = oa(z) + i.d.y, (z,y) € [0,1) x R.

ProrosiTioN 2.1 (c¢f. [20]).
1.T: A — A, oq: H — H,, and

dooy=fodinH,.

2. The comb

(2.1) Q.=0H, = {[0,1)U U U U U Nm}+Z7
(@)

q€C teA,(q) n=0 5% (z)=t+i.u

where N, = {w : 0 < Im(w) < Im(z),arg, w = arg, z}.

The segments N,, with z as in (2.1), will be called the 7-needles of the comb Q..
The ground of this comb is the real axis, and the ends x of the needles of (), are the
points with coordinates

t+k .1 u(c
wc,r(nvk): dn +{L§;r— an)v

where ¢ € C,t € A, (c),n € 0UN and k € Z.

We will call the segments N;i; (), With ¢ € C and t € A,(c) by the generating
segments of the comb (). Note that there are finitely many generating segments and all
needles are the pre-images of the generating segments under g, shifted by Z.

Define the T-rays as follows. Note that usual (orthogonal) external rays will correspond
to 7 = w/2. The 7-ray is just a 7-radius R, if R extends up to the Julia set (i.e. R does
not end at a point of C(00)). Let the end point of R be a point of C(co). Then the full
pre-image ®~1(R) = L + Z, where the straight ray L lands at the top x of some needle
N,. The map ® extends to a continuous injective map from either side of N, to C. It
allows us to define the two T-rays corresponding to the 7-radius R as the images of two
sides of the 7-straight line LUN, = {w € H : 0 < Im(w) < o0,arg, w = t}, t = arg, z:
we obtain the right R and the left R~ limit ray.

Every 7-ray R has external T-argument: this is the arg, of the points of ®~1(R). In
particular, the right R* and the left R~ limit rays corresponding to the T-radius R have
the same external T-argument which is the 7-argument of R.

DEFINITION 2.1. — A 7-ray R lands at a point z of the Julia set J(T) of T, if z is the
unique limit point of R in J(T'). The T-argument of R is called a T-argument of z. Let
z be a point of the Julia set J(T'). The set of all T-arguments of the T-rays landing at z
will be denoted by A.(z).

PROPOSITION 2.2. — Let a be a point, such that the single-point set {a} is a component of
the Julia set J(T'). Then the set A,(a) is a non-empty compact of T.

Proof is easy and can be found in [14] or in [19].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



6 G. LEVIN

Let now a be additionally a repelling fixed point of the map 7. We have proved that
the set A;(a) of the T-external arguments of a is a non-empty closed, proper subset of T.
It is invariant under the action of o4 : T — T.

The set A,(a) is a rotation set of the map o4 with a rotation number v = v,.

Recall that a compact A C T is said to be the rotation set of the map o4 if 04(A) C A
and the restriction 04| can be extended to a map of T to T which lifts to a non-decreasing
continuous map F : R — R such that F' — id is 1-periodic.

Under these conditions there exists

lim @)=

n—o00 n

z € R,

and its fractional part v depends only on (o4, A). The number v € [0,1) is called the
rotation number of the set A.

PROPOSITION 2.3. — Given slope T, the set A.(a) is a rotation set of o4 with the rotation
number v = v,(a) € T. The number v is rational ( v = p/q in reduced form ) if and only
if the set A, (a) is finite and consists of cycles of o4 of the period q.

Proof. — Choose a component Ky of some K(r), such that ¢ € K, and a branch
T~!: Ky — Ko, T"!(a) = a, is well-defined. Denote by Ay, A; the sets of the external
arguments of 7-rays, which cross the boundaries of K¢ and 7~!(Kj) respectively. Then:
(a) each A;, i = 0,1, is a union of a finite number of closed intervals {I‘} in T, (b)
A; C Ag, 04(A;) = Ap and, moreover, for every different I}, I} € {I'} their images
under o can intersect each other only at endpoints, (c) the restriction oo = 04|4, preserves
the cyclic order of the points in T. The (a)-(c) yield that the restriction oy extends to
a degree one continuous map & of the circle, which can be lifted to a non-decreasing
map F' : R — R, such that F' — ¢d is 1-periodic. Besides, ¢ is expanding on A; and
Ar(a) = {t € T:o}(t) € A1,n € N}. From here it follows that the rotation number v of
the map & ( in the usual sense, see e.g. [1]) is well-defined. v is rational if and only if ¢
has a fixed point (in this case 59" (¢),t € A,(a), tends to one of the fixed points of ¢7* as
n — oo; but they are repelling, hence, such ¢ is itself fixed by o7*).

Remark 2.1. — Let T be an arbitrary nonlinear polynomial of degree d and let R be a
7-ray of T. If its T-argument is periodic under o4, then the ray R lands at a point of J(T")
and this point is either repelling or neutral rational periodic point of 7' (Sullivan, Douady
and Hubbard). If J(T') is connected, then, vice versa, each such a point z has a finite,
but a non-empty, set A,(z) of its external arguments, and the rational rotation number is
well-defined (it does not depend on the slope 7, if J(T") connected): Douady and Yoccoz
(see, for example, [22]). If J(T') is not connected, again A, (z) is a non-empty compact in
T, for each repelling periodic point z (see [12] and [19]), but it can be infinite (see [14])
and the 7-rotation number can depend on 7 (Sect. 7, Theorem 7.1).

