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A NEW PHASE SPACE LOCALIZATION TECHNIQUE
WITH APPLICATION TO THE SUM OF NEGATIVE
EIGENVALUES OF SCHRODINGER OPERATORS

By Heinz SIEDENTOP anp Rubpt WEIKARD

1. Introduction

Let H be the hamiltonian of N electrons in the field of a nucleus of charge Z, i.e.,

N N
M H=Z<—Ai—i>+ y —
i=1 LAV |ri—rj|
i<j

N

selfadjointly realized in A (L?(R*)®CY), q being the number of spin states of a single
i=1

electron. It has been shown (upper bound: Siedentop and Weikard [10], Bach [1]; lower
bound: Siedentop and Weikard [9], Bach [1] based on a work of Hughes [3], [4]) that for
fixed or negative degree of ionization A=1—N/Z —an assumption that we make through-
out the whole paper without further mentioning — the following holds:

THEOREM 1:

Eq(Z, N)=Er: (1, N/2) 273 +g-zz +0(Z477%)

where Eq(Z, N)=inf 6 (H) and Ex(Z, N) is the corresponding Thomas-Fermi energy.

The upper bound is obtained by a variational calculation using eigenfunctions of the
operator
d? +l (+y_z

dr? r? r

) HY= -

for small /, i.e., I<L=[Z''2], the integer part of Z'/*2, and Macke orbitals, i.e.,

o) % ,,<r)=(3'1§—”))”2 exp (ink,, n j%dt)
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216 H. SIEDENTOP AND R. WEIKARD

for /2L where N,= J p; and the k; , differ for fixed / by even integers from each
other. p, is some suitable nonnegative function which may be interpreted as radial
electron density in the angular momentum channel / (Siedentop and Weikard [8]).

For the lower bound one observes that

2 . 1
@ Eo(Z, N)z Y g1+ tr(f)_ +§ETF (Z, N)—const Z%/3

1=0

(Lieb [5], Siedentop and Weikard [9], Bach [1]). Here

) f= -4 10+

dr? r?

d2
(M-, = —ﬁ—%,
¢ — p being the Thomas-Fermi potential of the atom, i. e., the solution of

2\ 2/3
(67") 0?3 ()= () -,
1

bO=2=px )

under the condition Jp== min{Z, N}, and ( ) denotes the restriction of the operator

under consideration onto its negative spectral subspace. Again one distinguishes large
and small angular momenta. For small / one may drop pr*1/|.| in (5) to obtain a
bound which can be evaluated explicitly. However, the channels for large / were treated
by a cumbersome WKB analysis (Hughes [3], [4], Siedentop and Weikard [9]).

The purpose of the present paper is to give a simpler proof of the lower bound using
Macke orbitals requiring almost only known properties from the upper bound. We
remark that {¢, ,|n€Z} is an orthonormal basis on L?(R™), if p, is positive almost
everywhere. Moreover the Macke orbitals yield a phase space localization through their
« densities » p, and their « momenta » nk; .

The strategy of our proof is somewhat reminiscent to those of Berezin [2] and Lieb [5]
who got upper and lower bounds using coherent states. Our idea is as follows. We
break the one-particle operators H, into a sum of operators H, , operating on almost
orthogonal two-dimensional subspaces each of which has at most one bound state. The
sum of the corresponding eigenvalues turns out to be the energy in the angular momentum
channel / up to tolerable errors. This is the content of Section 2. The proof of the
Scott type lower bound is basically the collection of the various pieces and an optimization
of the various error bounds which is done in Section 3. The appendix is a collection of
useful estimates most of which are transcriptions from [10] and [1].
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2. Phase space localization by Macke orbitals

Now we introduce the Macke orbitals ¢, , of (3) explicitly by defining the radial
densities p,. Let

(6) L (n=r@n-wi*

and define keR* by B,=max{L,(r)*|reR*} where B,=x(x+1) in our case. For
I<[k]—1 we set
a2 if 0Zr<xy,

%) B (D=qQI+1) | (L2 =) if x Srsx,
mr

| BPexp(=2Z°Pr), if x,=r

The / and Z dependent numbers a? and B2 ensure continuity of p, at x, =r, + T (B}/%/Z)
and x,=r,—SZ~?/* where T and S are suitable positive constants and r, and r, are the
boundary points of the support of (L,(r)>—B,),. Remark that x, <x, for Z large
enough by (27). Furthermore let n,=N,/(¢(2/+1)) and k; ,=2n.

