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CONNECTIONS WITH PRESCRIBED CURVATURE
AND YANG-MILLS CURRENTS:

THE SEMI-SIMPLE CASE

BY DENNIS DETURCK (1), HUBERT GOLDSCHMIDT (2) AND
JANET TALVACCHIA (3)

In this paper, we prove the local existence of real-analytic solutions of two closely
related systems of real-analytic non-linear partial differential equations arising from
geometry, in which the unknown is a connection in a principal bundle whose structure
group is semi-simple. The main features of these two systems and of our ensuing
discussion of them are extremely similar, and at times surprisingly so.

Let P be a principal bundle over a manifold M whose structure group G is semi-
simple. The first problem we consider is to prescribe the curvature form of a connection
on P, when M is three-dimensional. The second one is to solve the inhomogeneous
Yang-Mills equation for a connection on P, when M is a Riemannian manifold of
dimension ^3.

We prove that, if F is an analytic 2-form on M with values in the Lie algebra of G,
whose 1-jet at xeM satisfies a certain genericity condition, then there exists a connection
on P whose curvature is determined by F on a neighborhood of x (Theorem 4.2). For
the inhomogeneous Yang-Mills equation, our existence result may be expressed in a
similar manner (Theorem 5.2).

Each of the problems is naturally cast as a system of partial differential equations
with a connection as an unknown. The equations are difficult to solve because they are
highly degenerate: every cotangent direction at every point of M is characteristic. This
degeneracy stems from their equivariance under the infinite-dimensional pseudogroup of
local gauge transformations of the bundle and changes of coordinates in the base
manifold. Upon taking this invariance into account, we obtain identities which the
(unknown) connection must satisfy in order that it be a solution of the original problem,
and which involve the right-hand side and its covariant derivatives. From the point of
view of power-series solutions, the new identities can be interpreted as obstructions to
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58 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

prolonging a formal solution of order k to one of order k+ 1. In general, for a system
of non-linear partial differential equations, if one adds to the original system all of the
equations which arise as obstructions to extending a formal solution of finite order to
one of higher order, one might obtain a new system with no solutions. This is indeed
the case for the equation for prescribed curvature when the dimension of M is >3
(see [10]). It is quite remarkable that for the dimension-three prescribed-curvature equa-
tion, and for the Yang-Mills equation, that one can actually compute these obstructions
explicitly and determine their precise nature.

For both our systems, as in other situations in which one precribes a curvature tensor
(see [2]), the Bianchi identity, an equation of order zero, is the obstruction to prolonging
a formal solution of order k to one of order fe+ 1. In contrast to other problems, where
the solvability of the Bianchi identity is automatic, here there are obstructions to
prolonging formal solutions of this equation. Indeed, the semi-simplicity of the group G
leads to a set of further identities which the connection must satisfy. Each homogeneous
invariant polynomial of positive degree on the Lie algebra 9 of G gives us such an
equation. We extract a complete set of these identities composed of r equations, where r
is the rank of 9; the nature of this set depends in a delicate way on the structure of the
Lie algebra 9. Using work of Kostant ([7], [8]) and Rais on semi-simple Lie algebras,
we are able to explain why these identities occur and why this complete set should provide
us with all the obstructions to solvability. We then consider the system consisting of
the original equations and the Bianchi identity, together with the r equations of such a
complete set of identities. The task of extending a formal solution of order k of this
new system to one of order fe+ 1 reduces to a problem in linear algebra, which we solve
explicitly using results from the structure theory of semi-simple Lie algebras. Thus we
do not have to rely on the general theorems on the existence of formal solutions of [5],
and are able to prove existence directly. The method of majorants then leads to the
convergence of power-series solutions (see [9]).

We point out that, previous to our study, for G=SL(2) or SL(3), local existence of
solutions for the prescribed-curvature equation in dimension 3, had already been proved
in [10], using the Cartan-Kahler theory of [5] (see also [3]). R. Bryant has also obtained
similar results for the group SL(2), while S. Tsarev [11] has outlined another approach
to this case.

This paper consists of two parts, which we now proceed to describe. The first one,
consisting of Sections 1 and 2, is devoted to the algebraic results about semi-simple Lie
algebras which we require in solving our non-linear equations. We rely greatly on the
work of Kostant ([7], [8]) on complex semi-simple Lie algebras. Let 9 be a real or
complex semi-simple Lie algebra of rank r, and let I (9) denote the algebra of invariant
polynomials on 9. According to Chevalley's theorem, we may choose a set [p^ . . ., p y ]
of homogeneous generators of I (9), which are algebraically independent. The degrees
of these polynomials depend only on 9 and are ^ 2. The differential (dpj) (X) of the
polynomial pj at X eg is a linear form on 9 which we identify with an element of 9, via
the Killing form of 9. An element of 9 is said to be principal if the dimension of its
centralizer is equal to the rank of 9. The principal elements of 9 form a non-empty
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 59

Zariski-open subset of 9. The first result of Kostant, which is used constantly through-
out Sections 1 and 2, is his criterion for recognizing when an element of 9 is principal:
an element X of 9 is principal if and only if the r elements (dp^)(X), . . ., (dpy)(X) of 9
are linearly independent (see [8]). An immediate consequence of this criterion is the
following characterization of the image of ad X: 9 -> 9, when X is principal: an element
of 9 belongs to this image if and only if it is orthogonal to the r vectors
(dp^)(X), . . ., (dpy)(X) (see Theorem 1.1). The other result of Kostant which we need
is his explicit construction, given in [7], of a set {H, X, Y} of principal elements of a
complex Lie algebra satisfying the commutation relations

[H, X]=2X, [H, Y]= -2Y, [X, Y]=H,

with X, Y nilpotent and H regular and semi-simple; such a set of elements of a complex
Lie algebra is called a principal S-triple. In Section 1, we use these two results together
with work of Rais to prove that certain Zariski-open subsets of various powers of 9,
defined in terms of the polynomials [p^ . . ., ̂ }, are non-empty.

In Section 2, we develop a certain amount of linear algebra over the semi-simple Lie
algebra 9, which sould be of some independent interest. We solve various overdetermi-
ned systems of linear equations whose unknowns and coefficients are elements of the
Lie algebra 9. Just as Kostanfs theorem, for a generic element X of 9, characterizes
the image of ad X:9-^9 in terms of the invariant polynomials {p^, . . ., p r ] , we are
able to express the compatibility conditions for these systems by means of these polynomi-
als under explicit genericity assumptions on the coefficients—certain of these should
belong to one of the open subsets considered in Section 1. As consequences of the
solvability of these systems, we obtain various results concerning Spencer cohomology,
which are not needed in this paper, but which are interesting in their own right. They
provide us with examples of subspaces whose Spencer cohomology can be explicitly
computed and which is entirely concentrated in degree 2.

