@article{ASENS_1992_4_25_1_77_0, author = {Yang, Deane}, title = {Convergence of riemannian manifolds with integral bounds on curvature. {I}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {77--105}, publisher = {Elsevier}, volume = {Ser. 4, 25}, number = {1}, year = {1992}, doi = {10.24033/asens.1644}, mrnumber = {93a:53037}, zbl = {0748.53025}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.1644/} }
TY - JOUR AU - Yang, Deane TI - Convergence of riemannian manifolds with integral bounds on curvature. I JO - Annales scientifiques de l'École Normale Supérieure PY - 1992 SP - 77 EP - 105 VL - 25 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1644/ DO - 10.24033/asens.1644 LA - en ID - ASENS_1992_4_25_1_77_0 ER -
%0 Journal Article %A Yang, Deane %T Convergence of riemannian manifolds with integral bounds on curvature. I %J Annales scientifiques de l'École Normale Supérieure %D 1992 %P 77-105 %V 25 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1644/ %R 10.24033/asens.1644 %G en %F ASENS_1992_4_25_1_77_0
Yang, Deane. Convergence of riemannian manifolds with integral bounds on curvature. I. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 25 (1992) no. 1, pp. 77-105. doi : 10.24033/asens.1644. https://www.numdam.org/articles/10.24033/asens.1644/
[1] Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds (J. Am. Math. Soc., 1989, pp. 455-490). | MR | Zbl
,[2] Convergence and Rigidity of Manifolds Under Ricci Curvature Bounds (Invent. Math., Vol. 102, 1990, pp. 429-445). | MR | Zbl
,[3] Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-Norm of Curvature Bounded, preprint, 1990.
and ,[4] Smoothing Riemannian Metrics (Math. Zeitschr., Vol. 188, 1984, pp. 69-74). | MR | Zbl
, and ,[5] Gromov's Almost Flat Manifolds (Astérisque, Vol. 81, 1981). | Numdam | MR | Zbl
and ,[6] Eigenvalues in Riemannian Geometry, Academic Press, 1984. | MR | Zbl
,[7] Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator and the Geometry of Complete Riemannian Manifolds (J. Diff. Geometry, Vol. 17, 1982, p. 15-53). | MR | Zbl
, and ,[8] Finiteness Theorems for Riemannian Manifolds (Am. J. Math., Vol. 92, 1970, pp. 61-74). | MR | Zbl
,[9] Some Isoperimetric Inequalities and Eigenvalue Estimates (Ann. scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 419-435). | Numdam | MR | Zbl
,[10] Deforming Metrics in the Direction of Their Ricci Tensors (J. Diff. Geometry, Vol. 18, 1983, pp. 157-162). | MR | Zbl
,[11] Isoperimetric Inequalities Based on Integral Norms of Ricci Curvature (Astérisque, Vol. 157-158, 1988, pp. 191-216). | Numdam | MR | Zbl
,[12] Convergence of Riemannian Manifolds, Ricci Pinching, and Ln/2-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 349-382). | Zbl
,[13] Einstein Manifolds (J. Diff. Geometry, Vol. 32, 1990, pp. 155-183). | Zbl
,[14] Ln/2-Curvature Pinching (J. Diff. Geometry, Vol. 32, 1990, pp. 713-774). | Zbl
,[15] Lipschitz Convergence of Riemannian Manifolds, (Pac. J. Math., Vol. 131, 1988, pp. 119-141). | MR | Zbl
and ,[16] Structures métriques pour les variétés riemanniennes, Cedic, 1981. | MR | Zbl
, and ,[17] Three-Manifolds with Positive Ricci Curvature, (J. Diff. Geometry, Vol. 17, 1982, pp. 255-306). | MR | Zbl
,[18] Global Existence for Nonlinear Wave Equations (Commun. Pure Appl. Math., Vol. 43, 1980, pp. 43-101). | MR | Zbl
,[19] Convergence of Riemannian Manifolds (Compositio Mathematica, Vol. 62, 1987, pp. 3-16). | Numdam | MR | Zbl
,[20] Deforming the Metric on Complete Riemannian Manifolds, preprint, 1987.
,[21] Pseudodifferential Operators, Princeton University Press, 1981. | MR | Zbl
,[22] Convergence of Riemannian Manifolds with Integral Bounds on Curvature. II [Ann. scient. Éc. Norm. Sup. (to appear)]. | Numdam | Zbl
,[23] Lp Pinching and Compactness Theorems for Compact Riemannian Manifolds, preprint.
,[24] Riemannian Manifolds with Small Integral Norm of Curvature, preprint, 1989.