4° SERIE — TOME 29 — 1996 — N° 1



DISCONNECTED JULIA SET AND ROTATION SETS 7
3. A property of the hedgehog

Let us fix a slope 7 and consider the comb Q.. Let X = {z1, ..., z, } be acycle of the map
04:10,1) — [0,1), and X = X + Z. Define two values (of angles) v (X) € (0,7 — 1),
¥ (X) € (0,7) as follows. Look at a generating segment N, of Q, with the end z € H.
Find the pont (") of the set X closest to N, from the right. Let us consider the triangle
A" with a vertex (") and the opposite side N,. Then the angle v (X, N,) is said to
be an angle of A at vertex x. The angle v(“)(X, N,) is defined analogous but using the
point £ of X closest to N, from the left, and the corresponding triangle A(®).

Remark 3.1. — The value v(X, N,) = v9(X, N,) + v (X, N,) is the angle of vision
of the interval (z(¥),z(™) of R from the point z ¢ R.
We set

7 = minyP(X,N), 4 = miny (X, N),

where the minima are taken over the all generating segments IV of the comb Q..
ProposiTioN 3.1 (cf. [20], [18]). — For every 8 € X, the angles
WD) =0+ {weH:m—7—~v"(X) < argw <7 -7},
WO =0+ {we H:1m—49X) < argw < 7}

belong to H., and they are the maximal open angles at the vertex 8 € X with this property
(here argw is the standart, i.e. 7/2-argument of w € C \ {0}).
If 8 is not a base of any needle, then the angle

W.(6) = W) | WO O) | J{w € H : argrw = 6}

of the value v(X) = vO(X) + v (X) also belongs to H,.
Proof. — Use that the map o4 acts in H,.

4. The hedgehogs and the wringing complex structures

We describe here the slanting hedgehogs from a point of view of the wringing complex
structures [6]. We will use this in Sect. 8.

Let T be a monic polynomial and its Julia set be not connected. Fix a slope 7 € (0, 7),
a coefficient (of stretching) s > 0 and an invariant under T measurable bounded complex
structure p on C\ A(00) (if the area of C\ A(00) is zero, then y vanishs). Set ¢ = (1—s)/tgr
and ¢ = s + it. Following [6], define the left multiplication by £ in the right halfplane
{z +iylzr > 0, y € R}:

Qe(z +iy) = sz + itz + ).
This bijection projects to a diffeomorphism 2 : D* — D*.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



8 G. LEVIN

Furthermore, €2 commutes with Py : z — 2% and, moreover, preserves the set of curves
in D*, which intersect each circle 2| = r > 1 at the angle 7. A complex structure
pe = Q (p10) in D* is called the wringing one (i is the standard complex structure). The
dilatation ratio for s is equal to (§ —1)/(£ + 1) at every point. Define a new complex
structure i = pe p to be equal to p on C\ A(oco), fi = B*(pe) in a neighbourhood of
infinity, and (7")*(f1), n = 1,2,..., in the rest of C (almost everywhere). Then p¢ r is
bounded on the Riemann sphere C and T-invariant. According to the Measurable Riemann
Mapping Theorem [2], there exists a quasi-conformal homeomorphism H = H, , of C,
H(o0) = oo, such that H,(per) = po. Then

P=T:, =T, =HoToH™!
is a polynomial and
Bp=Q;0Bo H!

is analytic and conjugates P and P, in a neighbourhood of infinity. One can choose H
uniquely in such a way that P is monic and Bp(2)/z — 1 as z — oo [6]. The polynomial
P =T,,, is conjugate to T' by a quasi-conformal homeomorphism H in C, which has
a constant complex dilatation in A(oco) and such that H transfers the 7-rays for T to the
r-rays for P. In particular, H(JI) = JF.

Remark 4.1. — In [4] the Stretching Ray through T is defined as the set of polynomials
{T /2,5, }s>0- We can define 7-stretching ray through T' as {T; ,}s>0. Note that for
T(z) = 2 + c the stretching ray are the usual external rays of the Mandelbrot set M
and the 7-stretching rays are the curves in C \ M that crosses the equipotential curves
of M at the angle 7.

5. The basic inequality

We consider a repelling fixed point a of the polynomial T'. First, let the Julia set of T’
be connected. Then the Yoccoz inequality [26] describes a relation between the multiplier
of a fixed point of 7" and the rotation number of this point:

log A — (27ri£+ l0gd)|< logd
¢ q

i Y

q

where A is the multiplier of ¢ and the rational number » = 2 (in reduced form) is the
rotation number of the fixed point a. It describes the order of permutations of nonequivalent
paths to a from the basin of infinity A(0c)[26], [22].

We obtain the inequality in the case when J is not connected and the set {a} is a
component of J. We know that the rotation number v,(a) and the rotation set A(a) of
the point a are well defined for every slope 7 € (0, 7).