After reviewing in Section 3 the necessary material about connections in a principal
bundle, we prove in Section 4 the existence of formal solutions for the equation of
prescribed curvature in dimension 3. Each homogeneous polynomial of 1(9) of degree
rf+1, with d^\, gives us a new scalar-valued equation of order d—\, obtained by
repeatedly differentiating the Bianchi identity d-iimes and taking into account the original
system. Let F be a 9-valued 2-form on M, whose 1-jet at xeM satisfies a genericity
condition expressed in terms of [ p ^ . . . , p y ] and of one of the open subsets of
Section 1. We seek a connection whose curvature form is F; then over an open neighbor-
hood of x, the identities corresponding to the polynomials { p ^ , . . ., p y ] form a complete
set. Under these assumptions on F, we construct formal solutions of the system consist-
ing of the original equation, the Bianchi identity and these r scalar-valued equations. The
sub-system of order zero consisting of the Bianchi identity and the identities correspond-
ing to the polynomials of degree 2 of the set [p^ . . ., p y } is highly non-trivial. In fact,
the number of these polynomials of degree 2 is equal to the number of factors in a
decomposition of the complexification of 9 into minimal ideals, and is therefore always
^ 1. We first show that this non-linear sub-system of order zero admits solutions at x
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60 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

by solving a system of linear equations. Next, we extend any formal solution of order k
of our completed system to one of order k-\-1 by solving one of the systems of linear
equations of Section 2. Because we have included the identities corresponding to the
set [p^ . . ., p ^ ] , the requisite compatibility condition for this linear system is satisfied.

Section 5 is devoted to the existence of formal solutions of the homogeneous and the
inhomogeneous Yang-Mills equations. The proof for the inhomogeneous Yang-Mills
equation follows the same lines at that of Section 4 for the equation of prescribed
curvature. However, in this case a homogeneous polynomial of I (9) of degree d, with
rf^2, gives us a new identity of order d obtained by differentiating the Bianchi identity
(d-\- l)-times. Thus the Bianchi identity is the only equation of order zero which needs
to be added to the original system. It is quite remarkable that the linear system of
Section 2, which we need to solve in order to extend a solution of order k to one of
order fe+1, is so closely related to the one which we consider in Section 4 for the
analogous problem.

The genericity conditions imposed on the right-side of our equations are described in
the remarks preceding Propositions 4.1 and 5.1. We wish to point out that the
exactness of the sequences (2.8) or (2.18) corresponds to the completeness of the set of
identities derived from {/?i, . . .,^}; on the other hand, we use the exactness of the
sequences of Corollary 2.3 or Corollary 2.5 to show that no further identities need be
added to our systems. Relation (2.30) provides us with an unexpected link between
our two problems and the systems of linear equations associated to them in Section 2.

The main substance of our existence proofs is to be found in Sections 4 and 5. We
strongly recommend that the reader start directly with Sections 3, 4 and 5, referring back
to the first two sections for the appropriate definitions and results whenever necessary.

We would like to thank H. Jacquet for several helpful discussions and M. Rai's for
making us aware of the importance of principal S-triples in the theory of complex semi-
simple Lie algebras and for kindly communicating to us the proof of Theorem 1.2.

1. Invariant polynomials on semi-simple Lie algebras

Let K be the field of leal numbers R or of complex numbers C. If V is a real vector
space, we write V^ for its complexification. Let 9 be a semi-simple Lie algebra over K
of rank r. The dimension of the centralizer 9x °f an element X of 9 is ^ r. We say
that Xeg is principal if dim 9x==r9 t^ set of all principal elements of 9 is a non-empty
Zariski-open subset of 9, containing the regular semi-simple elements of 9.

We now suppose that 9 is a real semi-simple Lie algebra. We denote by S^g* the
fe-th symmetric power of 9*. If ue^, we denote by ^ the element of 9^ all of whose
coordinates are equal to u. The rank of 9 is equal to the rank of the complex Lie
algebra 9,.. Thus X eg is a principal element of 9 if and only if it is a principal element
of 9,,. Let G be any connected Lie group with Lie algebra 9. Let I (9^) [resp. I (9)] be
the algebra of all complex (resp. real) polynomials on 9^ (resp. 9) invariant
under G. Note that 1(9,.) and 1(9) depend only on Ad(G) and that I(9c)^I(9)c-
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 61

Let p be a homogeneous element of I (9,) of degree k\ to /? corresponds a unique
element of S^* invariant under G, the polarization of p, which we shall also denote
by p and consider as a function on 9^. Let B be the Killing form of g^. If ^1, we
associate to /? the unique element p of S^"1 g*®c9c determined by the equality

p(u^ . . ., ^_i, -y)=B(^(Mi, . . ., Mfc_i) , z;),

for MI, . . ., M^_ i , ^€9,. If the restriction of the polynomial/? to 9 is real-valued, then
p(u^ . . ., ^_i) belongs to 9, for all i^, . . ., ^^eg.

According to Chevalley's theorem, we may choose r algebraically independent homo-
geneous polynomials p^, . . ., py of I (9,) which, together with 1, generate I (9,). We may
suppose that the pa are real-valued on 9; then p^ . . .,/?,., together with 1, generate
1(9). If deg/^=^+l, the integers d^ depend only on 9 and are ^1 (see
Varadarajan [13], Theorem 4.9.3 and p. 410).

For X eg,, let

^X '-Qc -> ̂

be the mapping sending u into

(^(X^z<),...,^(X^)).

The following result is due to Kostant [8], Theorem 9 (see also Varadarajan [12],
Theorem 3).

THEOREM 1.1. — Let X be an element of^' The complex

adX "X
Qc-^c^C^O

is exact if and only ifX is principal.
Consequently, if X e 9, the sequence

adX "X9 ^ 9^r^o

is exact if and only ifX is principal. The preceding theorem asserts that Xe9 (resp. 9^)
is principal if and only if the r elements {paQ^da)]l^a^r °^9 (resp. 9,) are linearly
independent and constitute a basis for 9^ (resp. 9 .̂ x)' ^e set

r

q=r+ E^, .
a=l

J={(a,k)\\^a^r,0^k^d^}.

Let Ui (resp. \J[) be the set of all (X, Y)e9 x 9 (resp. 9^ x 9 ,̂) for which the q elements

{A^Y^)},,^
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62 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

of 9 (resp. 9,.) are linearly independent. Thus (X, Y)€9 x 9 belongs to U^ if and only if
the q elements

u^p^\^-\u\ ue^

of 9*, with (a, /QeJ, are linearly independent. Clearly, by Theorem 1.1, if (X, Y)eUi,
then X and Y are principal. The proof of the following theorem has been kindly been
communicated to us by M. Rais.

