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WRONSKI ALGEBRA SYSTEMS ON
FAMILIES OF SINGULAR CURVES

BY E. ESTEVES (1)

ABSTRACT. - We replace the sheaves of principal parts on a family of reduced, local complete intersection
curves by natural sheaves of algebras that are locally free. Our motivation is to be able to associate to any linear
system on the family a Wronski system, as denned by Laksov and Thorup. By applying their general theory of
Wronski systems, we obtain in particular a Weierstrass divisor on the family, in case there are no degenerate
components on a general fibre.

1. Introduction

Linear systems on smooth curves in characteristic 0 have been extensively studied
classically, with strong results on the projective geometry of smooth curves being discovered
by the Italian school of Castelnuovo and others. A good part of their results involved the
analysis of the ramification points of a linear system, sometimes called Weierstrass points,
especially if the linear system is the canonical system.

In char. p > 0, the study of Weierstrass points began with F. K. Schmidt ([17] and [18]),
who nevertheless considered only the canonical system. The study of Weierstrass points of
a general linear system began only relatively recently, basically initiated by Matzat [15]
and Laksov ([7] and [8]). Much work has been done since in trying to understand the
peculiarities of the positive characteristic case.

Generalizing the theory in another direction, in 1984 Widland defined Weierstrass points
for the canonical system on any Gorenstein, irreducible curve [20]. His definition was later
extended to any linear system by Lax [12]. Around 1986 Eisenbud and Harris considered
the question of Weierstrass points on a curve of compact type [2]. Very recently Garcia
and Lax [4] and Laksov and Thorup [10] extended Widland's and Lax's definition to the
positive characteristic case.

One of the main goals in extending the notion of Weierstrass points to the singular case
is to improve the understanding of smooth curves. Analysing, smooth curves by analysing
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108 E. ESTEVES

their degenerations to singular curves has always been a very fruitful idea, as shown for
instance by the recent work of Eisenbud and Harris (see a summary and references in [2]).
Hence the need of not only a theory of Weierstrass points on a singular curve, but more
generally a theory of Weierstrass points on families of curves.

The theory of Weierstrass points on families of smooth curves in characteristic 0 has
been developed classically. Recently, Laksov and Thorup developed a framework for
understanding Weierstrass points on families of smooth curves in arbitrary characteristic
([9] and [10]). More precisely, they show how to canonically associate a system of maps
between locally free sheaves, called a Wronski system, to a linear system on the family. A
Wronski system gives rise to a Wronskian determinant, whose zero locus gives a subscheme
structure to the set of Weierstrass points of the linear system. To obtain locally free sheaves
in the Wronski system, it is necessary that the sheaves of principal parts be locally free
themselves. The smoothness of the family is thus essential, as it implies the latter property.

The purpose of this article is to overcome the '^efficiency" in the case of singular curves
of the sheaves of principal parts in being locally free. On a singular, Gorenstein curve the
natural invertible sheaf replacing the sheaf of Kahler differentials O1 is the dualizing sheaf
uj. Therefore, a natural idea is to use the canonical map rj1 : O1 —> uj on a family X / S of
Gorenstein curves to replace the sheaves of principal parts P1 by sheaves of P1-algebras
Q1 that are locally free. More precisely, we wish to obtain sheaves of algebras Q1 for
i = 0,1, . . . fitting into commutative diagrams

0 —, ^ —>?' —> P1-1 —> 0

^ [ ^1 ^i
0 ——, ̂  -^ Qi _^ y-1 ——, 0

for i = 1,2,. . . , where the first row is canonical, both rows are exact, the right hand side
square is a diagram of algebra homomorphisms, and rf is induced from r]1 in a canonical
way (see Section 2). The data given by the sequence of sheaves Q' for % = 0,1, . . . and
the maps in the above diagram is called a Wronski algebra system on X / S .

The method developed in the present article produces a canonical and natural Wronski
algebra system for a general family X / S of reduced, local complete intersection curves, not
necessarily irreducible or complete, in arbitrary characteristic. There are actually several
Wronski algebra systems on a single curve (see Section 4), but if we require the formation
of the sheaves Q^ to be natural, that is, to commute under base change in a fairly large
class of families X / S , then we get a unique, natural Wronski algebra system.

By replacing the sheaves of principal parts P^ by the sheaves Q^ we can readily apply
Laksov's and Thorup's method (in [9] or [10]) to associate to each linear system on X / S
a canonical Wronski system of modules on X (Section 7).

There are a few novelties introduced in this article. First, our set-up includes reducible
curves in any characteristic, as long as they are local complete intersections. In particular,
we are able to consider families of Deligne-Mumford stable curves. However, we are
faced with the same problem Eisenbud and Harris pointed out in [2], p. 339; namely,
some components of the curve might be degenerate with respect to the linear system in
consideration without the whole curve being degenerate. In our set-up, every point in
a degenerate component is a Weierstrass point. By contrast, there are at most a finite
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WRONSKI ALGEBRA SYSTEMS 109

number of Weierstrass points on an irreducible curve. Excluding the case of degenerate
components, the theory developed here adequately defines Weierstrass points and weights
on a family of reducible curves, as explained in Section 7.

Second, we are able to consider families of singular curves in any characteristic, instead
of a single curve as in the previous literature (see however [13] in characteristic 0). In
[10] Laksov and Thorup independently introduce substitutes for the sheaves of principal
parts on an integral, Gorenstein curve. Nevertheless, it is not clear whether their method
would extend to families, since they made use of the normalization map of the curve via
Rosenlicht's local characterization of the dualizing sheaf on the curve [19]. It is not clear
either that their substitutes coincide with ours in the case of an integral, local complete
intersection curve.

Third, a Wronski system of modules gives a priori more information than the Wronskian
determinant obtained from it. For instance, we are able to give a structure of determinantal
subscheme to a subset of a family of curves defined by a condition of Weierstrass type.
More precisely, given a Wronski system of modules (W, Q\ (f ^ v\ i > 0) on a scheme V,
the fc-th degeneracy locus of the map of vector bundles v1 gives a subscheme structure
for the locus of points y e Y whose fc-th order is greater than %. Hence, it is desirable to
obtain a Wronski system of modules for each linear system, as done in the present article,
instead of just a Weierstrass divisor.

There are important questions still open. First, is it possible to construct a Wronski
algebra system on a general family of reduced, Gorenstein curves? If so, is it possible to
construct it in a natural way? Is the Wronski algebra system unique in some sense?

Second, how can we explain limits of Weierstrass points when an irreducible curve
approaches a reducible curve with degenerate components? Eisenbud and Harris have
developed the technique of limit linear series when the reducible curve is of compact
type [2]. Is there a way to handle the problem at least for stable curves? If so,
valuable information could be obtained about the moduli of smooth curves, since it
has a compactification by stable curves.

We now give a brief summary of the contents of this article. In Section 2 we define the
notion of a Wronski algebra system, and state the main (and only) theorem of the article,
Theorem 2.6. We also start an induction argument for the proof of the theorem, which will
be completed in the next four sections. In Section 3 we give a local description of a Wronski
algebra system, and prove a local criterion for its existence (Criterion 3.8.) The criterion
applies to any family of reduced, Gorenstein curves. In Section 4 we restrict our attention
to families of reduced, local complete intersection curves. We prove the existence and
uniqueness of a Wronski algebra system on a "general" family, that is, a family of curves
satisfying what we call the depth condition. In Section 5 we introduce the necessary tools
to induce locally on any family a Wronski algebra system from a larger "general" family,
and then to patch the induced local systems together. In Section 6 we use the existence
and uniqueness of a Wronski algebra system on a "general" family, proved in Section 4,
and the tools developed in Section 5 to wrap up the proof of Theorem 2.6. In Section 7
we show how the theory developed by Laksov and Thorup in [9] and [10] can be applied
almost verbatim, once one has good substitutes for the sheaves of principal parts. Since we
also allow for reducible curves, we make the necessary minor modifications to their set-up.
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110 E. ESTEVES

All schemes considered will be assumed noetherian, and all morphisms separated and
of finite type.