Let us fix the slope 7 and consider the corresponding comb Q.

4° SERIE — TOME 29 — 1996 — N° 1



DISCONNECTED JULIA SET AND ROTATION SETS 9

Define a value called by the angle of access to the point a. Let § € A (a). It means
the following: there exists a T-ray Ry that lands at the point a; if Ry contains a cut then
it is either the right R} or the left Ry limit ray.

Assume that the rotation number of a is rational: v,(a) = p/q. Then @ is a point of a
cycle § of o4. We will use notations from Proposition 3.1.

DEFRINITION 5.1. — The angle of access to the cycle 8 is: the value v(f), if Ry does not
contain a T-cut; otherwise this is either Y7 (6) or Y*)(0) depending on whether the right
or the left ray lands at a. The angle of access to the fixed point a is the sum ¢.(a) of the
angles of access to all different cycles of o4 in A (a).

Remark 5.1. — If the rotation number irrational, we may define the value ¢(§) in the
same way, but one can prove that it will be equal to zero.
The main result of this section is the following

THEOREM 5.1. — Let v, (a) = ’5’ be rational (in reduced form). Then, for a branch of log A
of the multiplier A = T'(a),

B p 7rlogd>| Wlogd}.:D
: (2mq+q¢r(a) S 96 (@) ) (@)

log A € {z:

and, hence,

log A € ﬂ D.(a)

over all slopes T, such that the rotation number v.(a) is rational.

Proof of the theorem (cf. [26], [22], [17], [15]). — Let # € A.(a) and W be the sector
of the angle y(f) (i.e. W is WT(T)(H), WT(Z)(Q), or W, (0): see Definition 5.1). The W is
invariant under 0. Define two families of curves E and E. E = {é,} is said to be the
family of all intervals in the sector W, such that the interval é, joins a point V, ImV = h,
with the point 6 + (V' — 6)d~%. Here h > 0 is small and fixed and « is the angle between
¢q and R. The E is projected by B! o p to a family of curves near the point a, and after
that to the family E of curves on a torus S, which is given by dynamics of T' near a.
Every two curves ey, ey € I' are disjoint, because the level A is small and the point 6 is
periodic of period q. Moreover, the curves e € I' are closed. The torus S is conformally
equivalent to C/II, Il = log A - Z x 27i - Z. Every e is lifted to a curve v in C, which joins
a point z with z + qlog A — p27i, with some choice of log A. This is because the cycle
f has the rotation number p/q, i.e. exactly p curves among {y + klog A\}¢_} in C/2niZ
are disposed between v and v + log A (including ). The listed geometric properties of E
and E lead to the following estimates. First, introduce the metric p on the torus S, which
is induced by the Euclidean one using representation S = C/II. In its turn, the metric
p (or the corresponding metric in a punctured neighbourhood of the point a) induces a
metric g in the sector W with the help of the map p~' o B. Let now M = AL~2, where
A is the area of the set of the points z € e, e € E, and L is infimum of lengths of the

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



10 G. LEVIN

e € E with respect to the metric p. The number M = AL~? is defined similarly, but for
the family £ and the metric p. Then

$(0) - A
7 < M=M< —=
qlogd — ~ |qlog A — 27ip|?

Summing up these inequalities over the all orbits # in A, (a), we obtain:

br(a) _ 2rlogl)]
qlogd ~ |qlog A — 2mip|?’

where the equality is attained if and only if the metric p is logarithmic one (i.e.
p(w) = |dw/|w — 6]), what is impossible, if the Julia set is not an analytic arc.

6. Rotation sets with two symbols

Fix an integer d > 2. We say that a rotation set A of o4 : ¢ — d.t(modl) is with rwo
symbols o, 8 € {0,1,...,d — 1}, @ < (3, if one can write every point § € A as

¢
6= E — = 0.6162...€...,
dz
=1

with &; € {«, 3}. The following information can be found in [25], [7]. Given v € [0, 1],
define a set A5 (1) invariant under the map o4 : T — T, and points Oiﬂyd(y)ﬂa,ﬂ,d(y)
as follows. For every v € T there exists the unique minimal closed rotation set AZ"B (v)
of the map o4 : T — T with two symbols « and § and with the rotation number v
(sometimes we will omit d).

If v=0o0rv=1,then A% is {52} or {725} respectively.

Let v € (0,1) and let 9&%(1/) and Ggg(u) be the extreme left and the extreme right
points of A*P(v),

_& g0 (r) B
71 < 005W) <8, 5(v) < 1

If v irrational then
a0 (1) = 0a(605(V)) = bays,a(v)-
If v = 3;— rational then
O pa(v) i= 02005 () < 0a(65 (1)) = 0% 5 ,(v),

and Giﬂ’ 4(v) is the pair of adjacent and the nearest points of the cycle AS”(v) of oy
of the period gq.
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DISCONNECTED JULIA SET AND ROTATION SETS 11

Remark 6.1. — It is convenient to consider, that for v irrational

Og,ﬁ,d(l/) = ai,ﬁ,d(’/) =0ap,4v).