,[25] Existence and Regularity of Energy-Minimizing Riemannian Metrics [Internat. Math. Research Notices (Duke Math. J.), 1991]. | MR | Zbl
,- Singular sets on spaces with integral curvature bounds and diffeomorphism finiteness for manifolds, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 1 | DOI:10.1007/s00526-024-02869-4
- Neumann gradient estimate for nonlinear heat equation under integral Ricci curvature bounds, AIMS Mathematics, Volume 9 (2024) no. 2, p. 3881 | DOI:10.3934/math.2024191
- Manifolds with Small Curvature Concentration, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00183-y
- From
bounds to Gromov–Hausdorff convergence of Riemannian manifolds, Geometriae Dedicata, Volume 218 (2024) no. 2 | DOI:10.1007/s10711-023-00875-y - Differential Harnack inequalities for semilinear parabolic equations on Riemannian manifolds II: Integral curvature condition, Nonlinear Analysis, Volume 239 (2024), p. 113426 | DOI:10.1016/j.na.2023.113426
- List’s flow with integral curvature bounds on complete noncompact Riemannian manifolds, Nonlinear Analysis, Volume 246 (2024), p. 113583 | DOI:10.1016/j.na.2024.113583
- Ricci Flow Under Kato-Type Curvature Lower Bound, The Journal of Geometric Analysis, Volume 34 (2024) no. 3 | DOI:10.1007/s12220-023-01522-4
- Sobolev inequalities and convergence for Riemannian metrics and distance functions, Annals of Global Analysis and Geometry, Volume 63 (2023) no. 4 | DOI:10.1007/s10455-023-09906-z
- Time analyticity for the parabolic type Schrödinger equation on Riemannian manifold with integral Ricci curvature condition, Differential Geometry and its Applications, Volume 90 (2023), p. 102045 | DOI:10.1016/j.difgeo.2023.102045
- Geometry and topology of manifolds with integral radial curvature bounds, Differential Geometry and its Applications, Volume 91 (2023), p. 102064 | DOI:10.1016/j.difgeo.2023.102064
- Ricci curvature integrals, local functionals, and the Ricci flow, Transactions of the American Mathematical Society, Series B, Volume 10 (2023) no. 27, p. 944 | DOI:10.1090/btran/155
- Convergence of Riemannian 4-manifolds with L2L^2-curvature bounds, Advances in Calculus of Variations, Volume 14 (2021) no. 1, p. 83 | DOI:10.1515/acv-2017-0058
- Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces, Geometry Topology, Volume 25 (2021) no. 2, p. 913 | DOI:10.2140/gt.2021.25.913
- Stability of metric measure spaces with integral Ricci curvature bounds, Journal of Functional Analysis, Volume 281 (2021) no. 8, p. 109142 | DOI:10.1016/j.jfa.2021.109142
- Myers’ Type Theorem for Integral Bakry–Émery Ricci Tensor Bounds, Results in Mathematics, Volume 76 (2021) no. 1 | DOI:10.1007/s00025-021-01341-5
- Ricci Flow and Ricci Limit Spaces, Geometric Analysis, Volume 2263 (2020), p. 79 | DOI:10.1007/978-3-030-53725-8_3
- Relating notions of convergence in geometric analysis, Nonlinear Analysis, Volume 200 (2020), p. 111993 | DOI:10.1016/j.na.2020.111993
- Volume Estimates for Tubes Around Submanifolds Using Integral Curvature Bounds, The Journal of Geometric Analysis, Volume 30 (2020) no. 4, p. 4071 | DOI:10.1007/s12220-019-00230-2
- Boundary Harmonic Coordinates on Manifolds with Boundary in Low Regularity, Communications in Mathematical Physics, Volume 371 (2019) no. 3, p. 1131 | DOI:10.1007/s00220-019-03430-7
- Comparison Geometry for Integral Bakry–Émery Ricci Tensor Bounds, The Journal of Geometric Analysis, Volume 29 (2019) no. 1, p. 828 | DOI:10.1007/s12220-018-0020-8
- Bounds on Harmonic Radius and Limits of Manifolds with Bounded Bakry–Émery Ricci Curvature, The Journal of Geometric Analysis, Volume 29 (2019) no. 3, p. 2082 | DOI:10.1007/s12220-018-0072-9
- Local Sobolev constant estimate for integral Ricci curvature bounds, Advances in Mathematics, Volume 325 (2018), p. 1 | DOI:10.1016/j.aim.2017.11.024
- Heat Kernel Upper Bound on Riemannian Manifolds with Locally Uniform Ricci Curvature Integral Bounds, The Journal of Geometric Analysis, Volume 27 (2017) no. 2, p. 1737 | DOI:10.1007/s12220-016-9738-3
- Regularity of Kähler–Ricci flows on Fano manifolds, Acta Mathematica, Volume 216 (2016) no. 1, p. 127 | DOI:10.1007/s11511-016-0137-1