Now let V, be the potential generated by the Fermi-Hellmann equations and the given
radial densities p,, i.e.,

(®) -Vi=apf for I<[k]-1
where o, =n2/g?(2/+1)? and let

d2
) H= -2+,

in L2(0, o) with Dirichlet boundary conditions. The next lemma shows that the
quantum mechanical problem involving V, does not lower the sum of the negative
eigenvalues — up to our required accuracy — for high enough angular momenta.
Moreover angular momentum channels near to k£ may be omitted completely.

LeMMA 1. — Let L=[2%)] and L'=[k—Z7] with 0<£<2/9,1/9<8<1/3. Then

L'—1

Y qQI+1)tr(f) 2 Y q(2I+1)tr(H,)_ —Const, Zmx (43 +3¢ 19/9-8)
I=L

=L

Proof. — 1. L'<I:
A, has the same negative eigenvalues as

_d_2+ —¢,(r), if r>0,
ar? 0, if r=<o,

in L2((— o0, 0) U (0, 00)) with Dirichlet boundary conditions. Thus, using the Lieb-
Thirring inequality ([7], Theorem 1) and by dropping the Dirichlet condition at zero we
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218 H. SIEDENTOP AND R. WEIKARD

obtain

—tr (i) - <Const. J(‘i’z)i/z = Const. Jrz (M)m dr

2
ry r

<Const. 232 f *(Ly ()= BY2) 2 dr
r
where we used (24) and L, (r) < B}/%

We cut the last integral into two pieces, namely r, to the RZ~/3, where L, has its
maximum, and RZ™'3 to r,. Since k—L'=0(Z°) the point r, is to the left of the
smallest point of inflexion of L, with a distance of order Z~'/*, Thus L} is negative
on (ry, r;) and may be estimated from above and below by—Const.Z. By expansion
we have

Ly (n=(r—RZ7'?) L7 (r)

Lo()= B+ (- ~RZ™ )P LY ()

with suitable points r', r'"€(r,, r,). Thus we have
(10) Const. Z'2 (B> =L, (r))*<| Ly (r) | < Const. Z'/? (B> — L, (r)/?

and therefore by a change of variables

l31/2

__R1/2\3/2
—tr(f1,)_ <Const.Z j S G
oz B =0

Since H,=0 for /=k summation yields

dx <Const. Z (BL'*—B}/*)%.

Y qQi+)tr(A)_=0(Z*?*3).
=L’
2. L<I<L":
The difference of the infima of the spectra of

ny dz
i§1 <_E+Vl (ri)>
and
n2 e
H¢1:= igl (—d—rlz_¢l(rl))

may be estimated from above by

€= J(d’z +V). Py,

where p,, is the ground state density (or the densities of a minimizing sequence) of H,,.
Thus

L'—-1 L'—1 L'-1

Y qQRI+Du@)_2 ¥ qQi+Dr ).~ ¥ qQRl+1)e,.
I=L

I-L =L
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A NEW PHASE SPACE LOCALIZATION TECHNIQUE 219

By the Holder and the Lieb-Thirring inequality we have

L'-1

11 Y qQI+1)e
=L

@© ® 13 /L1 2/3
g(Z qQI+ I)J p,?,,dr) < Y qi+1) ¢?/2dr>
=0 o =L

(r1, x1) v (x2, r2)

© 1/3 /L1 2 \3/2\2/3
chnst.(z g1+ 1)T\,,,> ( Y qI+1) (M) >
I=L (r1, x1) U (x2, r2)

1=0 r

where T, is the kinetic energy of y,. The first factor of the right hand side can be
NQ

estimated by the cubic root of the ground state kinetic energy of Y (—A;—($(r)—w,)
i=1

where N%=Y ¢(2/+1)n? using the fact that we treat an (effective) one-particle
=0

operator. This total kinetic energy, however, can be bounded by a Lieb-Simon type
argument by Const. Z”/® (Lieb and Simon [6], TheoremIII.2). The first factor on the
right hand side of (11) is therefore O (Z"°). The integrals over the two intervals of the
second factor of the right hand side of (11) can be estimated by

Jxl (L, (r)zs* B> dr < (L, (x,)% — B)*? X1 _3’1 =0 (22177

1 r ry

Jrl (L, (")23“ B> dr<(L, (x,)* — B)*? Iy —3x2 =0(Z5/%)

x2 r X3

~using (24)-(26), (28) and (29). Thus the left hand side of (11) is of the order of
219/9—8. ]

Now we introduce some notations. For /<[k]—1 let

o}

1
Az=—2 o p;dr
ny Jo

Blzj \/Elz"'vtptdr
0

and

© © © - _, 2
C1=J \/E'zdrf "Vzpzd’_(J \/Pl \/Pz (_Vl)l/zdr> .
0 0

0
Observe that A, and C, are positive.
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220 H. SIEDENTOP AND R. WEIKARD

Since the Macke orbitals constitute an orthonormal basis we have by Bessels equality
and by partial integration in the weak sense

(12) H= ) H,,
where
(13) Hl, n=|(p;, n><(p;, n|_‘(_vl)1/2(pl, n><(_Vl)1/2 (pl, n|'

Remark that

(14) A, w -—2———{4n A,+B,— \/(472A,+B,)2+4C,}

is the only negative eigenvalue of H, ,.