On the other hand, for every ¢ € (3%, a@;), there exists the unique v € T, such
that either 6 = 0, 54(v), with v irrational, or 6 € [0 5 ,(v),0% ;5 ;(v)], with v rational.
Moreover, v € [0,1] is a nondecreasing function of 6 (it is a devil’s staircase).

For every two adjoint rationals p/q and P/Q, Qp — Pq = 1, we have from [7]:
wpil\q)Pesi\Q) T @ 1)@ 1)

o (P~ (P)_ -1
«a,B,d q o,B,d q - di —1 :

Remark 6.2. — The numbers Hi 5.4(V).0a,5,a(v) are constructed by an explicit algorithm
[7]. For instance, for each N = 2,3, ...,

(6.1)

9;,g,d(%)= 0.(ac...aB), Hj,ﬁ,d(%): 0.(v...ac)

(« repeated NV — 1 times in the first equality and N — 2 times in the second one).
Here and below

0.(¢) = O.ce....
Let o atl
1= (2 0D (0a), 0.0(8)).
=2 L= 08,00),

10 = (2 Py = (0.0),0.8).

Remark 6.3. — Observe that o4 : I* — I*? and o, : I? — I*# is one-to-one.

The rotation set A3’ (v) for v € (0,1) is decomposed to two non-empty parts A*(v)
and AP(v):

A(w) = A7) (17, e € {a,B).

Denote by I¥ = [0((5)[,(1/),0“(1/)] and Ij = [0"(1/),0((;:33(1/)] two minimal closed
intervals containing A, and Aj. It is easy to understand that o4(6%(v)) = 9((;23(1/)
and o4(0°(v)) = 6(v).

In the next section we will use the following. For every ¢ € I, there exist unique
points t® e I~ and t™) e IP, such that

oa(t®) = o4(t) = t.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Then we can find unique points t* € I* and t® € I”, such that
oa(t*) =t and  o4(t?) = O,
t®, ¢(") ¢ 7 are increasing functions of ¢, and t) < t* < t# < t("). Set
Lo s(t) = (t© 1)U (#7,¢t™).
We have:

005(v) = (05 5,400, 60%5(w) = (85 5 ,()P,0%(v)
= (07 54(0), 0°(v) = (B, ()"

Now, if ¢ € [0 5 4(v),0% 5 4(v)], then ASP () C Lag(t). Moreover, I% C [t %],
I C [t7,1™)], and we have the equalities iff t = 0, ; ,(v) = 0 ;5 ,(v), i.e. v is irrational.

7. The Mandelbrot set

We consider the polynomial family
fo(2)=2>+c¢

and the Mandelbrot set M in the space of the parameter ¢ € C. Fix for a moment ¢ € C\ M.
We will keep the notation

o =0y : t — 2t(modl).

Let u, and B, be Green function and Boéttcher function in the basin of infinity of f..
Parameters h. and t. are defined by

B.(c) = e¥hetite)  po = (c) >0, t. € [0,1).
According to Douady-Hubbard theorem [9], the correspondence
¢ +— B.(c)

is one-to-one conformal map (Riemann map) of the complement C\ M onto the complement
D* of the unit disc. We denote by ¥ : D* — C\ M the inverse map to ¢ — B.(c). The
external ray of M at the argument ¢ € T is the curve R(M,t) = U({pexp(2mit) : p > 1}).
If R(M,t) lands at a unique point ¢ = lim,_,; ¥(pexp(2wit)), the angle ¢ is called an
external argument of ¢ € OM.

The hyperbolic component A is a component of intM such that f. has an attracting cycle
of a period m for ¢ € A. Let A be a hyperbolic component and A(c¢) be the multiplier of
the cycle attracting for ¢ € A. Then it is the Riemann map A — {|\| < 1} and extends to
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DISCONNECTED JULIA SET AND ROTATION SETS 13

a homeomorphism OA — {|\| = 1} (theorem of Douady-Hubbard-Sullivan). The unique
point cA € QA such that A(ca) = 1 is called the root of A. The point ca € OM has exactly
two external arguments ¢ and t'y, which are periodic points of the map o : t — 2.t(modl)
of T [11] (if ta = 0, we set t/y = 1). Conversely, ¥ has a radial limit along every periodic
(under w — w?) radius, and the limit point is a root of some hyperbolic component [11].
Hyperbolic component A is called primitive iff its root is not a point in the boundary of
another hyperbolic component. The conjugated rationals ¢ and t/y are described in [16].

In this section we give a different description of the conjugated pairs, with some
additional properties of them (see Theorem 7.1).

As we know, the external rays are defined also in the dynamical plane of the map
foe:zw— 22+¢ ceC.

From now on, up to Theorem 7.1, we shall consider only usual, i.e. %-radii and rays and
their external angles. In particular, t. is the (3 —) external angle of the critical value c of f..

Let us fix a periodic point ¢, of the map o:

o

t, = ,
2m — 1

where m is the minimal period of ¢. and o € {0, 1,...,2™ —2}. We define now other digit

Be{0,1,....2m -1}, B+#a,

as follows.