- A Concentration‐Collapse Decomposition for L2 Flow Singularities, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 2, p. 257 | DOI:10.1002/cpa.21557
- Convergence of Kähler–Ricci Flow on Lower-Dimensional Algebraic Manifolds of General Type, International Mathematics Research Notices, Volume 2016 (2016) no. 21, p. 6493 | DOI:10.1093/imrn/rnv357
- A local curvature estimate for the Ricci flow, Journal of Functional Analysis, Volume 271 (2016) no. 9, p. 2604 | DOI:10.1016/j.jfa.2016.08.003
- A Global Curvature Pinching Result of the First Eigenvalue of the Laplacian on Riemannian Manifolds, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/237418
- Pseudolocality of the Ricci Flow Under Integral Bound of Curvature, Journal of Geometric Analysis, Volume 23 (2013) no. 1, p. 1 | DOI:10.1007/s12220-011-9234-8
- Short-time existence of the Ricci flow on noncompact Riemannian manifolds, Transactions of the American Mathematical Society, Volume 365 (2013) no. 11, p. 5605 | DOI:10.1090/s0002-9947-2013-05998-3
- The gradient flow of the L2 curvature energy near the round sphere, Advances in Mathematics, Volume 231 (2012) no. 1, p. 328 | DOI:10.1016/j.aim.2012.05.011
- Smoothing Riemannian metrics with bounded Ricci curvatures in dimension four, II, Annals of Global Analysis and Geometry, Volume 41 (2012) no. 4, p. 407 | DOI:10.1007/s10455-011-9290-0
- Smoothing metrics on closed Riemannian manifolds through the Ricci flow, Annals of Global Analysis and Geometry, Volume 40 (2011) no. 4, p. 411 | DOI:10.1007/s10455-011-9262-4
- Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, Journal für die reine und angewandte Mathematik (Crelles Journal) (2011), p. - | DOI:10.1515/crelle.2011.088
- Smoothing Riemannian metrics with bounded Ricci curvatures in dimension four, Advances in Mathematics, Volume 223 (2010) no. 6, p. 1924 | DOI:10.1016/j.aim.2009.10.014
- The Ground State and the Long-Time Evolution in the CMC Einstein Flow, Annales Henri Poincaré, Volume 10 (2010) no. 8, p. 1559 | DOI:10.1007/s00023-010-0027-6
- Bounds on the Volume Entropy and Simplicial Volume in Ricci Curvature Lp-Bounded from Below, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp006
- Bounds on the fundamental groups with integral curvature bound, Geometriae Dedicata, Volume 134 (2008) no. 1, p. 1 | DOI:10.1007/s10711-008-9235-3
- ON THE STUDY OF ONE FLOW FOR ASD CONNECTION, Communications in Contemporary Mathematics, Volume 09 (2007) no. 04, p. 545 | DOI:10.1142/s0219199707002538
- Local volume estimate for manifolds withL 2-bounded curvature, Journal of Geometric Analysis, Volume 17 (2007) no. 3, p. 495 | DOI:10.1007/bf02922094
- Nonlinear Hodge maps, Journal of Mathematical Physics, Volume 41 (2000) no. 8, p. 5745 | DOI:10.1063/1.533436
- Analysis and geometry on manifolds with integral Ricci curvature bounds. II, Transactions of the American Mathematical Society, Volume 353 (2000) no. 2, p. 457 | DOI:10.1090/s0002-9947-00-02621-0
- The limit spaces of two-dimensional manifolds with uniformly bounded integral curvature, Transactions of the American Mathematical Society, Volume 351 (1999) no. 5, p. 1765 | DOI:10.1090/s0002-9947-99-02103-0
- Smoothing Riemannian metrics with Ricci curvature bounds, Manuscripta Mathematica, Volume 90 (1996) no. 1, p. 49 | DOI:10.1007/bf02568293
- Einstein Metrics and Metrics with Bounds on Ricci Curvature, Proceedings of the International Congress of Mathematicians (1995), p. 443 | DOI:10.1007/978-3-0348-9078-6_37
- Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geometry and its Applications, Volume 4 (1994) no. 3, p. 239 | DOI:10.1016/0926-2245(94)00015-8
- Some Trends in Riemannian Geometry, Duration and Change (1994), p. 71 | DOI:10.1007/978-3-642-78502-3_22
- Curvature Pinching Based on Integral Norms of the Curvature, Canadian Journal of Mathematics, Volume 45 (1993) no. 3, p. 599 | DOI:10.4153/cjm-1993-031-1
- The minimal volume of the plane, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 55 (1993) no. 1, p. 23 | DOI:10.1017/s1446788700031906
- Removing point singularities of Riemannian manifolds, Transactions of the American Mathematical Society, Volume 333 (1992) no. 1, p. 203 | DOI:10.1090/s0002-9947-1992-1052910-2
Cité par 50 documents. Sources : Crossref