This work is part of the author's Ph.D. thesis at M.I.T. [3]. The author would like to
thank Professor Kleiman for his endless support during the research and preparation of
this work; and Professors Eisenbud and Mattuck for several interesting comments on this
work. The author would also like to thank Waseda University for its hospitality during
the period this work was completed.

2. The Wronski algebra system

Let / : X —^ S be a flat morphism whose geometric fibres are reduced, Gorenstein
curves. We will often refer to / as the family X / S . Let ̂ /g denote the sheaf of relative
Kahler differentials of /, and P^ig the sheaf of relative n-th order principal parts for each
n > 0. If I denotes the ideal sheaf of the diagonal X —^ X Xs X, then

O1 - J anrl Pn - oxxsX11 X / S - -p and ^X/S - jn+i •

Denote by ̂ /s the Ox-module ^ / I ^ 1 for every n > 0. There is a canonical exact
sequence

(2.1) 0 - ̂  -. P^s ̂  P^s - 0

for every n > 0. In addition, the formation of P^/g and p^,g commute with base change
and open embeddings. Note that P^/g is a sheaf of Ox-algebras in two ways, induced
by the two Ox-algebra structures of OxxsX- We will distinguish between the two by
calling one the left structure and the other the right structure. For general information on
the sheaves of principal parts the reader may consult [5], Section 16.7, p. 36.

Assume that the fibres of / are local complete intersections. In addition, assume for the
moment that / is quasi-projective. Denote by L : X ̂  Y an 5-embedding of X into an
S'-smooth scheme Y with pure relative dimension m over S (for instance, we could take
Y to be a projective space over 5.) Since the geometric fibres of X / S are local complete
intersections and Y is 5-smooth, the embedding L is transversally regular relative to S
(see [5], Section 19.3.7, p. 196). As a consequence, if Jy denotes the ideal sheaf of X
in a neighbourhood of X in V, then J y / J ^ is locally free of rank m - 1. From the
canonical exact sequence of sheaves on X,

^^^Y/S^OX^^/S-^JY

we construct the map

m—l -j m
JY

^Y : ̂ x/s ® A -7^ —— /\^Y/S ® Ox.
JY
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WRONSKI ALGEBRA SYSTEMS 111

locally defined on an affine open subset U of X by

7Ty(A) (g) ̂ i A ... A p^-i i—> A A dygi A ... A dygm-i,

where A is a section of ^/^ 0 Ox on (7 and ^ i , . . . , ̂ m-i are sections of Jy/J^ on (7.
The map fly is well-defined since ^- is a locally free Ox-module of rank m - 1. Let

m /m—\ j \ —1

(2.2) ^^A^/^A j|) •

By tensoring /^y with (A771"1^/1^))"1 we °btain a map

^IX/Y/S : ^X/S -^ ^X/S'

It is clear from (2.2) that the formation of u ^ x / s commutes with base change and open
embeddings. Moreover, the above description shows that ^/y/^ is also natural, that is,
for any 5-scheme 5i and any open subscheme Vi of Y Xs S'i, the diagram

^X/Y/S^0^!

^x/s ̂  °x, —————— ^x/s ̂  Ox,

'1 'i
^I/YI/SI

^Xi/Si —————————' ^Xi/Si

commutes, where Xi = Yi H X x^ 5'i.
The homomorphism ^/y/^ does not depend on a particular embedding of X into an

5-smooth scheme V. The proof of this statement is a simple modification of the proof found
in [11] for the independence of u ^ x / s ^h respect to embeddings of X into 5-smooth
schemes. Therefore, we can define

^X/S := ^X/Y/S'

If / : X —^ S is a general flat morphism whose geometric fibres are reduced, local
complete intersection curves, then we can cover X with open subschemes X\ in such a
way that X\ is quasi-projective over 5'. Because ^/^ does not depend on a particular
^-embedding of X\ into an 5-smooth scheme Y\ of pure relative dimension over 5, and
the formation of ̂  /y ,g is natural, then we can glue the homomorphisms 7^/5 together
to obtain a global homomorphism r]\,g. It is clear that the global r]\^ is natural, that is,
its formation commutes with base change and open embeddings.

We remark that by [6], Corollary 23, p. 56 the sheaf u ^ x / s is a dualizing sheaf for the
family X / S . However, no dualizing property of u ^ x / s win be used in the remaining of the
article. For our purposes all we need is that u ^ x / s is defined by (2.2).

It is worth mentioning that it would actually be possible to obtain a comparison
homomorphism between the sheaf of Kahler differentials of / and a certain dualizing sheaf
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112 E. ESTEVES

of / without the assumption that the geometric fibres be local complete intersections. As
a matter of fact, we will only need this assumption in Section 4.

Let c^ := ̂ .

PROPOSITION 2.3. - r]^,g induces canonical and natural homomorphisms

^x/s : ̂ x/s ~^ ^x/s

for every i >_ 1, which are isomorphisms on the smooth locus of X / S .

Proof. - rj^,g induces

(^x/sY '' -p ^ -p -^ ^ x / s '

We will show that (^75 )2 factors through the multiplication homomorphism

I I I2

m : 72 0 72- '73 •

For this we just need to show that the support of the kernel of m does not include any
associated points of X, since u ^ / s is invertible. But an associated point of X is an
associated point of the fibre over S where it lies [5], 6.3.1, p. 138. Since the geometric
fibres of / are reduced, then any associated point of X lies on the smooth locus of X / S ,
where m is an isomorphism. The construction of r]^,g is thereby completed. Note that
^ x / s ls an isomorphism on the smooth locus of X / S since both rj^,g and m are. The
construction of the remaining homomorphisms is analogous. The naturality is obvious from
the construction and the naturality of r ] ^ , g . It is also clear that the rf^,g are isomorphisms
on the smooth locus of X / S . D

DEFINITION 2.4. - A Wronski algebra system on X / S is a collection {Q^/g'.n > 0} of
sheaves of algebras on X together with algebra homomorphisms

»f,n . pn r\n
^X/S ' ^ - X / S f ^X/S^

f.n . r)n r)n~l

^X/S ' ^X/S ' ^X/S^

and an 0^-bimodule homomorphism

^.n . n _^ r\rtax/s ' ^x/s ~^ Vx/s

for every n > 0, satisfying the following properties:
(1) Q x / s = ^x/s'^
(2) the diagram of maps

o —. n^ -^ P^s^ P^I — o
(2.4.1) ^x/s\ ^/s\ ^1

0 . . ,n x/s /^\n ^x/s ^^_i ^
—' ^ x / s —^ Q x / s —> Q x / s —' °

is commutative with exact rows for every n > 0.
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WRONSKI ALGEBRA SYSTEMS 113

The homomorphism ^/g induces left and right Ox-algebra structures on Q^/g for
every n >_ 0. By definition, the homomorphism o^.g is Ox -linear with respect to both Ox-
algebra structures on Q^/g. Because of the invertibility of u ^ x / s ^ the sheaf Q^/g is locally
free of rank n + 1 for each of its Ox -algebra structures. Note also that Proposition 2.3
and the above property (1) imply that ^ / s is an isomorphism on the smooth locus of
X / S for every n ^ 0.

We will denote by

{Q^s^x/s^^s^^x/s^^^

a Wronski algebra system on X / S . For simplicity we will sometimes denote a Wronski
algebra system on X / S by (Q^x/s^ > 0), leaving the homomorphisms implicit.

Two Wronski algebra systems,

(Q'x/s^'x/s^'x/s^'x/s^ > °).