First, c = 0 and 8 =1, if m = 1.

Let m > 1. Fix such ¢, € C\ M that ¢., = t.. Consider the external radius R;, in the
dynamic plane z — f., (z). It ends at a point z such that fI"(z) = c.. The smooth curve
R;, extends by other external radius R;, up to a smooth curve L, going from infinity to
infinity so that the Green function u., decreases from +00 to u.,(20) as z goes along R;,
to 2o, and then again increases to +oo along R;,. We have:

Jm(tl) =t

because f"*(R;,) = fI*(Ry,) and is the part of R, joining c, with infinity.
The digit 8 is defined from the equality

0 -«

tl—t*: 2m

We will use the notations:

2 €
0.6162...22(2;)k; (e)=ee....
k=1

Then equivalent definition for 3 is: ¢; = 0.8(«).
In the sequel we assume that 8 > a. If 8 < «, the proofs hold with obvious changes
of notations.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



14 G. LEVIN

DEFINITION 7.1. — Set ¢, = 0.(8) = 3/(2™ — 1) and let I*? = (t,,t.) be the open
interval in (0,1) with the ends t, and t,. Denote I* = (0.(ct), 0.c(B3)) and I? = (0.8(c),
0.(8)). According to the previous notations t. = 0.(a) , t, = 0.(8) , t; = 0.8(c). Denote
also t] = 0.a(pB).

Remark 7.1. — The map o™ : I* — I*? and o™ : I® — I*# is one-to-one.

Lemma 7.1. — The points

(7.1) te,0(ts), 0% (ty), ..., 0™ (ts)
lie outside the interval I®P.

The points
(7.2) t1,0(t1),0%(t1), ., a™ (1)

lie outside the interval (t.,ty).

Proof. — The period m > 1, because otherwise there is nothing to prove. It is enough to
prove (7.1) for smaller interval I = (¢,,t1), because all points (7.1) are fixed by ¢™ and
t' is the closest to t; fixed point of ¢™ out I. Each curve

Lo = Ri, ({2} JRers  In = fe(Lo)s s Lima = fo.(Lo)

is smooth, does not intersect others and splits the complex plane into two unbounded parts.
Note that 0 = f"!(29) € Lyp,—1 and fe, (Lp—1) C Lo. In particular, all iterations of zero
belong to the curves L. For ¢ = 0,1, ..., m — 2, we denote by {2; the domain bounded by
L; and does not containing 0. We want to show that

(7.3) Ly CC\Qy, k=1,..,m—1.

There exists ¢ € {0,1,...,m — 2} such that all curves Ly, lie out §2;. If i = 0, we are done.
If ¢ # 0, one can choose a univalent branch

F=f1:Q—C

such that F(f: (z9)) = z. Then F(Q;) = € since otherwise (2; contains an iteration
of 0. By the same reason, Ly [\Q = 0, k£ = 1,...,m — 1, that is (7.3) is proved. In
particular, f¥ (29), k = 0,...,m — 1, are in the complement to . In the language of
external arguments it means that o*(¢,) o*(¢;) don’t lie in (t,,t;), for k = 0,1,...,m — 1.
The proof is finished.

DEFINITION 7.2. — Define two periodic points a(c) and b(c) of f. as follows. Let R} and
R be external rays of f., which are the limit of rays R; as t tends to t. within the interval
I°8 and outside this interval respectively. The points a, and b, are said to be the landing
points of the periodic rays R} and R respectively. Set

E={ceC\M:0<h.<00,0<t <1}
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DISCONNECTED JULIA SET AND ROTATION SETS 15
Define a(c) and b(c) as holomorphic functions in E such that a(c.) = a. and b(c,) = by,
and a(c),b(c) are periodic points of f..

Remark 7.2. — The minimal period of a. (and, hence, a(c)) is m, because a. € Qp and
the radii fck* (R:,) , 1 <k <m—1, don’t intersect {2y (see the proof of Lemma 7.1).
The following statement will allow us to estimate the multiplier of a(c).

THEOREM 7.1. — L If m > 1, then the intervals o'(I¢) and o*(I?), i = 1,---,m — 1,
dont intersect 1P,
II. Let t. € (0,1), h. > 0 correspond to c € C\ M. Let T € (0,7) be chosen so that

t7 := arg, (t. + ih.) € I*F
and v € [0,1] is uniquely defined by the condition:
ty = bapam(v)ort; € [ea_,ﬂ,zm(y)vog,ﬁzm(y)]-
Then the T-rotation number of a(c),
vr(a(c)) = v,
and the T-rotation set of a(c),
Ar(a(c)) D ASL(v).

Proof. — 1. There are two steps in the proof of p.L

Step 1. — Let us consider a point z and an integer 1 < i < m such that o%(z) = t,.
Assume that x € I°. It follows from Remark 7.1 together with o™ (t;) = t, that i < m.
Then, again from Remark 7.1,

oi(t)) < o'(z) = t. < o'(t)),
therefore ‘
te = 0™(t1) < a™7Ht,) < o™(t) =1,

what contradicts to Lemma 7.1. We have proved that x lies outside the interval I°. The
similar considerations show that x lies outside the interval I*.