THEOREM 1 . 2 . — The set U\ is a non-empty Zariski-open subset 0/9x9.
Let p be a homogeneous element of 1(9,.) of degree rf+1, with d^\. From the

invariance of/?, we infer that

(1 • 1) PC, p(X\ y^^^d-k)?^ PC, Y], Y^-1),

for X, Ye 9^ and O^k^d. Let X, Y be elements of ̂  satisfying

[Y,X]=?iX,

where ^-eC, and consider the elements

^fc=——1——^(X^Y^)pf (d-k)\

of 9,., for O^k^d. We set z^ ^ = 0, for fc > d. From (1.1), we deduce that

0-2) [Y,z^J=fe^, [X,z^]=-^^.

We set v^k^Vp^k, for 1 ̂ a^r. The following proposition, due to Rais, is the crucial
ingredient of the proof of Theorem 1.2.

PROPOSITION 1.1. — IfX is principal and ̂ 0, the q elements

[^a, k](a, f c ) e J

°fQc are linearly independent.

Proof. — Suppose that we have a linear relation

E ^i^-o,
( a ,OeJ

where the coefficients ft^eC are not all zero. Let d be the largest integer for which
there is a non-zero coefficient b^ i, with dy = d. Now let k be the smallest integer, with
O^k^d, for which there is a non-zero coefficient b^ ^ wt^ dy=d. Then b^ j=0 if
^ > d, or if .̂ = rf and /< A:. By (1.2), we have

O^adX)^. ^ ^.^^(-^-^ ^ ^^^..-.=(-^-fc(^+^),
(a, 0 (= J (a, I ) e J
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 63

where

ul= T. ba^a,^ ^2= E ba
da=d da<dda<d

O^l+d-k^da

,lva,l+d-k•

According to (1.2), we see that u^ is an eigenvector of adY with eigenvalue d ' k , while
u^ is a linear combination of eigenvectors of ad Y whose eigenvalues are different from
d\. It follows that

^i== E ̂ .(x^o.
da=d

Since X is principal, according to Theorem 1.1, the elements {^(X^)} of 9,,, with
d^ = d, are linearly independent. Hence b^ ^ = 0, for all 1 ̂  a ̂  r, with ^ = fi?, which is a
contradiction.

Since \J[ is a Zariski-open subset of 9^x 9c an^

^=^0(9x9),

to prove Theorem 1.2 it suffices to show that \J\ is non-empty. According to
Kostant [7], §5.3, 9 .̂ contains a principal nilpotent element X. Then the Jacobson-
Morozov theorem gives us the existence of elements H, Y of 9^ such that

(1.3) [H,X]=2X, [H,Y]=-2Y, [X,Y]=H.

By Proposition 1.1, the pair (H, X) belongs to U'i.
Any set {H, X, Y } of elements of 9^ satisfying the commutation relations (1.3), with X

principal, is called a principal S-triple. The element H of such an S-triple is regular and
semi-simple, and the element Y is also principal (see Kostant [7], §5.2, 5.3). The
following result is a consequence of Proposition 1.1.

PROPOSITION 1.2. — If {H, X, Y } is a principal S-triple of 9^, then

[p^\ ̂ -^(Y1^-1)} ,^
0^k,l^da

l>0

is a basis for 9,,.

Proof. — Since Y is principal, by Proposition 1.1,

[MX\ H^)},,,^, {^(r, H^-1)}^, ,„
l>0

are two sets of linearly independent elements of 9^. By (1.2), the first set consists of
eigenvectors of ad H whose eigenvalues are ^ 0, while the second set is entirely composed
of eigenvectors of adH with negative eigenvalues. As the dimension of 9^ is equal to
Iq—r (see [13], § 4.15), the lemma follows from the preceding remark.
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Let U^ (resp. U^) be the set of all (X^, X^, X3)eg3 (resp. g3), with (X^, X2)eUi
(resp. U^), for which

{A (XH A, (x^) }^,^, {A, (XH ̂  (x^)}, ̂

are two sets of 2r linearly independent elements of 9 (resp. 9 .̂). If {H, X, Y} is a
principal S-triple of a., since Y is principal, by Proposition 1.2 we see that (H, X, Y)
belongs to U^. As U^ is a Zariski-open set of g3 and 1^=1^ C} g3, we obtain:

PROPOSITION 1.3. — The set U^ is a non-empty Zariski-open subset of g3.

LEMMA 1.1. — If { H, X, Y} is a principal ^-triple of c .̂, then the r elements

w,=2(^-l)A,(X, Y, H^-2)-^^), l^^r,

of g^ ar^ linearly independent.

Proof. — Let /? be a homogeneous element of I (9^) of degree rf+1. By (1.3), we
have

(adX^.^, H^)^^)^-/)^-/-!). . .(rf-/-Jfc+l)^(X l+k, H^^-^),

for 0^/^rf and 1 ̂ k^d—l; by the in variance of/?, we also see that

adX.^(X1, Y, H^-1)^^, PC, Y], Hd-l-l)+(d-l-\)p(X\ Y, [X, H], H^-2)
^(X1, Hd-l)-2(d-l-l)p(Xl+\ Y, H4-1-2),

for 0 ^ / ^ r f — l . Consider the positive integers a^, . . ., a^ defined recursively by the
equalities a^ = 1 and

^=(rf-/+l)^_,+(rf-2)(^-3).. .(rf-/),

for l^l^d. It is easily verified that

(adxy./Kx.Y.ir1-2)
=(-2)!(rf-2)(rf-3). . .(d-l-\)p(Xl+\ Y, H^-^+^y-1^^, H4-1),

for 1^/^rf-l.and

(adX)d.^(X, Y, H4-2)^^-1^/^).

Hence, if rf^ 2, we obtain

(adX)d.(2(rf-l)^(X, Y, Hd-2)-p(Hd))=(-2)d((d-\)a^d\)p(Xd)

and

(adX)d+l.(2(rf-l)^(X, Y, Hd-2)-^(Hd))=0.
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On the other hand, if d= 1, we have

ad X .p (H) = - I p (X), (ad X)2 .p (H) = 0.

Suppose that there is a linear relation
r

S ̂ ,=0,
0=1

where the coefficients b^eC are not all zero. Let d be the largest integer for which
there is a non-zero coefficient b^ with dy = d. Then b^ =0 if d^>d. From the above
relations, we infer that

r

O^adX/. £ ^w,= £ ^(adX/.H,=-(-2W-l)^+rf!) £ ^(X4).
a=l dfl=d da=d

Since X is principal, by Theorem 1.1, the elements ^(X^) of (^ are linearly
independent. As

(rf-l)^+rf!^0,

the &„, with ̂  = d, are necessarily all zero, which is a contradiction.
Let n be an integer ^2. If X^, . . ., X^, A^, . . ., A^ are elements of g^ w^ set

n

z.= £ [A,,A,(x^-l,x,)L
j-=i

for 1 ̂ a^r, and consider the mapping

^c^Qc®^,

sending u e 9^ into

M«)=([X^], B(Zi, M), . . ., B(Z, M)).

