@article{ASENS_1994_4_27_2_209_0, author = {Voisin, Claire}, title = {Sur l'application {d'Abel-Jacobi} des vari\'et\'es de {Calabi-Yau} de dimension trois}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {209--226}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 27}, number = {2}, year = {1994}, doi = {10.24033/asens.1693}, mrnumber = {95f:14073}, zbl = {0808.14030}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.1693/} }
TY - JOUR AU - Voisin, Claire TI - Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois JO - Annales scientifiques de l'École Normale Supérieure PY - 1994 SP - 209 EP - 226 VL - 27 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1693/ DO - 10.24033/asens.1693 LA - fr ID - ASENS_1994_4_27_2_209_0 ER -
%0 Journal Article %A Voisin, Claire %T Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois %J Annales scientifiques de l'École Normale Supérieure %D 1994 %P 209-226 %V 27 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1693/ %R 10.24033/asens.1693 %G fr %F ASENS_1994_4_27_2_209_0
Voisin, Claire. Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 27 (1994) no. 2, pp. 209-226. doi : 10.24033/asens.1693. http://www.numdam.org/articles/10.24033/asens.1693/
[1] Infinite Generation of the Griffiths Group : a Local Proof (Thesis, University of Utah, 1986).
,[2] Curves of Genus Three on a General Abelian Threefold and the Non Finite Generation of the Griffiths Group, dans : Arithmetic of complex manifolds ; Lecture Notes in Math., n° 1399 Springer, 1989, p. 10-26. | MR | Zbl
,[3] Algebraic Cycles on Certain Calabi-Yau Threefolds, preprint de l'Université de Pise, 1992.
et ,[4] Homological Equivalence, Modulo Algebraic Equivalence, is Not Finitely Generated (Inst. Hautes Études Sci., Publ. Math., vol. 58, 1983, p. 19-38). | Numdam | MR | Zbl
,[5] A Note on Some Formal Properties of the Infinitesimal Abel-Jacobi Mapping, dans Geometry today, E. ARBARELLO et al. éd. (Progress in Math., vol. 60, Birkhäuser, 1985, p. 69-73). | MR | Zbl
,[6] Théorie de Hodge II (Inst. Hautes Études Sci., Publ. Math., vol. 40, 1971, p. 5-58). | Numdam | MR | Zbl
,[7] Extendability of Normal Functions Associated to Algebraic cycles, dans : Topics in Transcendental Algebraic Geometry, P. GRIFFITHS éd. (Ann. of Math. Studies, Study, 106, Princeton University Press, 1984, p. 269-288). | MR | Zbl
et ,[8] On Threefolds with Trivial Canonical Bundle, preprint.
,[9] Griffiths' Infinitesimal Invariant and the Abel-Jacobi Map (J. Differential Geom., vol. 29, 1989, p. 545-555). | MR | Zbl
,[10] The Period Map for Hypersurface Sections of High Degree of an Arbitrary Variety (Compositio Math., vol. 55, 1985, p. 135-156). | Numdam | MR | Zbl
,[11] Infinitesimal Variations of Hodge Structure III : Determinantal Varieties and the Infinitesimal Invariant of Normal Functions (Compositio Math., vol. 50, 1983, p. 267-324). | Numdam | MR | Zbl
,[12] Periods of Integrals on Algebraic Manifolds I, II (Amer. J. Math., vol. 90, 1968, p. 568-626, 805-865). | MR | Zbl
,[13] On the Periods of Certain Rational Integrals I, II (Ann. of Math., vol. 90, 1969, p. 460-541). | MR | Zbl
,[14] The Regularity Theorem in Algebraic Geometry, dans : Actes du congrès international de Mathématiques, Nice, 1970, tome 1, p. 437-443. | MR | Zbl
,[15] Noether-Lefschetz Locus for Surfaces (Trans. Amer. Math. Soc., vol. 324, n° 1, 1991). | MR | Zbl
,[16] Cycles in the Generic Abelian Threefold (Proc. Indian Acad. Sci., vol. 99, 1989, p. 191-196). | MR | Zbl
,[17] Curves on Threefolds with Trivial Canonical Bundle (Proc. Indian Acad. Sci. Math. vol. 101, 1991, n° 3, p. 199-213). | MR | Zbl
,[18] Une remarque sur l'invariant infinitésimal des fonctions normales (C. R. Acad. Sci. Paris, vol. 307, Série I, 1988, p. 157-160). | MR | Zbl
,[19] Une approche infinitésimale du théoréme de H. Clemens sur les cycles d'une quintique générale de ℙ4 (J. Algebraic Geometry, vol. I, 1992, p. 157-174). | MR | Zbl
,[20] Densité du lieu de Noether-Lefschetz pour les sections hyperplanes des variétés de Calabi-Yau (International J. of Math. vol. 3, n° 5, 1992, p. 699-715). | MR | Zbl
,[21] Variation of Mixed Hodge Structure I (Invent. Math., vol. 80, p. 489-542). | MR | Zbl
et ,Cité par Sources :