(%/^^/^%/S.%/5^^0)

on X / S are equivalent if there are isomorphisms

-,n . r\n r\n
^X/S ' ^X/S • ^X/S

for all n > 0 such that ̂ /s = ^ / g o V^/^ and the diagram of maps

n x / s ^n •*x/s ^-v^_i
^x/s —' ^x/s —' ^x/s

1 1 ^/s | ^7^ |
|| N^ •'K

n ^x/s ^^ ^x/s ^y^_i
^X/5 ——^ ^X/S ——^ ^X/^

commutes for n > 0. The systems will be called uniquely equivalent if the v^x/s are
all unique.

Let fai : S'i —> S be any morphism of schemes, and let Xi denote an open subscheme
of X Xs 5'i. Let h : X\ —> X denote the induced morphism. If

(O^/s^/s^/s^l/s^ ^ °)

is a Wronski algebra system on X / S , then it is easy to see from the naturality of p^x/g
and rf^ig for n > 1 that

{h-Q^s. h^^s. ̂ ^x/s. ̂ a^s. n ̂  0)

is a Wronski algebra system on Xi/5i. The system {h*Q^,g,n > 0) on Xi/5'i will be
called the restriction of {Q^x/s^ > 0) to ^i/5'i-

On the other hand, if (Q^ /^ ,n > 0) is a Wronski algebra system on Jfi/5'i, then
(Q^ /^ , n >_ 0) is said to be induced from the system (Q^x/s^Ti ^ 0) if (Q^ /^ , n > 0)
is equivalent to the restriction of (Q^/s^ ^ 0) to ^i/5'i-
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114 E. ESTEVES

Let C be any class consisting of families X / S whose geometric fibres are reduced,
Gorenstein curves, and such that C is closed under base change and open embeddings. In
particular, we can consider the class Ci,c.i. consisting of families whose geometric fibres
are reduced, local complete intersection curves.

DEFINITION 2.5. - A Wronski algebra system on C consists of a Wronski algebra system

(%/^^/^^/S.^/5^>0)

for every family X / S in C such that if h : 5i —> S is any morphism and X^ is an open
subscheme ofX Xs Si, then (Q^^/s^ri >_ 0) is induced from (Q'^/s,n ^ 0).

We denote a Wronski algebra system on C by (Qn^n,qn,an,n > 0), or simply by
(Q^n > 0), leaving the homomorphisms implicit.

Two Wronski algebra systems, say (Q^n > 0) and (Q^n > 0), on C are (uniquely)
equivalent if for every family X / S in C the Wronski algebra systems (Q^/g, n >_ 0) and
(Q^/^n >_ 0) are (uniquely) equivalent.

The goal of the present article is to show the following theorem.

THEOREM 2.6. - There is a Wronski algebra system on Ci,c.i.' Moreover, any two Wronski
algebra systems are uniquely equivalent.

We note that it makes perfect sense to talk about a truncated in order N Wronski algebra
system on a family X / S , as being the data

(%/s^/5^/5^/^0 < n < N)

satisfying the conditions in Definition 2.4 up to order N. Likewise, all the concepts
introduced so far make perfect sense for truncated Wronski algebra systems.

As the first step in proving Theorem 2.6, we define the truncated in order 0 Wronski
algebra system as

(Q^°):=(P°,idpo).

We can also easily define for each family X / S the truncated in order 1 Wronski
algebra system as the push-out of the infinitesimal Ox -algebra extension (2.1) under r]^,g.
Because of the categorical nature of the push-out construction, we can easily verify that
the conditions in Definition 2.5 are met.

However, the push-out construction will not produce a truncated in higher order Wronski
algebra system. The actual proof of Theorem 2.6 will be completed in the next four sections.
We will often use in the proof the following trivial lemma and its corollary.

LEMMA 2.7. - If two Ox-linear maps /?i, /?2 : E —^ F, where F is locally free, are equal
on the smooth locus of X over S, then they are equal.

Proof. - The lemma is a trivial consequence of the fact that the associated points of X
lie on the smooth locus of X / S , as pointed out in the proof of Proposition 2.3. D

LEMMA 2.8. - If two (truncated in order N ) Wronski algebra systems are locally equivalent,
then they are globally and uniquely equivalent.
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WRONSKI ALGEBRA SYSTEMS 115

Proof. - The sheaves Q^/s of a Wronski algebra system are locally free and isomorphic
to the PX/S on the smooth locus of X / S . Since the smooth locus of X / S is dense in
X, then Lemma 2.7 guarantees the feasibility of patching together the local equivalences
between two Wronski algebra systems. The uniqueness of the global equivalence follows
likewise from Lemma 2.7. D

3. A local criterion

We first describe the simple local structure of a Wronski algebra system. Let
Wx/s^ < n < N) be Si truncated in order {N - 1) Wronski algebra system on a
family X / S of Gorenstein, reduced curves. Assume that X is an affine scheme and u^x/s
is free, say generated by r. Of course ̂ /g is free, generated by T71 for every n > 0. Pick
a global section Qv-i of Q^ mapping to Oi^/g{r) in Q^/s under

^/50...0^1.

Let Cn be the image of CN-I m Q^/g under

^o...o^

for each positive n < N.

PROPOSITION 3.1. - The homomorphisms of left Ox-algebras,

„" . °^ _ o»P- • /•'p,+n ~^ "fx/s'

sending T to Cn are isomorphisms, making

.r» Ox[T] r" Ox[T}
0 x (Tn+l) (TH)

-"i ^ ^[ ^l

,n x/s r\n x/•s' r\n—\
^X/S ——)> ^X/S ——^ ^X/5'

wA^r^ r^ is the canonical quotient map, into a commutative diagram of maps for all n < N.

Proof. - The main observation here is that the above local description is known for the
sheaves of principal parts P^/g in the case the family X / S is smooth [9], 2.4, p. 139. So
it is natural to expect the same description to hold for good substitutes of the sheaves of
principal parts. In fact, the above diagram is commutative on the smooth locus of X / S
by the above observation. By Lemma 2.7, since Q^/g is locally free for every n < N,
then the diagram is commutative everywhere. By the snake lemma and a simple induction
argument on the above commutative diagrams, we can prove that ^n is an isomorphism
for every n < N. The proof is complete. D

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



116 E. ESTEVES

Next, we will give a criterion for the local existence of a truncated in order N Wronski
algebra system extending (Q^/^,0 <, n < N). To this purpose we can assume that 5'
and X are affine, and X is a closed subscheme of an S^-smooth affine scheme Y of pure
relative dimension m over 5'. Let J be the ideal sheaf of X in Y. Let / i , . . . , / f be
regular functions on Y generating J globally. As a convention, we will denote by c the
restriction to X of a regular function c on Y. We will also assume that there are regular
functions 14,..., Um on Y such that d^i , . . . , dum form a basis for ^y^. In particular,
their respective restrictions z l i , . . . , Um to X are such that du^,..., cKZ^ generate ^y^.
For convenience, we let Vi := Ui for each i = 1,. . . , m. In addition, assume that u ^ x / s is
free, generated by r, and pick a global section (^ of 0^7^1 mapping to 0^/5 (r) in Q^/^.
For convenience, we will use the same notation C, for its images in Q^/g for 0 < n < N.

If c is a section of Oy (resp. of Ox), then we will denote again by c its image in P^,g
(resp. P ^ / g ) under the left Oy-algebra (resp. Ojc-algebra) structure of P^.g (resp. P^/s\
and by c its image in P^r,g (resp. P^/g) under the right algebra structure. Note the abuse
of notation we make by not distinguishing between the several sheaves of principal parts.