Let V be the set of all (X^, . . ., X^, A^, . . ., A^)eg^" for which the mapping K is
injective. We consider the following Zariski-open subsets of c^":

U3={(Xi, . . ., X, A,, . . ., A^)eV|(Xi, X^eUI},

and, when n ̂  3,

U4={(X,, . . ., X, A,, . . ., A^)eV|(Xi, X^, X3)eU;}.

The following proposition implies that U'3 and U^ are non-empty.
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PROPOSITION 1.4. — Let {H, X, Y} be a principal S-triple of g^., and let X3, . . ., X^
be arbitrary elements of g^. Then:

(i) the element (H, X, X3, . . ., X^, 0, Y, 0, . . ., 0) of^ belongs to Ua;
(ii) ifn^3, the element (H, X, Y, X4, . . ., X^, 0, Y, 0, . . ., 0) 0/a2" belongs to U^.

Pn<. - If Xi=H, X^=X and A,=0, for j > 2, then Z,=[Y, ̂ (H^-1, X)], for
l^^^r. By the invariance of p^ we see that Z^ is equal to the element H^ associated
to { H, X, Y } in Lemma 1.1. It is easily verified that w^ belongs to the centralizer I) of
H in g^- Since H is regular and semi-simple, I) is a Cartan subalgebra of 9 .̂ and the
Killing form B is non-degenerate on t)xt) . From Lemma 1.1, it follows that ^ is
injective. The assertions of the proposition are now immediate consequences of
Proposition 1.2.

We set U3=U3092", and L^U^Hs2" when n^3. From Proposition 1.4, we
deduce the following result:

THEOREM 1.3. — The set L^ (resp. L^, when n'^3) is a non-empty Zariski-open subset
of^.

Let (Xi, . . ., X^, AI, . . ., A^) be an element of 1:3. If B e 9 and ^ e R*, since ̂  (X^)
belongs to Qxi? l t ls easily seen that

(Xi, X^, . . ., X^, Ai-[Xi, B], A^, . . ., A^), (X,, . . ., X^, (;Ai, . . ., ^A^)

are also elements of L^. If /? is a homogeneous element of I(g) of degree ^+1, we
have

n n

^ p(Xi-\ X,, [A,, u])= ^ B(p(Xr1, X,), [A,, u])
j=l J = l

n

= ^B([^(XrSX,),A,],M),
j = i

for Meg. If TC^ ^ ^©tR1' -> ̂  is the mapping sending (u, z) into Tix^ (u), for Meg, ze [R^
according to Theorem 1.1, the sequence

X "X,o-^-^eti^-^-^o

is exact; therefore, if (c^, . . ., Cy) is an arbitrary element of [R^ we can solve the system

n

^ ^(X^-1, X,, [A,, M])=^, 1 ̂ a^r,
7=1

for MC 9xr
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We now use Theorem 1.3 to prove the following result:

LEMMA 1.2. — There exists a non-empty Zariski-open subset L^ of ^2n+l having the
following properties:

(i) For all (X^, . . ., X^, A^, . . . , A^, B)eU5, there exists (Bi, . . ., B^eg" such that
n

^ [X,,B,]=B,
j = i

(X,, . . ., X,, A,-pC,, BJ, . . ., A,-[X,, BJ)eU3.

(ii) If(X,, . . ., X^, Ai, . . ., A^)eU3, //^ (X,, . . ., X^, A,, . . ., A^, 0) &6?to^ ̂  Us.

Proof. — Set s=q—r; the dimension of g is equal to q+s==r-}-2s (see [13],
§4.15). Choose an element (X;, . . ., X^, A;, . . ., A^) of 1:3. Fix ^ linearly indepen-
dent elements {Z,, . . ., Z,} of g which span a complement to the ^-dimensional subspace
of 9 generated by the elements

[MW^x0^-^,^,.

For (X,, X^eg x 9, consider the mapping

^(Xi.X^):^^5,

defined by

5l(X,, X2)(M)=(7rx,(^),^(X^ X^-\ u\ B(Z,, M), . . ., B(Z, u)\^^
k<da

for Meg. When (X^, X2)=(X?, X'^), it is an isomorphism. Therefore by Cramer's rule,
there exist polynomials V^f on g x g with values in HomtW^, g) and R, respectively,
such that

^(X,, X,).MXi, X2)=/'(Xi, X,).id,,

for (Xi, X^)eQ x g, and/'(X^ X^i^O. Let q be a fixed complement to 9x° in 9- The

mapping

(1.4) adX:q-^g

is injective when X=X^. By Cramer's rule, there exist polynomials n, /// on 9 with
values in Horn (9, q) and R, respectively, such that

(1.5) Hx[X,^]=r(X)M,

for Xeg, Meq, and/"(X^) 7^0. Iff" does not vanish at Xeg, then the mapping (1.4)
is injective. Let i: R' -> R'Q R25 be the mapping defined by i (x) = (x, 0), for x e R', and
consider the Horn (9, q)-valued polynomial <j on g x 9 whose value at (X^, X^) is equal
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to the composition

nx i ^^l' ̂ ) ^2)
g ^1 r ̂  ^r+2. —————, g———, ̂

We denote by/the polynomial on g2^1 whose value at the element

x=(X^, . . ., X^, A^, . . ., Ay,, B)

of g2^' is/ (Xi, X^) =/' (Xi, X^)./" (X^), and by 0: ̂ 2n+1 -^ g2" the mapping sending x
into

(Xi, . . ., X^/(x)Ai,/(x)A2-[X2, a(Xi, X2)B],/(x)A3, . . .,/(x)A^).

Then

U^xeg^l/WO}^"1^)

is a Zariski-open subset of g2"'"1; since/(X?, X^)^0, the element

/v0 yO A O \0 f\\
^l? • • • ? ^n? ^l? • • • ? -^n? u/

of g2^1 belongs to U5. It remains to show that L^ satisfies property (i). Let
x=(Xi, . . ., X^, Ai, . . ., A^, B) be an element of Us; then (X^, X^) belongs to Ui. Set
B2=(l//00)^(Xi,X2)B. Then

z;=^^1 ^,^(XI,X,).I.^(B)
7 ^i? ̂ J

satisfies ^i(X2)^=//'(X2)B2 and

(1.6) A, (X^, v) =p, (X^, B), 77, (Xl", z;) = 0,

for 1 ̂  ̂  ̂  r. Since /" (X^) ̂  0, by Theorem 1.1, the sequence

ad X^ "X^
0-^q——»-9——^IT-^O

is exact. By (1.6), we know that 71x2 (^ = °- Therefore, from (1.5) we deduce that

[X2,BJ=z;.