Step 2. — Now assume that the statement is false. By Remark 7.1 and Step 1, it is
possible, if, for some 1 < ¢+ < m — 1, either

o' (I*) 3 1,

or
a'(I?) > t..

The first inclusion implies that o(t,) € I*": contradiction with Lemma 7.1. The second
one leads to the inclusion y = o'(t;) € I*P. Taking into account that y is not in (t.,;)
by Lemma 7.1, the only case remains y € I”. But 0™ (y) = t,. It contradicts to Step 1.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



16 G. LEVIN

I. Denote ¢y = ¢ and 79 = 7. Join ¢, and ¢y by an open arc £ C E and find a
continuous function 7(c) : £ = £|J{c.} U{co} — (0,7), such that 7(c,) = 7/2,7(co) = 70
and ¢19 € I*8, if ¢ € £. It follows from the proven p.I that, for each t € I®7 the set
L, 5(t) (see Sect. 6) does not contain any point # such that o*(6) = t., k =1,...,m — 1.
By virtue of this, for every ¢ € £ and for corresponding 7 = 7(c), the open intervals

= {w —t+ih:h= %,(tZ)“) <t< (tl)a}’

I° = {w=t+ih:h= ;—;,(tZ)ﬁ <t< (tZ)(T)}

belong to comb-domain H, of f.. Then we can apply the map ®. = (B7)"lop: H, —
(A.)r, and obtain that the following subsets of ['(22) = {z : u.(2) = h./2™}:

Iy =0,(I2), Tp=.(I7)
are curves and change continuously as ¢ € £. Let K;(c) be a component of intK (h./2™) =
{z : u.(z) < h/2™} which contains a(c). For ¢ = ¢,, I'; and Iy are arcs of the boundary
of the component K;(c.). Therefore, for every ¢ € ¢, I'y and I'y are the arcs of the
boundary of the component K;(c). We have proved that every 7p-ray Ry of f., with
6 € L, g(tc,) crosses Ki(co). Take v from the condition of the theorem. Then all 75-rays
Rg, 0 € AP (v) land inside the K;(co). Hence, a landing point z of such a ray never
leaves K (co) under the iterates f7', i € N. Thus z = a(co). The proof of p.II is completed.

COROLLARY 7.1. — The m/2-ray Ry, of the map f.. lands at the point b, = b(c,).

Proof. — We consider only m/2-rays. Let RZ be the right limit ray to the radius R.,.
The rays R} and R; land in the same component K>(c,) of the set intK (h./2™) since
the radii R;, and R,;, end at the same point z,. But the rays Rf1 and Ry also land in
same component of intK (h./2™). This is because of p.I, Theorem 7.1: the interval I?
does not cover any point § such that ¥(8) = ¢,. Thus, the rays R;. and R, land inside
K>(c,), and, hence, at the same point b,, because they both are fixed by f* and this
map is injective on Ko(cy).

TheEOREM 7.2. — Let t. € (0,1). For a branch log \(c) of the multiplier \(c) =

() (ale))
g e [] { - (2”5+q7;1f<2v3)‘< qll/ggl)}

2
0<E<1

in reduced
form

where ¢p,14(V.) is the angle of vision of the interval [0 5 5 (2),87 5 5 (2)] from the point
V. = t. + ihe.

Proof. — We need to use the slanting hedgehogs. Recall arg,V denotes the 7-argument
of V in the upper half-plane H. Fix p/q € (0,1) and choose 7. such that arg, V, €
(65 5.2 (0/0),8F 5. (p/0)), Where V. = t. + ihe, t. € [ti,t.]. By Theorem 7.1 and
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Proposition 3.1, the angle of access ¢, (a(c)) to the point a(c) is not less than the angle
¢p/q(Ve). The application of Theorem 5.1 completes the proof.
The Theorem 7.2 is constructive. Some applications will be given now.

DEFINITION 7.3. — For a rational number v = p/q € (0,1), let
[v] = [a1,az,...,a4], a; €N

be a continued fraction expansion of v (there are two of them: with ar = 1 and with
ar > 1). Let

[V](N):[a1)a27"')a'k7N]= N7 ATy N=1,2,....

(Here, for example, Q(N) = Nq + qx—1, where qx—_1 is denominator of [a1,...,ax-1]).
Define
(B—a)@2m —1)2m

r([v],N) = [2ma®) — 1)z = 1)’ O<v<l, N=1,2,..,
and 5 om
r([0], N) = r([1],N) = % N=23,..

First of all, we want to deduce using Theorem 7.2, that ¢, and ¢, are the external
arguments of the same hyperbolic component A, and |A(c)| = 1 on JA.

We know from Douady-Hubbard’s theory that the ray R(M,t.), for t. = 0, 4, (p/q)
ort, = 9; 5.2m(P/q), lands at a point on M (like every ray with rational argument).

Lemva 7.2. = If te = 07 5 5. (p/q) and h. — 0, then A(c) — exp(2mip/q).