Let dij be regular functions on X defined by

^/s(^) ''= ̂  + ̂ IjC + . . . + dnjC

for every n < N and each j = 1, . . . , m. Note that

^x/s^j) = ̂ j^

for every j = 1,. . . ,m.
By Proposition 3.1, we need a criterion for the existence of a left Ox -algebra

homomorphism
,i.N . pN . °x[T}
^ X / S • ^ X / S -^ /j.A^+1)

making

Q^V __, pN ^f pN-1
^x/s—> ^ x / s —^ ^ x / s

^ I -l/;^-1
X/5 ^ X / S(3.2) ^/^^ ^X/5^ ^X/5^

N ^ / s Ox[T} 9x/s ^_i
^X/S ——> /yAT+l\ ——' V x / S

into a commutative diagram, where q^,g and 0^/5 are defined by q^,g (T) := ^ and
(^^^(T^) := T^, respectively.

For each ; > 0, let

= {7 ''= ( 7 i ^ - -^7m) ;7z ^ Z>o and 71 -{i • • • 1 /m — "J -

(3.3) Oy[Zi,...,Z^]^P^

4° SfaUE - TOME 29 - 1996 - N0 1



WRONSKI ALGEBRA SYSTEMS 117

be the left Oy -algebra homomorphism mapping Zi to Ui for every i = 1,... ,m. Since
y is ^-smooth and du\^... ̂ dum form a basis for 0^/5, then (3.3) is surjective, with
kernel generated by the products

(Zi-^i)71...^-^)7-

for all 7 G F^v+i. In addition, the kernel of the surjective map P^/s —^ P^/s (i^uced
by the quotient map Oy -» Ox) is the ideal generated by fk and fk for all k = 1, . . . , t.
Note that fk can be expressed as

m

fk =fk + ̂  Difk(Ui - Ui) + . . .^iJA;V"'i
2=1

-»7i+ ̂  p71... î r/ î - ̂ i)71... (^ - u^r-
7^N

in P^5 for every k = 1,... ,t, where D\ is the Hasse derivation on Y / S of order Z
associated to Ui.

To construct a left Ojc -algebra homomorphism,

,v .pN . Ox[T}
V x / S • ^X/S -^ (TN^y

it is enough to construct a left Oy -algebra homomorphism

i N ^ ry y l ^t7']^ : C»y[Zi,...,Zynj -> ^^^^

factoring through P ^ / s . Since

pN ^/f pN-1
^x/s > ^x/^

^^i ^i
0x[r] ^/g^N-1
/yTV+1-) ^X/5

must be commutative, we must have

(3.4) ^v(^•) = Vj + a^T + ... + a^v-ijT^-1 - c^

for some regular function cj on X for every j = 1,... ,m. As a consequence of (3.4),
the commutativity of

^X/S ——^ ^X/5

^/s| ^/s|

^ <s_0^[T[
^X/5 > (yN+1)

is actually guaranteed for any choice of Cj, as it can be easily checked.
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In order that (^N, as defined by (3.4), factor through P^ig it is necessary and sufficient
that

(3.5) AN(al,l^+...+a^-l,l^N- l-Cl^N,...,al^^+...+a^-l^^N- l-c^^N)

be divisible by T^1 for all k = 1,... ,t, where

(3.6) ^(Zi,...,Z^):=^(A/.)-^+...+ ^W1...^/,)^1...^fj, ^z / i , . . . , z /^ ; := ^^Uijk) z / z - h . . .
z=i 7er\v

for each fc = 1, . . . , t. Note that (3.5) is already divisible by T^, since V^/^1 is assumed
to be defined. Hence, one may define:

(3.7) .N _/fcN(...,au^+...+aN-u^N-\...)
^k ' - ————————————————TTN————————————————J^N

T=0

as a regular function on X for every fc = 1,. . . , t. Let also

--DI/I ^2/1 . . . D^h-
J9i/2 -D2/2 . . . An/2

M := . . .

.^i/, ^2/1 ... D^ft.

Then we have the following criterion.

CRITERION 3.8. - There exists a homomorphism ̂ /g making diagram (3.2) commutative
if and only if the linear system

hi r^tM \ = :
Cm. .d^.

is solvable by regular functions c\,..., Cm on X.

Proof. - By combining (3.5) and (3.6) we obtain that

^(..., ai,,T + ... + a^-i,,^-1 - c,^,...)

( m v

= < - ̂ (Difk)-a jr^ + (higher order terms)
i=l ^

for every k = 1,... , t. The criterion follows immediately. D
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4. The Wronski algebra system for "general̂  families

Recalling the set-up of last section, S is an affine scheme, Y is an affine 5'-smooth
scheme whose sheaf of differentials ̂ /g is free of rank m with basis du^ , . . . , dum, where
HI, . . . ,Um are regular functions on V, and X C Y is the closed subscheme defined by
regular functions / i , . . . , ft on Y. Assume now that t = m — 1, and /i , . . . , fm-i form a
regular sequence on Y relative to S. In other words, we assume that for every fibre of Y / S
the restrictions of / i , . . . , fm-i to the fibre form a regular sequence. It follows from this
assumption and (2.2) that the sheaf u ^ x / s ls ft^ generated by du\ A . . . A dum ̂  or, where a
is the dual to /i A . . . A fm-i- Hence, we can and will assume that r = du\ A . . . A dum 0 cr.
The data

(S',y,X,^i,. . . ,Um,fl,' . . ,/m-l)

is called a local data.
Let Mj denote the maximal minor of M, obtained by deleting the j-th column of M. Let

Sj := (-ly^detMj for j=l,...,m.

From the construction of rj^,g shown in Section 2, the fact that ^/^(dvj) == ^i,j^ and
the above choice of r it is easy to check that 8j = aij for j = 1, . . . , m. Let

A:=(^. . . ,UOx.

As just seen, AT is the image of r ] ^ , g in u^x/s\ hence AT is an intrinsic subsheaf of u ^ x / s -

LEMMA 4.1. - If depth (A(X), Ojc(X)) = 2, then there is a homomorphism ̂ ^ / g making
diagram (3.2) commutative. Moreover, ^ ^ / s ls unique in the following sense: if

nN . -DN . ox[T}QN . r>N
7 ' ^X/^ ^N+n

is another homomorphism making diagram (3.2) commutative, then there is a unique
isomorphism

^ Ox[T] _^ Ox[T}
' (jw+n /^N+n'

with \N(TN) = TN and q^g o A^ = q^^, such that ̂  o ̂ ^ = 0N.

Proof. - We first claim that dij G A(X) for all %, j . The proof will be by induction.
We have already remarked that aij G A(X). Assume that aij G A(X) for i < s, where
1 < s < N. For each k == 1, . . . , m — 1, we have

/ rn \
(4.1.1) /^(..., a^T + ... + ON-ijT^^ . . . ) = ( ̂ (^A)-ai,, \T + . . .

^=1 /

/ r __ __ m / \ N-l \+(^(^...^»A)- ^ n(^)n<r)^+->
\;=1 -yen s(a)=r J=l v J / i=l /

IQ'Jl=7J•
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where
a :=(aij) KKN ; Oiij G Z>o,

l^j^m

a3 ^(^Ij^-^N-lj),

l^j'l :=:=al,J + • • • +a^_ij ,

^(^ ̂ ^^^
i,3

^v-—^—
Va,; _i

11 ̂ '
1=1

Since T^ divides (4.1.1), as remarked in Section 3, the coefficient of T8 in the expression
(4.1.1) must be 0. But this same coefficient may be expressed from (4.1.1) as

^[D,fk}~a^^Ek^
.7=1

where Ek,s does not involve any dij with i >_ s. Hence, from the induction hypothesis
we obtain that Ek,s ^ A^X), and therefore

m

^(IVfc)-a^ C A2^)

for every k = 1,. . . , m — 1.
Since depth (A(X),Ojc(X)) = 2, by the Buchsbaum-Eisenbud criterion [I], Theorem,

p. 260, the complex

(4.1.2) 0 -^ O^-1 ̂  0^ {61-6rn\ Ox -^ °^ - 0

is exact. By dualizing (4.1.2), we obtain the sequence

(4.1.3) 0 - Ox ^'"^ 0^ ̂  O^-1 -. Ext^ f^ Ox} - 0,
A

which is exact since

Hom^ (^ Ox) = Ext^ (^, Ox) = 0,

again by the condition on the depth [14], 16.7, p. 130. Since the Ojc-module
Ext^(Ox/A_,Ox) is annihilated by A, then the image of M contains A0771"1. Since
the kernel of M lies inside A0771, then any section of 0^ mapping into (A2)9771"1 under
M must be in A^. Therefore,