By Theorem 1.1 and (1.6), we are able to solve the equation

pCi,BJ==B-z;=B-pC2,BJ,

forBieg. Since

0(x)=(Xi, . . ., X,.,/(x)Ai,/(x)(A2-[X,, BJ),/(x)A3, . . .,/(x)A^),
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by the remarks following Theorem 1.3, we see that

(Xi, . . ., X^ AI - [Xi, BJ, A^ - [X^, BJ, A3, . . ., A^)

belongs to L^. Thus the element (B^, B^, 0, . . ., 0) of 9" has the desired properties.
If n ̂  3, according to Theorem 1.3 and Lemma 1.2, the subset

U6={(X,, . . ., X, AI, . . ., A, B)eU5|(Xi, X^, X^)e\J,]

of IJ5 is also a non-empty Zariski-open subset of g2"4'1.

2. Linear algebra over semi-simple Lie algebras

Let n be an integer ^ 1. Let 9 be a real semi-simple Lie algebra, whose rank is equal
to r. We consider the objects associated in Section 1 to the system of generators
{/?i, . . ., py} of I(g), in particular the subsets Ui of 9 x 9 and L^ of g2", the subset L^
of Q2'n+l given by Lemma 1.2, and, when ̂ 3, the subsets

U^g3, U4C=U3, 1^0= Us.

Let Xi , . . . ,X , , be elements of 9 and let T be a real vector space of
dimension n. Choose a fixed basis [8^ . . ., 8^} of T and consider the dual basis
{Ac1, . . ., dx"] of T*. We denote by A^* and S^T* the fe-th exterior power and the
k-ih symmetric power of T*; we set S^T*^, for k<0. If ^eT*, we write ^k for the
fe-th symmetric power of ^, which is an element of S^*. If a= (a^, . . ., a^) is a multi-
index of length n, with | a [ = 04 + . . . + a^ = fe, we set

X:a=(XOEl,...,X^)e9^

Ac^OAc1)01! • . . . • (rfx^eS^*.

For 1 ̂ i^n, we denote by £f the multi-index (8^, . . ., 8^). If MGS^*, we may write

v-. Ac"
M= L Ma—.

| a | = f c a!

with u^e R; if 1 ̂ \, . . ., i^n, then

^(^i. • • • » 8i)=u^

where a=(a^, . . ., a^) and a, is the number of the i^'s equal toy.
Let V, W be real vector spaces. If k^l and A^ : S^T* -^T^S^T* is the

natural inclusion, the w-th prolongation (^)+^ of a linear mapping

^: S^T^^V-^W
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is equal to the composition

S^T^V^"-^ S^^S^^Y-^ S^* (x) W.

For m < 0, we let

(̂  : S^T^V-^T^W

be the zero mapping. If g^ denotes the kernel of ^ for w^O, the kernel of (^)+^ is
equal to

(s^n. pî v) n (s-T* (x)g,)

and is called the w-th prolongation of g^. We set ^^S^T^E, for m<k. The
mapping

8 : A^T^S^T^V^A^T^S^^V

equal to A^ ^®id when ;==0, and determined by

8(a(g)M)=(— I)1 a A Su,

for aeA'T*, MeSm + lT*®V when ;>0, gives us by restriction a morphism

8 : A^g^^^A^T*®^.

We thus obtain a complex

O^^^^T*(8)^^_^A2T*®^^_^...-^AnT*®^^_^0,

whose cohomology at A'T*(g)^+^_^ is the Spencer cohomology group Hk+m~ifi(g^)
of g^ we have H^"' ° (^) = H^"'1 (^) = 0, for all m ̂  k. If Hm'j (^) = 0 for all m ̂  k and
7^0, we say that ̂  is involutive (see [I], Chapter IX, [5]).

Let

(p : T*(x)g^g

be the morphism defined by

(pf^^®M,)=^[X^j,
\i=l / i= l\i=l / i= l

for Mi, . . ., M^eg, and consider the /r-th prolongation

(p^S^^^Q-^S^T*®^
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of (p = (po. If u (= S^ +1 T* 00 9, v e S^ T* (x) 9 are expressed as

(2.1) u= ^ -l-^a(8)^,
l a | = f c + i a'

(2.2) z;= ^ 1^®^,
I P I = f c P'

where M^, z?p e g, the equation (p^ (u) = v is equivalent to the system

(2.3) E[X,,^]=^
1=1

for all a, with | a | = k.
Let p be a homogeneous polynomial of I (9) of degree ^+1. For Meg, using the

invariance of p, we see that
n

pfX', [X,, «])= ̂  a,7?(pC., X,], X'-6.. M),
1 = 1

where 1 ̂ j^n and | a | = d, and hence that
n

(2.4) ^ (X01, PC,, M:|) = - E -a-^ (X^-8', [X,, M]).
1=1 a,+l
i^J

We consider the linear mapping

^,: 5^*09-^

defined by
n

W= I, ^(X^,. . . ,X^,z;(^, . . . ,^)) ,
i i , . . . , i d = l

for v e S^ T* ® 9. Then it is easily seen that

^(^^^(X0^),

for ^ e g, | a | = d.

PROPOSITION 2.1. — If p is a homogeneous element ofl(o) of degree d-\-1, with d^, 1,
^ sequence

S^T^g^T^g^R

^ a complex.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



72 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

Proof. - If u e 3d +1 T* (x) 9, then
n

^p (<Pd («)) = E ^ (X.,, . . ., X,,, PC,, u (8,, ̂ , . . ., ̂ )]);
j,h,...,id=l

using the invariance of/?, we see that
n

^ (<P. 00) = ̂ I ^ ([Xfc, X,], X^, . . ., X^, M (8,, 8,, ̂ , . . ., ̂ _,)) = 0.
j,fc,ii....,id-i=i

The w-th prolongation

(^)^:Sd+WT*(x)9^SmT*

of \|/p is given by

., ^ / v - dxa^ \ ^ ^ ^ ^(^).m E - .®^ = S . ^ (X \ ^ , p )_ ,
\|a|=d+m a! / |p |=^ y! p!

| Y l = d

where ^eg; it clearly satisfies (Y^p)+m o (Pd+m= o•
We define a mapping

^: 8^*09-^ <9 S^-^T*
l^fl^r

by

^k (V) = ((^fp}+(k-da) (z;))! ̂ a^

for z; e Sk T* ® 9. If ^ is the element (2.2) of S^ T* ® 9 and

dx^
(2.5) w,= S w .p .eS^ -^T* . l^^r,

I P I = f c - ^ P -

with w^ p€ R, the equation ^(^)=(wi, . . ., w^) is equivalent to the system

(2.6) E -^(X01,^)^,?, |P|=^-^0, l^^^r.
|a|=da a!

PROPOSITION 2.2. — For k^ 1, ;/Xi ^ principal, the mapping \|/fc ^ surjective.