Proof. — Let, for example, t. = 6 5,.(), with v = p/q # 0. Let us consider the
continued fraction expansion of v,

V] = [a1,a2,...,ak],

such that k¥ > 1 is odd. We have: [V](N) < v, [V](N) — v as N — oo. It follows
from (6.1) that

- (B—a)2m™ —1)2m
te = 02,52n (PIV) = Grgy — e =y = (L)

and

02 520 () = 025 (V) = Vg o= 00

In particular,

T ([V](NV)
r(WJ(NV)

2ama — 1]
2ma

)) = € (0.5,1).
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Consider the angle of vision ¢>[,,](N)(V;) (see Theorem 7.2). Then, for each V, =
0 5.am (/) + ihe, if

(7.4) r(I), N + 1) < he < (], N),
this angle is not less than an absolute constant @, € (0,7 /2). Denote

_ log(2™)
R(N) = ———@*.Q(N)'

By Theorem 7.2, log A(c) lies in the disc of radius R(NV) that tangents the imaginary axis
at the point 27i[v](N). For each h. < r([v],2) let us choose N such that (7.4) holds. If
he — 0, then Q(N) — oo, and the disc tends to the point 27iv. The end of the proof.

Now let A’ be any hyperbolic component of the period m, and X' (c) be its multiplier
so that |\ (¢)| = 1 on OA’. The root cas is a landing point of two external rays of M.
Denote their arguments

al , /8/
gn 1 A =gy

tA’ =

for some “digits” o/, € {0,1,2,...,2™ — 1}, o/ < .

Let M (c) = exp(2wiv), for some ¢ € JA’. According to Douady-Hubbard description
of small copies of M [8], the point c € OM has the following external arguments: if v is
irrational, the external argument is 0o/ g om (v), and if v is rational, the external arguments

+
are 0 4 om (V).

DEFINITION 7.4. — The wake W (A') is the domain containing A" and bounded by the rays
R(M,ta), R(M,t,). Given rational v € (0,1), the v-wake W, (A") is a closed domain,
which does not contain A’ and is bounded by the rays

R(M,0,, 5 om(v)), R(M, 0;‘,’[,,,% (v)).

THEOREM 7.3. — L. The numbers t,,t, are the external arguments of a hyperbolic
component A of M, i.e. the rays R(M,t.), R(M,t,) land at the root ca of A.

II. The functions a(c) and A(c) extend to analytic functions in the wake W (A). Moreover,
IAc)| > 1 for c € Wa\ A

1IL. Given ¢ € W(A)\A, the periodic point a(c) has the rational rotation number v if and
only if c € W, (A), and irrational rotation number v if and only if ¢ € R(M, 0, g am (V).

Proof. — 1. It follows immediately from the previous lemma, that every ray
R(M, H;t,ﬂYQm(l/N)), N = 2,3,..., lands at a point ¢(N) of a hyperbolic component
A(N) of the period m. Besides, the 2™-expansion of the external argument of c¢(N)
contains exactly the digits «, 8. From the Douady-Hubbard description of the external
arguments we conclude, that the external arguments of the root of A’ are ¢, and t,, that is
all A(N) coincide with the hyperbolic component A such that |A\(c)| = 1 on A (another
proof of this fact uses the theorem of Douady-Hubbard-Sullivan that each hyperbolic
component has only one root).

I1. If the function a(c) is not extended to W (A), it has a singularity (algebraic ramification
point) in the root ¢’ of a hyperbolic component A’ different from A, but with the same period
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m. Then an external argument ¢’ of ¢ is rational. Hence, t' € [0 5 ,n (v), 07 5 5 (V)], v
rational (in fact v should be 1/2). Then, by Theorem 7.2, for ¢ € R(M,t'), the value of
log A(c) lies in a disc of a radius p(c), which is tangent to the imaginary axis at the point
2miv. If ¢ — ¢ along the ray R(M,t'), the radius of the disc p(c) tends to a finite value.
Therefore, log A(c) cannot tend to 1. This is a contradiction.

The rest of p.II and p.III are easily follow now.

The theorem below describes the behavior of the multiplier A(c) as a function of the
uniformizing variable close to the rational points (A(¢))” =1, n =1,2,---. Set

KX (w) = |\(c) — exp(2miv)|.(= log |w — w,|),
where ¢ = ¥(w), v rational (0 = ¢, 1= 1) and w, = exp(27ri0fﬂ72m(z/)).
THEOREM 7.4. — There exist absolute constants K1, K5, 0 < K; < K3 < o0, such that,

for every v = p/q € [0,1],

(7.5) —ql-%l < liminf KF(w) < limsup K= (w) < Ko(logd™)?,

as w — w, and t. € I°P.

Remark 7.3. — Recall that w = exp (27 (h, + it.)) so the condition ¢, € I*# is satisfied
automatically if only » # 0 and v # 1.