^,i,...,a^ G A(Z),

finishing the induction argument and the proof of the claim.
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As with Ek,s above, it is easy to see from (4.1.1) that d^ € A^X) for every
k = 1, . . . , m — 1. As the image of M contains A0771"1, there are c i , . . . , Cm € A(X)
such that

m

^{D,fk)-c,=d^ for f c = l , . . . , m - l .
.7=1

By Criterion 3.8, the existence of V^/s follows.
As for uniqueness, from (4.1.3) any two solutions (ci , . . . ,c^) and (c^,. . . ,^) to

the linear system of Criterion 3.8, corresponding to homomorphisms ^/g and 0^,
respectively, differ by a multiple of (^ i , . . . , ^m)» say

(^ • - •^m) = (c i , . . . ,c^)+e(^i , . . . ,^) ,

where e is a regular function on X. If we let

^ Ox[T] ^ Ox[T}
' ?N+1^ /yN+1)

be the Ox-algebra morphism defined by A^T) := T - eT^, then A^T^) = T^,

^/s o ̂ (T) = ̂ (T - eT^ = C = g^/^T),

and
^ ° ̂ /5(^-) = A^. + ai,,r + ... + a^-i^-T^-1 - c^)

= Vj + aijT + . . . + aAr-ijT^-1 - (^ + ea^T1^
= ̂  + a^T +... + a^-i^-r^-1 - ̂ .r̂
= ̂ )

for j = 1,... ,m. In addition, A^/^ is unique by Lemma 2.8 (alternatively, because the
homomorphism ( < ? i , . . . , 6m) is injective.) The proof of the lemma is complete. D

LEMMA 4.2. - If depth (A(X), Ox{X}) = 2, then there is a Wronski algebra system on
X / S . Moreover, any two Wronski algebra systems are uniquely equivalent.

Proof. - From Section 2, we know already that there is a unique truncated in order 1
Wronski algebra system on X / S . Assume by induction that there is a unique truncated
in order N - 1 Wronski algebra system (Q^/5,0 < n < N) on X / S . By Lemma 4.1
there is a truncated in order N Wronski algebra system extending (0^/5,0 ^ n < N).
The first statement of the corollary follows now by induction. As for the second statement,
we can assume by induction that any two Wronski algebra systems on X / S agree up to
order N - 1, say with (%/5,0 < n < N). Moreover, since X is affine and c^x/s is
free, by Proposition 3.1 any extension {Q^/g, ̂ / s ^ ^ / s ^ ^ / s ) of (%/5^° < n < N)
is equivalent to an extension of the form

( ° x [ T } ^ . . ^
I /jw+n' Vx/s^ ^x/s^ ax/s j

,N ^N N

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



122 E. ESTEVES

where q^/g (T) = C and 0^/5 (r^) = T^, with r :== d^i A ... A dz^ 0 (T, and ^ a chosen
global section of Q^T^ mapping to 0^/5 M in Q ' x / s ' Therefore, by Lemma 4.1 any
two extensions are equivalent. The induction argument is complete. The uniqueness of the
equivalence follows from Lemma 2.8. D

Let f : X —> S denote now a flat morphism whose geometric fibres are reduced,
local complete intersection curves. The family X / S is said to satisfy the depth condition if

Ext^(Coker^/5,Ox)-0

for % = 0,1.

PROPOSITION 4.3. - If X / S satisfies the depth condition, then there is a Wronski algebra
system on X / S . Moreover, any two Wronski algebra systems on X / S are uniquely
equivalent.

Proof. - By the first statement of Lemma 4.2, we can cover X / S by local Wronski
algebra systems. The local Wronski algebra systems can be patched together to yield a
global Wronski algebra system by the second statement of Lemma 4.2. The uniqueness of
the global Wronski algebra system follows likewise. D

By proving Theorem 2.6 we will have shown that the depth condition is not necessary for
the existence of a Wronski algebra system. Hence, the depth condition is not necessary for
the first statement in Lemma 4.1. But the condition is necessary for the second statement
therein. In fact, consider the affine plane curve X C A| defined by / :== y3 — x4, where
k is an algebraically closed field of characteristic different from 2. We have

01,1 = (Dyf)- = 3y2 and 01,2 = -(AJ)~ = ̂

on X. Hence,

,2 {y^^x3T)3-{x+3y2T^ 2 4 .
d2 = -————————————- = -6a:V = -6x°y

1 T=0

on X. Since

f 4r3 ^p/21 ^ — fir2?/4[-^x 6y J 2 2 — -oa; y ,\—LX y j

then by Criterion 3.8 there is a homomorphism '02 making diagram (3.2) commute, namely,

^{x) r^ r r+S^T and ^(y) := y + ̂ T + 2x2y2T2.

However, the homomorphism

.2 p2 Ox[T}
6 •^^-^3?

given by

02(x)•.=x+3y2T-3x3yT2 and 02(y) := y + 4a;3^,
z
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is well-defined and also makes diagram (3.7) commute, since

[-^x3 Sy2}^3^-^

on X. We claim there is no automorphism A2 of Ox[T]/T3 such that A2 o ̂ 2 = 02 and
A2(T2) = T2. In fact, such A2 would be defined by A^T) = ±T + eT2 for some regular
function e on X. If A2 o -02 = 02, then

re ± 3^r + S^eT2 = A2 o ̂ {x) = ̂ (i) =x+ ̂ T - ̂ yT\
2i

But there is no polynomial p { x ^ y ) such that 3y2p(x,y) + ja;3^/ is divisible by ?/3 — x4.
Hence, the truncated in order 2 Wronski algebra systems defined by if;2 and 02 are not
equivalent.

5. Some lemmas

Of course the hypothesis on the depth cannot be satisfied if, for instance, the family
X / S consists simply of a curve over a field. The general idea to overcome such a problem
is to "enlarge" locally the family X / S in such a way that the larger family satisfies the
depth condition, apply Proposition 4.3, and then restrict the Wronski algebra system in the
larger family to the family X / S . One must also take care that two different "enlargements"
do not yield two different Wronski algebra systems, if we are to glue the local systems
together. The purpose of this section is to build enough tools to handle the above process.

Assume there is a commutative diagram of morphisms of schemes,

(5.1)
S^S,

ho] hs f

So —> 5'2.

Let X^ be a flat scheme over S^ whose geometric fibres are reduced, local complete
intersection curves. For i = 1,2, let Xi C X x^ Si be an open subscheme. Let XQ be
an open subscheme of

Xi x^ SonX'2 x^ 5o.

LEMMA 5.2. - For i = 2,3, let {Q^./g., n > 0) be a Wronski algebra system on Xi/Si.
For i = 0,1, let [Q^jSi^ >. Q) be a Wronski algebra system on Xi/Si induced from
(Q^^/^571 >- °)- y-W^ satisfies the depth condition, then (Q^/so^ ^ °) is

induced from {Q^ ,g ,n > 0).