Proof. - Consider the elements H^GS^^T* given by (2.5), with w^petR. I fy is
the element (2.2) of 8^*09 and m is an integer satisfying 1 ̂ m^k, the system S^ of
equations

(1' ̂  ~~^^pa (xdla9 'ym£! + ̂  = wa- (m-da)^+^~ E ——,Pa (X", V (m - ̂  ̂  + a + ?)'
"fl' |a|=^ a!

ai<dfl
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with d^m, P=(0, ̂  . . ., ?„), |P |=fe-w and \^a^r, is a sub-system of (2.6). Note
that the right-hand side of (2.7) only involves the v^ +^, with l< m and y = (0, y^, . . ., y»),
| y |=A:—/ . We denote by So the empty system of equations. I fX^ is regular, we now
construct a solution v of the form (2.2) of the equation v^OO^^i? • • • » ^r)? or equiva-
lently of all the systems S^, with l^m^k. For P=(0, ?2, . . ., |U with ||3|=/r, let v^
be an arbitrary element of 9. Let m be an integer satisfying 1 ̂ m^k and assume that
we have chosen elements z^+p^g, for all 0^l<m, P=(0, ?2, . . ., ?„), | (3 |=A:—/, satis-
fying the systems So,Si, . . ., S^_i. Then, according to Theorem 1.1, for each
P=(0, P2, . . ., ?„), with [ P |=A:—w, we may choose z^+peg satisfying all the equations
(2.7), with d^m and \^a^r.

According to Proposition 2.1, we have the complexes

(2.8) S^T^g^S'T^g^ @ s^T*-^
l ^o^r

for k^O. If n== 1 and X^ is principal and if rf=sup(^), it is easily seen that, for k^d,
the sequence (2.8) is isomorphic to the complex

ad Xi "Xig—g^r^o ,
and so is exact by Theorem 1.1; this theorem also shows that the sequence (2.8) is not
exact at 8^*0^, for k<d. The following theorem gives a condition for the exactness
of these complexes.

THEOREM 2.1. — Ifn'^2 and (X^, X^eUi, then the sequences (2.8) are exact for all
W.

Proof. — We know X^, X^ are principal. Thus by Proposition 2.2, vj/j^ is surjective
for all k^Q. We now demonstrate the exactness of the sequences (2.8) at the middle
position S^^^g by induction on n. We first consider the case n=2.

If n=2 and V is a complex vector space, we identify S^^V with yk+l in the
following manner. If

dx"
u= ^ —00^, with^eV,

|a|=k a!

for a=(y',fe—y), we write u^=u^ ^_^ and then identify M with the (A:+l)-tuple
(Mo, Mi, . . ., Mfc) of V^1. If u= (MO, . . ., u^ i) belongs to S^1 T* ® g and
V==(VQ, . . ., v^) belongs to SfcT*lg)g, the equation cpfc(M)=^ is equivalent to

[Xi, ^+J+pC2, Ui]=vi,

for O^l^k, and (v|/^)+^_^(t;) is the (k-d^ l)-tuple

( d a 1 \
E T^^Pa^^-1.^)

\l=0 l\(d^-t)\ / f=o , . . ., k-da
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for 1 ̂ a^r and d^k.
The following proposition implies the exactness of the sequences (2.8) at the middle

position when n = 2.

PROPOSITION 2 .3 .—Suppose that n=2 and that X^, X^ are principal. Given an
element v = (vo, . . ., ̂ ) of S11 T* (X) g a^rf Y e 9 satisfying

^)=0, ^(Xl",Y)=0,

(2.9) 1 ^(X^- X^, Y)= f; ^ .,A.(X^ X^ r,_,),
m\(da-m)\ 1=0 l\(d^-l)\

for all \^a^r and 0^m^mm(k, d^-\\ there exists an element U=(UQ, . . ., M^+i) of
S^1 T* 00 9 ^MC/! ^^r (pfe (M) = v and

[X^o]=Y.

Proo/. - We proceed by induction on k. If fe==0, the conditions imposed on Y are

Pa (XI0, Y) = 0, ^ (X^, Y) =/., (X ,̂ z;o),

for 1 ̂ a^r. The first equalities and Theorem 1.1 give us the existence of an element UQ
of g satisfying

[X^ol-Y.

The latter conditions and Theorem 1.1 tell us that we can solve the equation

[Xi, Mj=z;o-Y=-yo-[X2, Mo],

for Mi eg. Thus (p(Mo, u^)=Vo. Suppose that the proposition holds for k-1, with
k^ 1. Consider the element v' = (z^o, . . ., v^-1) of S^1 T* ® g. We easily see that the
assumption v|/fc(z;)=0 implies that ^-i (^)=°- By our induction hypothesis and the
condition imposed on Y, there exists an element u' = (UQ, . . ., M^) of S^ T* ® g such that
[X2, ^o]=Y and (pfc0/)=i/. We now wish to solve the equation

(2.10) [Xi,^J=^-[X2,Mj,

for M f c + ^ e g ; a solution 1^+1 of (2.10) determines a solution u=(uo, . . ., ^, M^+i) of the
equation (pfc(M)=z;. According to Theorem 1.1, in order to solve (2.10) it suffices to
verify that

(2.11) ^(X^,^-PC2,Mj)=0,

for 1 ̂  a ̂  r. Since (p^ (M') = z;', according to (2.4), we have

————p^-\ x1,, P^, ^_J)
l\(d^-l)\

=-(yToK^^W'^"''---[x-"--»•
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for 0^l<mm(k, d^\ hence, if d^>k, we obtain

.̂W., [X,, «J)-^^,.(X;.->, X;, Y)-^ ̂ ..(Xfr-, X',, „„),

and if d<k

^P^ [X. «,])= -^ y,̂ -̂', x', .,_,).

If d^>k, equation (2.11) is therefore equivalent to our hypothesis (2.9), with m=k', on
the other hand, when d^k, the left-hand side of (2.11) is equal to the last component
of the element (vl^).^.^) of S'-^T*. Thus (2.11) holds for all l^^r, and we
have completed the proof of the proposition.

We now continue the proof of Theorem 2.1. Let n ̂  3 and assume that the sequences
(2.8), corresponding to X^, . . ., X^ and the basis [dx1, . . ., d x " ' 1 ] generating a
certain hypersurface Tg of T*, are exact at the middle position. Let v be an element of
8^*009 given by (2.2) and satisfying ̂  (z;) =0. If u is the element (2.1) of S^1 T*®g
and m is an integer satisfying O^m^k, the system S^ of equations

n-l

2j P r̂ ^a+ei+weM-^^a+men"!?^ uv. + (m + 1) e,,L
f= l

for all a=(ai, . . ., a^_i, 0), with |a |==/r-w, is a sub-system of (2.3). This system S^
is of the form ^-m(u')='^\ where i/eS^^^gOO^, z/eS^'^OOg and (p is defined in
terms of X^, . . ., X^_i and [dx1, . . ., rfx""1}. We now construct a solution u of
the form (2.1) of the equation ^(u)=v, or equivalently of all the systems S^, with
O^m^k. Let u^+i^n be an arbitrary element ofg. We denote by Sj^ the empty
system of equations. Let m be an integer, with O^m^k, and assume that we
have chosen elements Mp+^eg, for all w+l^ /^ / r+1 , P=(Pi, . . ., P^-i, 0), with
|P |=fe - /+ l , satisfying the systems S^+i, . . ., S^+i. Then we wish to solve S^ for
^a+me^ wlt^ a= (a^, . . ., a^_ i, 0), | a | = k - m + 1. According to our induction hypo-
thesis, it suffices to verify that

(2-12) E -^(x0, z^,^p-[x, ̂ ,^^p])=o,
\^\=da a!