Proof. — Let, for example, w, = exp(2mito), to = 0 5,m(v)). First, we estimate
[log A(¢) — 2miv| in a left “quarter’-neighborhood E® = {(t,h) : t < to,h >
0,|h + i(to — t)| < 6} of to (if only v # 0) using Theorem 7.2 like in Lemma 7.2.
To do this, consider the rotation sets A%’ ([v](N)) of o™, where

[v] = g‘ = [a1,a9,...,ak]

is the unique continued fraction expantion of v = p/q, such that k > 1 is odd. We have:
[V](N) < v, [V](N) — v as N — oo. Let us divide the set E(®) into the “quarter” annuli
(7.6).

Enx ={(t,h) : h>0,t <to,r([V], N+ 1) < |h+i(to—t)| <r([v], N)},N=1,2, ...,

For every point V = t+ih € OFEy, except for the part I = [r([v], N+1),7([v], N)]x{h =
0} C OEy on the axis h = 0, the angle ¢, (V) or the angle ¢, ,, (V') (see Theorem 7.2)
is not less than some absolute constant ®, € (0,7/2). Denote

_ log(2™)
By = 3,.Q(N)

We want to prove that:
for V. = t. +ih. € En

(7.7) |Rn41+27i(v —vNn41)| — Ryy1 < [log A(e) = 2miv| < |Ry +27i(v —vn)|+ Ry
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Taking into account that the function log A(c), ¢ = ¥(w), is holomorphic and non-
vanished for w € Ey, it is enough to show the following: that for V. — OFEy the log A(c)
lies in the convex hull of two discs Dy, Dy 41, where D; = {z : |z—(R;+2miv;)| < R;}. If
V. € OE, except the interval I C OFE, this follows from Theorem 7.2. Now, for every V,
close enough to the part I of the boundary, one can find a rational v’ € [[V](N), [V](N +1)]
such that the angle ¢, (V.) is larger than ®,. Then, by Theorem 7.2, log A(c) belongs
to the above convex hull.

Elementary, but rather long calculations show that (7.6)-(7.7) lead to (7.5) in the left
“quarter”’-neighborhood E(®). On the other hand, 0, 5(v) is a periodic point of o of
period mq, and we can define another periodic point a”(c) of f. of the period mq using
Definition 7.2. Then we estimate its multiplier | log A”(c)|, as above, in a right “quarter”-
neighborhood of ¢¢ and obtain (7.5) for this multiplier with » = 0, ¢ = 1 and mgq instead
of m. To pass from A”(c¢) to A(c), we observe that, by Lemma 7.2, A(c) — exp(27iv) and
A(c) — 1 as h, — 0 and the condition t. = 6 ;,.(v) holds. That is the external ray
te = 0 5om(v) of M lands at a limit point co of M and the periodic point a(c) of the
period m collides with the periodic point a”(c) of the period mq at ¢ = ¢o. Now we use
a relation, due to J. Guckenheimer [13]: £X”(c) = ¢ £ \(c) at ¢ = ¢g, and obtain (7.5).
If v =0 or v = 1, only a semi-neighbourhood is under the consideration.

Theorem A announced in Introduction is a simple corollary of the previous Theorem 7.4.

Proof of Theorem A. — Let \(c) be the multiplier corresponding to A. It is known [11,
part II] that, for ¢ — ¢y, ¢ — ¢ ~ const(A(c) — A(co)), if A is not a primitive one, and
~ const(A(c) — A(cp))? otherwise. The statement follows from Theorem 7.4.

8. Conclusion

Let T be a polynomial of degree d, and its Julia set J be not connected. Let a be its
fixed point such that {a} is a component of J. A reason of the phenomenon when the
multiplier of a goes to a point of the unit circle as the polynomial changes is as follows.

Consider the set of polynomials {Ty4iy}z>04ecr (see Sect. 4). Let a,i;, be the
corresponting to ¢ fixed point of T ;, so that 73 = T and a; = a. Let now x — 0 and
y — 0. In general, there is no reason for the fixed point a,;, turns into a neutral one.
In this paper we considered a case when this occures. Namely, suppose that one of the
following combinatorial conditions hold:

(CC’) for every slope T from a semi-neighborhood of /2 the rotation set A, (a) for the
fixed point a of T contains a rotation set A*P(v) of the map o : t — d.t(modl) such
that v does varies as T — /2,

or

(CC?”) for every y from a semi-neighborhood of zero the rotation set A, /2(a1+iy) for the
fixed point a1, of Ty 1y contains a rotation set A*#(v) of o such that v varies as y — 0.

Then the multiplier X\ = T"(az44y) tends to exp(2mivy s(a)) as © — 0 and y — 0 (in
the semi-neighborhood of zero).
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Sketch of the proof. — There exists a critical value c of T as follows. Let  and y be close
to zero. Then one can choose v = p/q with ¢ large such that the angle of vision of the
interval [0 5 ,(v), 0; 5.4(V)] from the point B,y (csiy) is not small. This angle is the
angle of access to the fixed point a,;y in an appropriate slanting hedgehog. Theorem 5.1
completes the proof.

In the present paper we proved the conditions (CC’) or (and) (CC”) for the fixed point
of f corresponding to a hyperbolic component of the Mandelbrot set M.
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