Proof. - Since X^/S^ satisfies the depth condition, then by Proposition 4.3 the system
(Q^/^ ^ °) is induced from (Q^/s^ri > 0). Hence, {Q^/s^n > 0) is induced
from (O^/^, n > 0) via h^oh^. Since h^ o ho = hs o h^ and (O^/^, n >_ 0) is induced

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



124 E. ESTEVES

from (0^3/53, n >: 0), then the system {Q^/s^n >_ 0) is induced from (O^/^,^ >: 0).
The proof is complete. D

We now return to the local case, that is, assume that

( S, V, X, U i, . . . , Um, fl, . . . , fm -1)

is a local data. We will give an explicit "enlargement" for X / S that satisfies the depth
condition. Let S ' := S x Spec Z[T^], where Z[T^j] is the polynomial ring over the integers
Z in the variables T^, with 1 ̂  i <, m - 1 and 1 <, j <, m + 1. Let Y ' := Y Xs S ' .
We will make an abuse of notation by not distinguishing between a regular function on
Y and its pull-back to V. The scheme Y ' is smooth over S\ and ^^/y^/ is free of rank
m, with basis d z & i , . . . , dum' Let Z ' C V be the closed subscheme whose sheaf of ideals
J ' is generated by the regular functions

m

fk ''= fk + ̂  ̂ Tfcj + Tfc^+i for k = 1,.. . .
j'=i

m -

on V. If we let hs '. S —•> 6" be the closed embedding obtained by setting Tij = 0 for
all %, j , then it is clear that

Y ^ Y ' X s ' S and X = Z ' X 5 / 5

under fa,s. Let U ' C V be the open subscheme of Y ' where f[,..., /^_i is a regular
sequence relative to 5" (see [5], 11.1.4, p. 118). Since /i,... .fm-i is a regular sequence
on Y relative to 5, then Y = U^ Xs' S. Let Z' C Z ' D [// be the open subscheme of
points which are reduced in their geometric fibres [5], 12.1.1, p. 174. Since the geometric
fibres of X / S are reduced, then X = X' X s ' S. It is clear that the embedding X' C V is
transversally regular relative to S". Since U ' is smooth over S\ then X ' / S ' is a flat family
whose geometric fibres are reduced, local complete intersection curves.

Note that

(5.3) Z ' ^ Y x Spec Z[Tkj] i^m-i
l<,j<,m

and

(5.4) Djfk=D,fk+Tk,j

for every k = 1,.. . , TO - 1 and j = 1,..., m. Let

r w
Dif,

-Dif^-i

D2f[

Wi

^2/^-l

. . . D
D

Dm

mJl

mj2

fl
Jm-1 J

M' :=

LDi/^-i D^_, . . . A^_J

and 6^ := detM^, where M^ is the maximal minor of M' obtained by deleting the j-thand^.: —-.^
column for every j = 1,..., m. LetrTtlnmrt •Frvr f^\ri^-r\r o' — 1 yyi T £»+

A^^,...,^)^,.
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Because of (5.3) and (5.4), the matrix M' is "generic." As a consequence,

depth(A /(^ /),CM^ /))=2,

or equivalently,

Ext^,^,^/)=0

for i = 0,1 (see [16], Prop. 1, p. 195). Hence, X' / S ' satisfies the depth condition. By
Proposition 4.3, there is a Wronski algebra system (Q^f/s' ?n > 0) on X' / S ' . Its restriction
to X / S is a Wronski algebra system on X / S , as we remarked in Section 2.

Since we will often use the above construction, we make the following definition. The
data

{S',Y\Z\X',f[,...,f^)

will be called the enlargement of the local data

(5, V, X, Ui, . . . , Um, fl, ' . . , /m-l).

There are of course several ways of extending the family X / S to a larger family where
the depth condition holds. Nevertheless, for the sake of proving Theorem 2.6, we will
stick to the above construction.

The construction of the enlargement is "functoriaF in the following sense. Let

(^i.yi.Xi.'Ui,. . . ,Um^fl,' ' ' ,/m-l)

be a local data. Let h : S^ —> 5'i be any morphism of affine schemes, and let Y^ C YL x s^ S^
be an affine open subscheme. Let X^ := Y^HX], x^ 52. We will make an abuse of notation
by not distinguishing between a regular function on Yi and its pull-back to Y^. Of course,
the sheaf f2^ ^ is free, with basis chi, . . . , dum, and the ideal sheaf of X^ in Y^ is
generated by Ji,...,/^-i. For % = 1,2, let

(5^^ ; ̂ i^i^ A? • • • ifm-l)

denote the enlargement of the local data

[Si, Yi, Xi, U\, . . . , Um i fl; • • • ? fm-1) •

It is easy to see from the construction of the enlargement that h lifts to a morphism h1

making the diagram

S^S[

4 /4
Q hs2. ^f

02 ——^ ^2
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Cartesian, that Y^ is an affine open subscheme of Y{ Xs' S'^ and that

Z,=Y,nZ[xs^S!,.

In addition, we have

X!,=Y^nX[xs^S,.

For % = 1,2, let (%//5/,n > 0) be a Wronski algebra system on X [ / S [ , and let
(%/^71 ^ 0) be a system on Xi/Si induced from {Q^/s^n >. 0). Since X^/S^
satisfies the depth condition, by Lemma 5.2 we have that the Wronski algebra system
(%2/5 ?n > ^) ls Educed from (Q^ /^ ,n > 0).

There might be two different enlargements for a family X/5, depending on the choice
of local data. Nevertheless, two enlargements of X / S can be obtained as subfamilies of a
bigger family, as we observe below. Let YQ —^ So be any morphism of finite type of affine
schemes. Let 5i and S'2 be affine spaces over SQ together with sections

SQ —> 5'i and So —> S^.

For i == 1,2, let V, := YQ Xso Si, and let f[,..., f^ be a sequence of regular functions
on Yi. Assume that these sequences restrict to the same sequence / f , . . . , f^ on YQ under
the above sections.

LEMMA 5.5. - There are an affine space S^ over 5i Xso S-z together with sections

Si —> S'3 and S'2 —^ S^

making the diagram of maps

Si^53
(5.5.1) f ]

SQ ——> 5'2

commutative, and regular functions / f , . . . , f^ on Y^ := Vo x^ 5s restricting to f{,..., ff
on Yi for i = 1,2.

•z
Q ^^ »^^«,» K..,̂ ^ t-l^ J^, . . . , J^

Proof. - The proof, which is standard, is left to the reader. D
For 0 < i < 3, let Zi be the closed subscheme of Yi defined by f\,..., ff. Of course,

Z\ —> Z^

T T
ZQ —^ Z<i

is a commutative diagram which is Cartesian over (5.5.1), that is,

Zi —— Z,

I I
Si -^ Sj
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is Cartesian whenever defined. Moreover, for 0 < i < 3 let Ui denote the open subscheme
of Yi where f[,..., j[ form a regular sequence relative to 5^. Let also Xi C ̂  H E/i be
the open subscheme of points which are reduced in their geometric fibres over Si. Then
we obtain a commutative diagram, again Cartesian over (5.5.1),

Xi

T
Xo

X3

T
X2.

6. Existence and uniqueness of the Wronski algebra system

Consider a flat, quasi-projective morphism f '. X —> S, whose geometric fibres are
reduced, local complete intersection curves. Fix an ^-embedding i : X —^ Y into an
5-smooth scheme Y of pure relative dimension m over S.