Otn=0
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for P=(Pi, . . ., P»-i, 0), \^\=k-m-d^ and l^a^r, with k-m^d^ According to
(2.4), Hk-m^da, for 0^/<^, we have

1^ —~~PaO^'> Xn, [X,p ^^-(w+f+^en+P-l)
|a|=^ a!/!

aw=0

= - Z . / ? . 1^,^^' ̂ +1? ^(m+l+D^+P'tXn, ̂ t^^)^?])'M=^-(-I y ' ^+1) '
Yn=0

for P= (Pi, . . . ,?„-!, 0), with [ ̂ \=k-m-d^ Hence, we see that the left-hand side of
(2.12) is equal to the expression

dfl 1I E —^(x^x;,^,^^),
f=0 |a|=da-t a ! / !

«n = 0

which vanishes because (\|/^)+(fe_^(z;)=0. We therefore can solve the system S^, and
the equation (p^ (u) = v.

We have completed the proof of Theorem 2.1. We denote by ^+1 be the kernel
of (pfe. For k^ 1, let m^ be the number of the d^s equal to k. Under the hypotheses of
Theorem 2.1, from the exactness of the sequences (2.8), we deduce by a standard
argument (see [4]) the following result:

COROLLARY 2.1. — Ifn^l and (X^, X^)e\J^ \ve have

H^o^ffr^i, H^^o,

for fe^O and i>l.
Thus if n ̂  2 and (Xi, X;,) e Ui, if d= sup (^), then

Hmf^g,)=0,

for all w^rf and 7^0.

LEMMA 2.1. — Suppose that k^O and that X^ is principal. Assume that the elements u
of S^ +1 T* ® 9 and v of S^ T* (g) 9 given by (2.1) W (2.2) ̂ '̂̂  rA^ following conditions:

(i) /or alll^j^n andai=(^, . . ., a^), mth | a |=A;+l , ai=0, w^ Aa^

[X,,MJ=O;
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(ii) for all a = (o^, . . ., a^), w^A | a | = k, a^ < k, we have

(2.13) ZtX,,^,]^;
j=i

(iii) /or all l^a^r, if^=min(^, ^), H^ /^z^

da i
(2.14) E Z ^-.,n,^(xdlfl-^x^^-0e,^)=0.

j=o | p | = f (^-O'P'
pi=o

Then there exists u' e 9 ^MC/? ^<2^
n

[Xi,^]+Epc,,^^.]=^.
J=2

Proof. — We proceed by induction on w. For ^=1, the result follows directly from
Theorem 1.1. Assume that the lemma holds for n—1, with 72^2. Let u and v be
elements of S^'^T'^g and S^T*®^, given by (2.1) and (2.2) respectively, satisfying
the three conditions of the lemma. Then we have

n-l

Z [Xj, Mp+^]=Z;p-[X^, Mp+J,

J=l

for all P=(Pi, . . ., P^-i, 0), with |P |=A;and Pi<^. For l^a^r and a=(a^, . . ., 0,
with | a | = d^ and o^ -\-k ̂  fi^, we set

0,(ai, P, a^; ̂ ^^^X", ?€„, ^+(fc_^^J),

^(ai, P, a^ z;)=-^^(Xa, ^+(fc-^)si).

where P=(0, a^, . . ., a^_i, 0). By our induction hypothesis, in order to solve the
equation

n- 1

[Xi, <|+ ̂  PC,., M^^.]=1^-[X,., M^+J,
J=2

it suffices to verify that

d'a

(2.15) S ^ (^J;^-^ P, 0; z0-0,(^-/, P, 0; ^))=0,
!=0 | P | = f

Pl=Pn=0
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where ^=mm(^, k\ for all \^a^r. According to (2.4), for 0^s<d'^ and 1 ̂ a^r,
we have
d'a-s

Z Z 0,(^-/-^P^;M)
<=o |p|=i

Pl=Pn=0

d^-s-1

= 1 Z (^(^-/-^-l,?,^!;^-^^-/-^-!,?,^!;^).
1=0 | p | = f

Pl=Pn=0

Here, we have used condition (i) when k^d^ and the relation (2.13), with

a=(fe- / - l )6 i+P+(^+l)£^

for O^l^d^-s-1 and P=(Pi, . . ., Pn), with |P |= / and Pi=P^=0. Thus we see that
the left-hand side of (2.15) is equal to

d'a d'a-s

Z E E ^(^-^-^P^;^)-^(^-^O,^;M).
s=0 1=0 | P | = f

Pl=Pn=0

The second term of the above expression vanishes, by the invariance of pa when k^d^
and by condition (i) when k<d^. Therefore the equality (2.15) is equivalent to the
relation (2.14).

The following lemma is an immediate consequence of Lemma 2.1.

LEMMA 2.2. — Suppose that k^Q and that X^ is principal. Assume that the element u
o/S^1 T*009 given by (2.1) satisfies the following conditions:

(i) for alll^j^n Wa=((Xi, . . ., o^), mth [ a | = = / r + l , ai=0, \ve have

[X,,MJ=O;

(ii) for all a = (a^, . . ., o^), mth \ a | = k, a^ < k, we have
n

E[X,,^.]=0.
J = l

Then there exists u e 9 such that

[Xi,<|+E[X,,^^.]=0.
J=2

LEMMA 2 .3 .—Let p be a homogeneous element of^I(g) of degree fi?+l, rn^/i r f^l ,
a^ M ̂  aw element of g^ given by

u= E —dx"®u^
| a | = d a!
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with Uy^ e 9. Then, for all Y e g, vî  Aawe

I: -^(X-JY,^)^.
| a | == d 0^ •

Proof. — By the relation (2.4) corresponding to the n-\-\ elements { X ^ , . . ., X^, Y}
of 9, we obtain

^ -^(X^Y,^- ^ ^(X^.Y.pC,,^])
|a|=d a! | a |=d a!

i^j'^w

=- Z -^(X^Y,[X,,^.])=0.
| P | = d - l P '

1^J^»

We shall require the following result to prove Lemma 2.5 and Theorem 2.2.

