@article{ASENS_1995_4_28_2_161_0, author = {Soudry, David}, title = {On the archimedean theory of {Rankin-Selberg} convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {161--224}, publisher = {Elsevier}, volume = {Ser. 4, 28}, number = {2}, year = {1995}, doi = {10.24033/asens.1712}, mrnumber = {96m:11043}, zbl = {0824.11034}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.1712/} }
TY - JOUR AU - Soudry, David TI - On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$ JO - Annales scientifiques de l'École Normale Supérieure PY - 1995 SP - 161 EP - 224 VL - 28 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1712/ DO - 10.24033/asens.1712 LA - en ID - ASENS_1995_4_28_2_161_0 ER -
%0 Journal Article %A Soudry, David %T On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$ %J Annales scientifiques de l'École Normale Supérieure %D 1995 %P 161-224 %V 28 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1712/ %R 10.24033/asens.1712 %G en %F ASENS_1995_4_28_2_161_0
Soudry, David. On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 2, pp. 161-224. doi : 10.24033/asens.1712. https://www.numdam.org/articles/10.24033/asens.1712/
[C] Canonical extensions of Harish-Chandra modules (Can. J. Math., Vol. 41, 1989, pp. 315-438). | MR | Zbl
,[DM] Factorisations des fonctions et de vecteurs indéfiniment différentiables (Bull. Sci. Math. II, Sér. 102, 1978, pp. 307-330). | MR | Zbl
and ,[GS] Analytic properties of automorphic L-functions (Perspectives in Math., Vol. 6, Academic Press, 1988). | MR | Zbl
and ,[G] Produits tensoriels topologiques et espaces nucléaires (Memoirs AMS, N° 16, 1955). | MR | Zbl
,[J.S.] Rankin-Selberg convolutions : archimedean theory (Israel Mathematical Conference Proc., Festschrift in honor of I. Piatetski-Shapiro, S. Gelbert, R. Howe, P. Sarnak, Ed., Part I, 1990, pp. 125-207). | MR | Zbl
and ,[Sh1] On certain L-functions (American J. Math., Vol. 103, 1981, pp. 297-355). | MR | Zbl
,[Sh2] Local coefficients as Artin factors for real groups (Duke Math. J., Vol. 52, 1985, pp. 973-1007). | MR | Zbl
,[S] Rankin-Selberg convolutions for SO2ℓ+1 × GLn : local theory (Memoirs of AMS, No. 500, 1993, pp. 1-100). | Zbl
,[W1] Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in Lie Group Representations I (Proceedings, University of Maryland 1982-1983, Springer Lecture Notes in Mathematics, Vol. 1024, pp. 287-369). | MR | Zbl
,[W2] Real reductive groups I, Academic Press, 1988. | MR | Zbl
,[W3] Real reductive groups II, Academic Press, 1992. | MR | Zbl
,[Wr] Harmonic analysis on semi-simple Lie groups I (Grund. Math. Wiss., Vol. 188, Springer-Verlag, 1972). | MR | Zbl
,- Doubling constructions and tensor product L-functions: coverings of the symplectic group, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.63
- On gamma factors of Rankin–Selberg integrals for U2 × Res/GL, Journal of Number Theory, Volume 269 (2025), p. 203 | DOI:10.1016/j.jnt.2024.09.013
- An asymptotic expansion of (k, c)-functions for
, Mathematische Zeitschrift, Volume 306 (2024) no. 2 | DOI:10.1007/s00209-024-03431-w - The generalized doubling method: (𝑘,𝑐) models, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 7, p. 2831 | DOI:10.1090/proc/16370
- The generalized doubling method: local theory, Geometric and Functional Analysis, Volume 32 (2022) no. 6, p. 1233 | DOI:10.1007/s00039-022-00609-4
- On The Langlands parameter of a simple supercuspidal representation: even orthogonal groups, Israel Journal of Mathematics, Volume 246 (2021) no. 1, p. 459 | DOI:10.1007/s11856-021-2259-1
- AdjointL-Functions for GL(3) and U2,1, International Mathematics Research Notices, Volume 2021 (2020) no. 1, p. 324 | DOI:10.1093/imrn/rnz125
- On the archimedean local gamma factors for adjoint representation of GL3, part I, Pacific Journal of Mathematics, Volume 304 (2020) no. 1, p. 303 | DOI:10.2140/pjm.2020.304.303
- Doubling constructions and tensor product L-functions: the linear case, Inventiones mathematicae, Volume 217 (2019) no. 3, p. 985 | DOI:10.1007/s00222-019-00883-4
- The Langlands parameter of a simple supercuspidal representation: symplectic groups, The Ramanujan Journal, Volume 50 (2019) no. 3, p. 589 | DOI:10.1007/s11139-018-0060-5
- A multivariate integral representation on 𝐺𝐿₂×𝐺𝑆𝑝₄ inspired by the pullback formula, Transactions of the American Mathematical Society, Volume 371 (2018) no. 8, p. 5591 | DOI:10.1090/tran/7463
- Complementary results on the Rankin–Selberg gamma factors of classical groups, Journal of Number Theory, Volume 146 (2015), p. 390 | DOI:10.1016/j.jnt.2013.12.002
- On central critical values of the degree four
L -functions for GSp 4 : a simple trace formula, Mathematische Zeitschrift, Volume 277 (2014) no. 1-2, p. 149 | DOI:10.1007/s00209-013-1248-4 - On the gcd of local Rankin–Selberg integrals for even orthogonal groups, Compositio Mathematica, Volume 149 (2013) no. 4, p. 587 | DOI:10.1112/s0010437x12000644
- Archimedean zeta integrals on GL n × GL m and SO2n+1 × GL m, Manuscripta Mathematica, Volume 141 (2013) no. 3-4, p. 485 | DOI:10.1007/s00229-012-0581-y
- Multiplicativity of the gamma factors of Rankin–Selberg integrals for SO 2l × GL n, Manuscripta Mathematica, Volume 142 (2013) no. 3-4, p. 307 | DOI:10.1007/s00229-012-0602-x
- Full multiplicativity of gamma factors for SO2ℓ+1 × GL n, Israel Journal of Mathematics, Volume 120 (2000) no. 2, p. 511 | DOI:10.1007/bf02834849
- A Siegel–Weil Identity for G2 and Poles of L-Functions, Journal of Number Theory, Volume 82 (2000) no. 2, p. 256 | DOI:10.1006/jnth.1999.2480
- Boundedness of automorphic 𝐿–functions in vertical strips, Journal of the American Mathematical Society, Volume 14 (2000) no. 1, p. 79 | DOI:10.1090/s0894-0347-00-00351-9
- Stability of gamma factors forSO(2n+1), Manuscripta Mathematica, Volume 95 (1998) no. 1, p. 437 | DOI:10.1007/bf02678042
Cité par 20 documents. Sources : Crossref