PROPOSITION 6.1. - There is a Wronski algebra system on X / S .
Proof. - Since i is transversally regular over 5, we can cover S with affine open

subscheme S\, and then X Xs S\ with affine open subschemes V^ C Y Xs S\ in such
a way that for every A,/^:

(1) there are regular functions ^,i,...,^,m on Y^ such that their differentials
di^i,..., du^^rn form a basis for Q^ /^;

(2) if we let X^ := X D Y^, then X^ is the closed subscheme of Y^ given by a regular
sequence /^i,..., /^m-i on Y^ relative to 5\.
Let

(^A?^i? ̂ ?^^? «^,1^ • • • 5 J^,m-l)

be the enlargement of the local data

(6.1.1) (5\,y^X^,'U^l,. . .,Z^,m^,l5- • • ?//A,m-l)

for every A,/^. Let (O^//^/ ,n > 0) be a Wronski algebra system on X^S'^ and let
(% /^^ ^ °) be its ^stnction to x^ls\foT every A^-

We will prove that the above local systems can be patched together to form a global
Wronski algebra system on X / S . For i = 1,2, let

(^z? ^-ii •^if ̂ i,l^ • ' • f '^'z,m5 Ji^li • • • ? Ji,m—l)

be one of the local data (6.1.1). Let So C 5i H ^2 and

yoCVi Xs.SonY^Xs^So

be affine open subschemes such that there is an (m - 1) x (m - 1) invertible matrix Co
whose entries are regular functions on YQ and

(6.1.2) =C7o
L/l,m-lJ L/2,m-lJ
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It is clear that we can cover S'i n S^ and Xi x^ So HX^ x^ 5o with such subschemes. Let
XQ := X D YQ. We will show that the restrictions of (Q^ /^ , n >_ 0) and ((% /^ , n >: 0)
to XQ/SQ are (uniquely) equivalent. The uniqueness of the equivalence allows us to perform
the above-mentioned patching, thereby finishing the proof.

We will make an abuse of notation by not distinguishing between regular functions on
Yi and their restrictions to YQ, for % = 1,2. For i = 1,2, let

(%^0^ -%^0? fi,l^ " "> fi,m-l)

be the enlargement of the local data

{SQ^YQ^XQ^UI^^ . . . ,'^yn? .A,!? • • • ?Am-l)-

For i = 1,2, let (Q^^,n ^ 0) be a Wronski algebra system on X^/SQ, and let
WX^/SQ^ > 0) be its restriction to XQ/SQ. As shown in Section 5, for i = 1,2 the
Wronski algebra system {Q^/s^n ^ 0) is induced from (%/^,n ^0).

Since Co is invertible, Z^ is the subscheme of Y^ cut out by the components of

/2,1

Co

L/2,m-lJ

By (6.1.2), the restriction of the above vector to YQ is

- A,i -

-/l,m-l -

Therefore, from Lemma 5.5 we can easily find a family X ^ / S s satisfying the depth
condition, morphisms

S^S^ and S^ S^

making
d°o S3'0 ——' ^3

T T
5o o2

°0

commutative, and such that

Xo1 = Xs x^ 5o1 and Xo2 = ̂ 3 x^ 5o2.

Let (Q^s/Sa^ > 0) be a Wronski algebra system on X ^ / S ^ . Since XQ/SQ satisfies the
depth condition, then (Q^/^,n ^ 0) is induced from (%/^,n ^ 0) for i = 1,2. By
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Lemma 5.2, the Wronski algebra system {Q2^1 / s , n > 0) is induced from (Q^i/gi ̂  > 0).
Since {Q^/s ,n > 0) is also induced from (Q^i/^i^ > 0) by construction, then

(^:/So^>°) and (^:/So^>°)

are equivalent. Since {Q^/s ^n > ^) ls ^d11^ from (Q^/^,^ > 0) for i = 1,2,
then the restrictions of

^/^^O) and {Q^/s^n > 0)(0:
to XQ/SQ are (uniquely) equivalent. The proof is complete. D

It is worth remarking that the above construction does not depend on the covering of
5, X, V by local data. In fact, we could have taken a covering consisting of all possible
local data in the above proof. We would still need to prove that the Wronski algebra system
constructed above does not depend on the choice of Y and the embedding i : X —> Y.
However, since such a proof follows a standard argument, similar to the one used to prove
the naturality of u ^ x / s as constructed in Section 2 (see [11]), the proof is left to the reader.

Proof of Theorem 2.6. - We first claim that there is a Wronski algebra system on Ci,c.i.'
In fact, let X / S be a family in C/.c.i.. One can cover X with open subschemes X\ in
such a way that for every A there is an -^-embedding X\ ^—> Y\ into an 5'-smooth scheme
Y\ of pure relative dimension over S. Let

{Q^/s.n > 0) := (Q^/y./s^ > 0)

be the system constructed in Proposition 6.1. Because (Q^/sj71 > 0) is independent of
Y\ and the 5'-embedding X\ —> Y\, we can glue the above local systems together to
obtain a Wronski algebra system {Q^/s^ ^ 0) on X / S . It is easy to check that the
conditions in Definition 2.5 are met.

We now show that two Wronski algebra systems on Ci,c.i. are uniquely equivalent. In
fact, for % = 1,2, let (Q^.n > 0) be a Wronski algebra system on Ci.c.i.' Let X / S be
any family in Ci^c.i.' By Lemma 2.8, we can restrict ourselves to the local case, that is,
we can assume that there is a local data

(5, V, X, ̂ i, . . . , Um, fl, . . . , fm-l)'

Let
(^y^x^,...,/^)

be the enlargement of the above local data. By Proposition 4.3, the Wronski algebra systems

(Q^/,n>0) and (Q^/^n^O)

are equivalent. Since by Definition 2.5 the system (Q^/g^ > 0) is induced from
(Q^ n > 0) for i = 1,2, then the Wronski algebra systems

(Q^^0) and (Q^^>°)
are (uniquely) equivalent. The proof is complete. D
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7. Wronski systems and Wronskians

Let / : X —> S be a flat morphism whose geometric fibres are reduced, Gorenstein
curves. Assume there is a Wronski algebra system

{Q^IS^X/S^CX/S^^X/S^^^

on X / S . The existence of such system has been shown here only for local complete
intersection curves though. If no confusion is likely, then we will ommit the subscript
X / S .

Let L be an invertible sheaf on X. Denote by P^L) (resp. (^(L)) the tensor product
of L by P" (resp. Q71) with respect to the right Ox-algebra structure of P71 (resp. Q".)
The sheaf P^L) (resp. ̂ (I.)) will be regarded as an Ox-module via the left Ox-algebra
structure of Pn (resp. Q71.)

Tensoring diagram (2.4.1) on the right by L we obtain a commutative diagram of left
Ox-modules, namely,

Pn(L)p^) P^W
(7-1) ^w[ ^^wi

O^C^Qn-l^)

for each n > 0. On the other hand, there are canonical homomorphisms

^: rf^L -^ pn{L)
for each n > 0 such that

(7.2) ^(^o^ =lyn-l

for every n > 0.
Since L is invertible, then Q71^) is locally free of rank n + 1 for every n > 0. Let W

be a locally free Os -module of constant rank r + 1. Let

7 : W -^ f^L

be an O^-linear map. By composing /*7 with ^n and ^(.L) we obtain a map

^ : f-w -^ Qn{L}

for each n >_ 0, such that

(7.3) qn{L)ovn=vn-l

for every n > 0, because of (7.2) and the commutativity of (7.1). Expression (7.3) shows
that {f:'W,Qn{L),qn{L),vn,n > 0) is a Wronski system, as defined in [9] or [10]. For
convenience, we will use the following shorter notation,

Wx/s{L^) := {rW^Qn{L^qn{L}^n^n ̂  0),

or simply W{L^), when no confusion is likely.
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Associated to a Wronski system we have the concepts of a gap sequence at a point of
X and of a Weierstrass point, for which the reader may consult [10], Section 2. The order
sequence at a point of X is the gap sequence shifted by —1.

Laksov and Thorup have shown how to associate to a Wronski system certain maps,
called Wronskians, whose zero schemes consist of Weierstrass points of the Wronski
system. These maps are presented below. Let n^^n^^... be the sequence of integers
defined inductively by

rkz/ := no + ... 4- HI

for z = 0,1,.... where rW denotes the rank of the map of vector bundles v\ Note that
either n, is 0 or 1 for all i ^ 0 {see [9] , 1.4, p. 134.) Denote by eo, e i , . . . the increasing
sequence of indices e for which n^ = 1, or in other words: the generic order sequence of
W(£,7). Then, for every non-negative integer h there is a canonical homomorphism

r^+l
(7.4) Wh : /* /\ W -. L^ 0 ̂ -^,

where e o , . . . , e^ is the increasing sequence of generic orders e less than or equal to h
(see [9], 1.5.2, p. 135.) The map WH is called the Wronskian of rank TH + 1 of the Wronski
system W(L,7). The homomorphism Wh is in fact defined by r^ rather than by h.

