On the archimedean theory of Rankin-Selberg convolutions for SO2l+1×GLn
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 2, pp. 161-224.
@article{ASENS_1995_4_28_2_161_0,
     author = {Soudry, David},
     title = {On the archimedean theory of {Rankin-Selberg} convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {161--224},
     publisher = {Elsevier},
     volume = {Ser. 4, 28},
     number = {2},
     year = {1995},
     doi = {10.24033/asens.1712},
     mrnumber = {96m:11043},
     zbl = {0824.11034},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1712/}
}
TY  - JOUR
AU  - Soudry, David
TI  - On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1995
SP  - 161
EP  - 224
VL  - 28
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1712/
DO  - 10.24033/asens.1712
LA  - en
ID  - ASENS_1995_4_28_2_161_0
ER  - 
%0 Journal Article
%A Soudry, David
%T On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$
%J Annales scientifiques de l'École Normale Supérieure
%D 1995
%P 161-224
%V 28
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1712/
%R 10.24033/asens.1712
%G en
%F ASENS_1995_4_28_2_161_0
Soudry, David. On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times {\rm GL}_n$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 2, pp. 161-224. doi : 10.24033/asens.1712. https://www.numdam.org/articles/10.24033/asens.1712/

[C] W. Casselman, Canonical extensions of Harish-Chandra modules (Can. J. Math., Vol. 41, 1989, pp. 315-438). | MR | Zbl

[DM] J. Dixmier and P. Malliavin, Factorisations des fonctions et de vecteurs indéfiniment différentiables (Bull. Sci. Math. II, Sér. 102, 1978, pp. 307-330). | MR | Zbl

[GS] S. Gelbart and F. Shahidi, Analytic properties of automorphic L-functions (Perspectives in Math., Vol. 6, Academic Press, 1988). | MR | Zbl

[G] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires (Memoirs AMS, N° 16, 1955). | MR | Zbl

[J.S.] H. Jacquet and J. Shalika, Rankin-Selberg convolutions : archimedean theory (Israel Mathematical Conference Proc., Festschrift in honor of I. Piatetski-Shapiro, S. Gelbert, R. Howe, P. Sarnak, Ed., Part I, 1990, pp. 125-207). | MR | Zbl

[Sh1] F. Shahidi, On certain L-functions (American J. Math., Vol. 103, 1981, pp. 297-355). | MR | Zbl

[Sh2] F. Shahidi, Local coefficients as Artin factors for real groups (Duke Math. J., Vol. 52, 1985, pp. 973-1007). | MR | Zbl

[S] D. Soudry, Rankin-Selberg convolutions for SO2ℓ+1 × GLn : local theory (Memoirs of AMS, No. 500, 1993, pp. 1-100). | Zbl

[W1] N. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in Lie Group Representations I (Proceedings, University of Maryland 1982-1983, Springer Lecture Notes in Mathematics, Vol. 1024, pp. 287-369). | MR | Zbl

[W2] N. Wallach, Real reductive groups I, Academic Press, 1988. | MR | Zbl

[W3] N. Wallach, Real reductive groups II, Academic Press, 1992. | MR | Zbl

[Wr] G. Warner, Harmonic analysis on semi-simple Lie groups I (Grund. Math. Wiss., Vol. 188, Springer-Verlag, 1972). | MR | Zbl