<)

LEMMA 2. — ), N, , is absolutely convergent and
U L-1
Z q2I+1) Z A, n
- + 3/2
> _g Z 'UZj ((4) _d 1)) —Const. Z27%21og Z
3.4 r? +

for L, L', and & as in Lemma 1 but with €>1/8.
Proof. — We have for L<I<L' by inequalities (30) and (32)

f N 1
Oé— =0 +Zl7/12]1/2
g l /2 Z4/3 (k__l)z
3

1P

( OWTM+ZTB<12,  if 1<K,
O(Z32-43-24714-2y< 12, if I>k/2,

if £>1/8 and Z sufficiently large. Thus, by definition of V,,

) j\/—z
(15) lnfs B'—n,< ><n,2.

2 T A
: Jalpt

Now for n such that y, ,:=||2n|—_/—B/A;|=4 the estimate

(16) qQI+ 1) ,,;;—1—{B,+4n2A,—|B,+4n2A,|—2—9 __t
"o, A, |4n2+By/A,|
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is appropriate, otherwise we use

1
(17) q(21+1)x,,,,=ﬂ-{B,+4n2A,—|B,+4n2A,|—2\/€,}.
1

By monotonicity of the function 1/|x*—¢?| in the intervals (0, |c|) and (]c
estimate as follows

, 00) we

1 2 C 1 C 72
18) — = < Const.—logn=0( [ =-+2Z1"12[112 )|ogZ
(18) n ,,:Z_w A, |4n2+BJA| w2A, e P2 &

i, n24

by (15), (30), and (34).
Moreover
(19) l i C,=0 z/3+Z33/2“11/4
n o \/ l 4 >
Y1, n<4

since we have only finitely many summands and by (30), (32) and (34).
The main terms of (16) and (17) yield

© vil
20) 1oy (B,+4n2A,)=—lA,<—4v,2+s > (nz—v,z)>
n

1 n=—oo 1 n=1
4n? < —Bj/A;

with v,=_/—B,/4A,. Thus (20) becomes

3
@1 Ju,p? <13—6<§> +0(:—;>>;;§Ju, pP (1+0(n; %))
1 1

20 _ 2 (™ 2 [ _
< form s [Mount el [aupd e constni [anp?

3 0 X2

g% j%—m (¢,)3/*+ Const. (Z2 l‘5/2+n,'2j011 pi)

using (15), (22), (23) and the Fermi-Hellmann equation. Thus, collecting terms, we
obtain from (16), (17), (18), (19), and (21)

z Z2logZ
) q(21+1)7u,,.§—%Jaf”z(‘hz)i’z—Const.( l;/)f +Z”/1211/Zlogz+n,‘2chzp?)

n=—oo

Summation over / using (31) yields the desired result. W

The following theorem is a basic fact of our microlocalization.
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222 H. SIEDENTOP AND R. WEIKARD

THEOREM 2. — Let H, be given as in (9) and A, , as in (14). Then
tr(Hl)— g Z )"l, n*

Proof. — Let M be the set of all trace class operators d with finite kinetic energy and
0<d<1. Then

[>o

tr(H)_=inf{tr(H,d)|deM }= ), inf{tr(H, ,d)|deM}= i tr (H,, ,)-

n=— oo n= —oao

where H, , is given by (13). The claim follows now from the fact that A, , is the only
negative eigenvalue of H, ,. W

3. Application to the Scott problem
By the above arguments we are now in a position to bound the hamiltonian (1) from
below.

THEOREM 3:

H2E(, N/Z)Z7/3+§Zz—Const. Z5327,

Proof. — Estimating the eigenvalues of H, for small /, i.e., I<L, by the eigenvalues
of HY we obtain

L-1 2
Y q@i+DHtr(H)_ = —fzzz—L+-§ZZ—Const. Z2L!
1=0

L-1 » 2\ 3/2
g_g y J‘ ql—1/2<(¢_u)+_(l+(l/2) > +gZz-—Const. (2254 75/3+2%)
=0 r +

using page 190, second but last inequality, of [9] and replacing Z/r by (¢ — ), analogously
to the proof of Lemma 12, second part, of [9]. By Lemmata 1 and 2 and Theorem 2
we have for e=1/6.