The importance of Wh is that its zero scheme Zh parametrizes Weierstrass points of
W(Z/,7) (see [9], 1.7, p. 136.) In fact, the Zh form an increasing sequence of closed
subsets of X,

Zo c Zi c ^2 c ... c X,

which becomes eventually stationary, and the set of Weierstrass points of the Wronski
system is the union of the Zh (see [10], 3.4.)

If U C X is an open subscheme, then the restriction of the system Wx/s{L^) to U
is a Wronski system; more precisely, the restriction is equal to Wu/s{Lu^u). where Lu
is the restriction of L to U and 7^ is the composition of 7 with the push-forward by /
of the canonical map L —^ Lu on X. If U contains all the associated points of X, then
the rank of the restriction v^ of v"' to U is equal to the rank of v71 for each n > 0.
Therefore, the Wronskians of }Vu/s{Lu,^u) are the restrictions to U of the Wronskians
of >Vx/s(^,7) (see [9], 1.5, p. 135.) In particular, if we let U := X^, where Xs771 is the
5-smooth locus of X, then the restrictions of the Wronskians of Wx/s(L^) to X8^ are
equal to the Wronskians of Wx^/s^Lx^^x^)' In addition, by Lemma 2.7 the maps
Wh are determined by their restrictions to X5771, what allows us to compare the maps Wh
and the Wronskians obtained in the previous literature.

Assume from now on that 7 is injective. If X / S is smooth, then Laksov and Thorup
have shown that the map v1 is injective for sufficiently large i (see [9], 4.6, p. 146.) Their
result carries over immediately to the case where the fibres of X / S are geometrically
integral. Moreover, since v1 is injective if and only if 'y'(^) is injective for every associated
point ^ of X, then we can even easily claim the following proposition.
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PROPOSITION 7.5. - If the fibres of X/S over associated points of S are geometrically
integral, then v^ is injective for sufficiently large i. D

It is not tme in general that v1 is injective for i sufficiently large. The reason is that
although 7 may be injective for a reducible curve X over a field, there might be relations
of linear dependence among the sections of L in W when restricted to an irreducible
component of X. In more geometrical terms, the rational map X —^ P{W) defined by
(£,7) will map X to a non-degenerate curve in P(W) if 7 is injective, but may map
some of the components of X into proper subspaces of P(W). Easy examples of the
non-injectivity of v^ for all i can thus be found by considering non-degenerate reducible
curves in projective space with some degenerate components, together with the linear
system given by the hyperplane sections. Actually, this is in fact the only way that v1 may
fail to be injective for sufficiently large i (Proposition 7.6.).

If v^ is injective for sufficiently large %, then there must be r +1 generic gaps, e o , . . . , Or.
In this case, we can consider the Wronskian of rank r + 1,

r+l

w := Wh : /* /\ W -^ L^1 (g)a;eo+•••+er,

for h sufficiently large. The map w will be called simply the Wronskian of (^,7). As
remarked above, the Wronskian is in fact determined by its restriction to the smooth locus
of X / S . Hence, in the case S = Spec fc, where k is an algebraically closed field, and X is
an irreducible curve, the Wronskian obtained above coincides with the one defined by Lax
and Widland in characteristic zero [12], or by Garcia and Lax in arbitrary characteristic
[4]. The zero scheme Z of the Wronskian w is called the Weierstrass subscheme of X
associated to (£,7).

The most natural question we are left with is whether Z is a Carrier divisor on X. Since
Z is the zero scheme of w, then Z is a Cartier divisor if and only if w is not zero at
the associated points of X. Equivalently, Z is a Cartier divisor if and only if Z does not
contain any irreducible component of any fibre of X / S over an associated point of 5.
Moreover, in order for Z to be a relative Cartier divisor over S, then we need to impose the
above condition on every geometric fibre of X / S . More precisely, Z is a relative Cartier
divisor if and only if Z does not contain any irreducible component of any fibre of X / S .

For each s G 5, let 7/(s) be the composition

y(,) : w(s) ̂ (f.L)(s) -. H°{X(s)^ £(.)),

where the second homomorphism is given by base change. Laksov and Thorup ([9], 4.7,
p. 147) called (L, 7) a linear system on X / S if Y{s) is injective for each s G S. In
our more general situation we have to modify their definition to take into account all the
irreducible components of the fibres, in order to prevent a situation like the one described
after Proposition 7.5.

Let s € 5, and let Y C X{s) be an irreducible component. Let

y(,^ : W^-^H^X^Hs)) -. H°^L(s)y)^
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where the second homomorphism is given by restriction to Y. The pair (£,7) is called
a linear system on X / S if 7/(.s)y is injective at each point s € 5, for each irreducible
component V of X(s).

PROPOSITION 7.6. - IfY{s)Y is infective at a point s € S, for each irreducible component
Y C X(s), then i/(.s) is injective for sufficiently large i.

Proof. - The map v'1^) is injective if ^(^) is injective for all generic points ^ G X(^).
Therefore, the proof of [9], 4.5, p. 145 may be easily adapted to yield the proof of the
proposition, since the stronger hypothesis that 7/(s)y be injective for every irreducible
component Y of X{s) takes care of all generic points of X(s). The proof is complete. D

COROLLARY 7.7. - If 7'(5)y is injective at every associated point s of S, for each
irreducible component Y C X{s), then v'1 is injective for sufficiently large i. In particular,
the Weierstrass subscheme Z of X associated to (£, 7) is defined. If in addition the
characteristic of the residue field k{s) is 0 for all associated points s G S, then Z is a
Cartier divisor.

Proof. - The injectivity of v1 may be checked at the associated points $ of X, which
are the generic points of the fibres X(s) over associated points s G S. Hence, the proof
of the first statement follows directly from Proposition 7.6. As for the last statement, since
v'1 is injective for i sufficiently large, then the number of gaps at every associated point ^
of X is r + 1. Since char. k(s) = 0 for the point s G S lying under ^, then the sequence
of orders at ^ is classical, that is, the sequence is 0,1, . . . ,r (see [9], 4.5, p. 145). This
sequence must also be the generic order sequence. Hence, ^ is not contained in Z. In other
words, the subscheme Z is a Cartier divisor. D

PROPOSITION 7.8. - jy(L,7) is a linear system on X/S and the characteristic ofk(s) is
0 for all s e 5', then the Weierstrass subscheme Z is a relative Cartier divisor.

Proof. - Since (£,7) is a linear system on X / S , then we can apply Proposition 7.6 to
all fibres of X / S . The proof is then analogous to the one given for Corollary 7.7. D

The hypothesis on the characteristics of the residue fields of points in 5" is necessary,
even when X / S is a smooth family. The reason is that the sequence of generic orders of a
non-singular curve in positive characteristic need not be classical, as several examples in
the literature show. Hence, it might be the case that the general fibre of a smooth family
is classical but a special fibre is not. In this case the whole special fibre is contained in Z.
In order to obtain a Cartier divisor (resp. a relative Carder divisor), one must thus impose
conditions on the sequence of orders at every generic point of every fibre of X / S over an
associated point of S (resp. of every fibre of X / S . )

PROPOSITION 7.9. - If the sequence of orders of (I/, 7) at all generic points of all fibres
of X / S (resp. of all the fibres of X / S over the associated points of S ) are equal, then the
associated Weierstrass subscheme ofX is a relative Cartier divisor (resp. a Cartier divisor.)

Proof. - As in Corollary 7.7. D
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