  • Kaplan, Eyal Doubling constructions and tensor product L-functions: coverings of the symplectic group, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.63
  • Morimoto, Kazuki On gamma factors of Rankin–Selberg integrals for U2 × Res/GL, Journal of Number Theory, Volume 269 (2025), p. 203 | DOI:10.1016/j.jnt.2024.09.013
  • Luo, Caihua An asymptotic expansion of (k,  c)-functions for GLn(F), Mathematische Zeitschrift, Volume 306 (2024) no. 2 | DOI:10.1007/s00209-024-03431-w
  • Cai, Yuanqing; Friedberg, Solomon; Gourevitch, Dmitry; Kaplan, Eyal The generalized doubling method: (𝑘,𝑐) models, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 7, p. 2831 | DOI:10.1090/proc/16370
  • Cai, Yuanqing; Friedberg, Solomon; Kaplan, Eyal The generalized doubling method: local theory, Geometric and Functional Analysis, Volume 32 (2022) no. 6, p. 1233 | DOI:10.1007/s00039-022-00609-4
  • Adrian, Moshe; Kaplan, Eyal On The Langlands parameter of a simple supercuspidal representation: even orthogonal groups, Israel Journal of Mathematics, Volume 246 (2021) no. 1, p. 459 | DOI:10.1007/s11856-021-2259-1
  • Hundley, Joseph; Zhang, Qing AdjointL-Functions for GL(3) and U2,1, International Mathematics Research Notices, Volume 2021 (2020) no. 1, p. 324 | DOI:10.1093/imrn/rnz125
  • Tian, Fangyang On the archimedean local gamma factors for adjoint representation of GL3, part I, Pacific Journal of Mathematics, Volume 304 (2020) no. 1, p. 303 | DOI:10.2140/pjm.2020.304.303
  • Cai, Yuanqing; Friedberg, Solomon; Ginzburg, David; Kaplan, Eyal Doubling constructions and tensor product L-functions: the linear case, Inventiones mathematicae, Volume 217 (2019) no. 3, p. 985 | DOI:10.1007/s00222-019-00883-4
  • Adrian, Moshe; Kaplan, Eyal The Langlands parameter of a simple supercuspidal representation: symplectic groups, The Ramanujan Journal, Volume 50 (2019) no. 3, p. 589 | DOI:10.1007/s11139-018-0060-5
  • Pollack, Aaron; Shah, Shrenik A multivariate integral representation on 𝐺𝐿₂×𝐺𝑆𝑝₄ inspired by the pullback formula, Transactions of the American Mathematical Society, Volume 371 (2018) no. 8, p. 5591 | DOI:10.1090/tran/7463
  • Kaplan, Eyal Complementary results on the Rankin–Selberg gamma factors of classical groups, Journal of Number Theory, Volume 146 (2015), p. 390 | DOI:10.1016/j.jnt.2013.12.002
  • Furusawa, Masaaki; Martin, Kimball On central critical values of the degree four L L -functions for GSp(4) GSp 4 : a simple trace formula, Mathematische Zeitschrift, Volume 277 (2014) no. 1-2, p. 149 | DOI:10.1007/s00209-013-1248-4
  • Kaplan, Eyal On the gcd of local Rankin–Selberg integrals for even orthogonal groups, Compositio Mathematica, Volume 149 (2013) no. 4, p. 587 | DOI:10.1112/s0010437x12000644
  • Ishii, Taku; Stade, Eric Archimedean zeta integrals on GL n × GL m and SO2n+1 × GL m, Manuscripta Mathematica, Volume 141 (2013) no. 3-4, p. 485 | DOI:10.1007/s00229-012-0581-y
  • Kaplan, Eyal Multiplicativity of the gamma factors of Rankin–Selberg integrals for SO 2l × GL n, Manuscripta Mathematica, Volume 142 (2013) no. 3-4, p. 307 | DOI:10.1007/s00229-012-0602-x
  • Soudry, David Full multiplicativity of gamma factors for SO2ℓ+1 × GL n, Israel Journal of Mathematics, Volume 120 (2000) no. 2, p. 511 | DOI:10.1007/bf02834849
  • Ginzburg, David; Jiang, Dihua A Siegel–Weil Identity for G2 and Poles of L-Functions, Journal of Number Theory, Volume 82 (2000) no. 2, p. 256 | DOI:10.1006/jnth.1999.2480
  • Gelbart, Stephen; Shahidi, Freydoon Boundedness of automorphic 𝐿–functions in vertical strips, Journal of the American Mathematical Society, Volume 14 (2000) no. 1, p. 79 | DOI:10.1090/s0894-0347-00-00351-9
  • Cogdell, J. W.; Piatetski-Shapiro, I. I. Stability of gamma factors forSO(2n+1), Manuscripta Mathematica, Volume 95 (1998) no. 1, p. 437 | DOI:10.1007/bf02678042

Cité par 20 documents. Sources : Crossref