S g@i+ a2 -2 ¥ a,‘1/2<(¢—p)+—w)_)i>3/2
I=L r +

:; I=L

— Const. (Z19/° =34 (22312 4 723/12) |59 7)

where we used again an argument analogously to Lemma 12, first part, of [9] to substitute
I(I+1) by (I+(1/2))%
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A NEW PHASE SPACE LOCALIZATION TECHNIQUE 223

Optimizing & yields $=4/27 and the error terms of order Z°*27. Then Poisson
summation — generating errors of order Z*® only (see [10])—and formula (4) yield the
desired result. H

A. Some useful formulae

Throughout this appendix assume L</<[k]—1 and Z> 1.
By explicit integration

xq ZZ
@) °"L p?=0<ls7),
23) % f p3=0(Z"1).
x2

The following results are easily transcribed from [10], Lemma C.1, formulae (3.9),
(3.12), and (3.13), and [1], Lemma 18, 19, and 20.

24) By <r, <Const. E,

V4 V4
©5) Co?st. <r,< CO;lSt. for %<0,

Const. Const.

(26) 7173 <r= 7175 for A>0.
Furthermore
27N x,ERZ™3—Const.Z" 1?2 <RZ ™3+ Const. Z"*?< x,,
(28) L, (x,)*—B,=TB"?,
(29) L, (x,)*—B,<Const. Z'3,

B (30) J‘\/p’ 2_ ( +Z17/12 ll/2>

k-1 % ‘[93 Kl—-1 4
Z43 Z* (k=D)* l)2
(31) Const. 0(2°?).
P DN
Next we note
(32) Const. Z*3 (k— D% < ja, p? <Const. Z*3 (k—1)2.

Proof. — The upper bound is a transcription as above. The lower bound requires a
separate treatment: Note the scaling L, ,(r)=Z'3L, ,(Z'3r). Denote the unique
maximum of L, , (see [10], Lemma A .1, and [1], Lemma5) by R. (At this point we
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224 H. SIEDENTOP AND R. WEIKARD

make explicit the A dependence of L,.) This yields that there are positive constants c,,
¢, such that L, ,(r)*2c,Zr for r<c,Z~'3. Moreover by [1], Lemma 3. (ii) and [10],
formula (B.4)

1/2
L, 2(r)<Lgy ,(r)<Const. <§> for r<c,Z713
r

possibly by decreasing c,.
For B,<c2 B, with c; positive but sufficiently small

¢y 1 L —
(33) J oc,|p,>Constl i b L, (r) dr.

r*Lz(r)

which may be estimated from below by

Ly (c,Z2~1/3) 2 __R)3/2 b 3/2
Const. ] J 2 20 B') YR 4y > Const. 72 J udx>z4/3(k 12,
Lz (x1) y a x3

since by (28) for suitable ¢,

a:=LZ(x1)S1+T<C0nSt'SL (c,Z _1/3)SLZ(CZZ_1/3)=:b.
Btllz B 3 e B2

For B,>c3B, the integral jcx, p? —noting x, >Const. Z~'*—may be estimated from
below by
Lz RZ™1/3) (Lz _ [31)3/2

Const. [Z/? j -
Lz (x1) (Bl%/z_L)llz

because of (10). Moreover, since

- B;/Z_Lz(x1)>1/2> 1—T/2)12
( BB 2 S

we obtain
Ja, p? = Const. P2 Z'* (k—1)? J (1—x%)32dx=Const. Z*? (k—1)?,
(1]

which proves (32).

Finally
(34) Const. (k—1)=<n, = Const. (k— /).
Proof. — In this case the lower bound is a transcription as above, and the

upper bound requires a separate treatment: By direct integration

fxl p,+rp,=q(2l+1)0(1).
0 X2
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Now we estimate the middle term: First let /<k/2. We split the integral at RZ~ /2 and
the use for ¢ (r) the upper bound Z/r on the left part and Const./r* (Sommerfeld solution)
on the right part. By dropping the B, one directly obtains the desired inequality. For
k/2<1 we split the interval of integration at RZ~/* once more, but by using (10) we

obtain
x5 Z3 1z (VB /L—_ /B\1/2
J p; < Const. li— J <—:\/—_l> dL <Const. (k—1I).
z VB \/Bk -L

x1
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