LEMMA 2.4. — Assume that n^3 and that, for all 1 ^;</^=3, ̂  2r elements

{pam.PaW}l^r

0/9 <2r^ linearly independent. Then, for all weg, ^r^ ^x/^^ M, ^£8x3 satisfying

\X,,u\+\X^v]=w.

Proof. - Since {A,(X^)}i^^ is a basis of 9x-» for 7= 1, 2, 3, we see that

9x, 09x3=9x2 (^9x3=0-

Hence, by Theorem 1.1, the sequence

adX, "X;
0-^x3——^-^-^O

is exact for 7= 1, 2. Let w be an element of g; according to our hypothesis, there exists
Yeg satisfying

^ (X^, Y) -^ (X1-, vi.), ^ (X1-, Y) = 0.

Then n^ (Y) = 0 and we can solve the equation

[X^]=Y

for z?e9x3- Finally, since n^ (w- Y)=0, we can find an element ^6^x3 suc^ ^at

pCi, M]=W-Y.

If n^3 and (X^, X^, X3) belongs to U^, the hypotheses of the preceding lemma are
satisfied.
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We denote by g the unique scalar product on T for which {^ , . . ., 8^} is an
orthonormal basis of T. Let

(2.16) Tr: s^-^S^T*,
Tr^: S^T^T*-^"1?1'

be the trace mappings depending only on g and defined by

n

(TrM)(r|i, . . ., r(fc_2)= ^ u(8p 9p r|i, . . ., r^),
j= i

n

(Tr^)(r|i, . . ., r|fc_i)= ^ u(r[^ . . ., r|fc_i, 8p .̂),
j = i

for MeS^*, ^€8^^®^ and rii, . . ., ri^.^eT. Both these mappings are
surjective. We denote by S^ T* the kernel of (2.16). If

.-. dx^
u= Z ^ . ,

|a |= f c a'

with M^G IR, is an element of S^*, then
/_ \dx^

TTU= ^ S^+2eJ.-.
|p|=k-2\ i=l / P'

Let
CT : S^OT*-^*

be the mapping Tr^id—Tr^; its k-th prolongation

Ofc : Sfc+2T*(g)T*-^SkT*(x>T*

is equal to Tr^id—Aj^ i .Tr^+2. For fc^2, we denote by h^ the kernel of o^.^; clearly,
S^x T* is a subspace of /^.

PROPOSITION 2.4.—7/' w^3, ^ subspace h^ of S2^®^ ^ involutive and the
sequences

(2.17) 0-^/^fc.^2->S f c+2T*®T*^SkT*®T*T^S f c- lT i l t-^0

ar^ exact^ for k ̂  1.

Proq/1 - It is easily verified that (2.17) is a complex and that Tr^ is the (A:-l)-th
prolongation of Tr^, for k^\. Let 0(T) be the orthogonal group of the Euclidean
vector space (T, g). From the relation

ai (dx1' (Ac3)2 ®dx2) = 2 dx^ ®dx\
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we infer that the irreducible 0 (T)-modules A2 T* and S2 T* of T*®T* are both contained
in the image of o^. On the other hand, Tr^ is non-zero and we have the decomposition

T*(x)T*=A2T*©S2T*©[R^

of 0 (T)-modules. It follows that (2.17) is exact when k == 1. For 1 ̂ / ̂  n, let V, denote
the subspace of S2 T* composed of those elements u of S2 T* satisfying

M(^,TI)==O,

for all 1 ̂  i^j and all T| € T; set Vo == S2 T*. For 1 ̂ ;, j^n, with i^j, we have

a ((rfx1)2®^7) = 2 dx\ a ((Jx7)2®^) = 0;

hence we obtain
a(V,®T*)=T*,

for l^/ <n-l, and we see that cr(V,,_iOOT*) is equal to the subspace of T* spanned
by { dx1, . . ., dx"~1 ] . Since dim ¥„_ i = 1, we have

n-l n-2 n-l

^ dim^nV,)^ ^ (dimV,- 1)+ 1 =n ^ dimV,-^2-!)
j=0 j=Q j=0

=dimS3T*®T*-dimT*®T*-dimR=dimA3,

by the exactness of (2.17) with k= 1. This equality implies that h^ is involutive (see [I],
Theorem 2.14, Chapter IX). By a standard argument (^[4]), from the involutivity
of h^ and the exactness of (2.17) with k=l, if follows that the sequences (2.17) are
exact at S^T^T* for all k^ 1.

For fc^2, consider the mapping

id(x)(p : 8^*0^09-^8^*09.

Let p be a homogeneous element of I (9) of degree rf+1. If ueh^+^Q, with k^d,
then, for f^+i , . . ., ^^^, we have

(Tr.(^)+(fc-^2)-(id®<P)^)(^^, . . ., ^)
n

= i: ^ (x^,.... x^ PC,, ^ (8^.... a^ a,, a,, 8,)])
ii,...,id,j,l=l

n

= ^ P (x^ • • - x^ K' M (^•1' • • - 8^ ̂  ̂  )̂1)
i l , . . . , i d , J , l= l

=((^)+(fc-d)•^•Trfc+2^)(^+l. • • • . alk)=o.

by Proposition 2.1. Therefore, if

Tr: @ s^^T*^ @ s^-^-2^
l ^ f l^ r l ^ a^ r
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is the surjective mapping sending (wi, . . ., w^) into (Tru^, . . ., Trw,.), with
n^eS^^T*, we obtain the complexes

(2.18) ^09^8^(8)9-^ © S^^T^O,
1 ̂ a=r

for fc^2. The following theorem gives a condition for their exactness.

THEOREM 2.2. — I f n ^ 3 and (X^, X^, X3)eU2, then the sequences (2.18) are exact
for allk^l.

We require the following lemma for the proof of Theorem 2.2.

LEMMA 2.5. — Assume that n^3 and that, for all 1 ̂ ;</^3, ̂  2r elements

{pam.PaW}l^r

of 9 ar^ linearly independent. Then we have

S^T*®gc=(id®(p)(/!fe®9),

fork^l.

Proof. - Let v be an element of S^T*®g, with k^2, given by (2.2). We seek an
element

^ V -L^a®rfxJ®^,eSfcT*(g)T*®9x3.
I a | = f c a!
i^J^n

with M^^egx3» satisfying
n

(2.19) ^[X,,^J=^
j = i

for | a | = k, and
n

(2.20) S (^+£.+e,,.-^+2s„J)=0
i=l

for all l^j^n, |a|=fe-2. First, using Lemma 2.4, for a=(ai, . . . . a^), with |a|=^
and 03=0 or 1, we choose elements u^ i and u^ 2 of 9x3 satisfying the equation

(2.21) [Xi,^J+[X2,^2]=^.

For 7=1, 2 and a=(ai, . . ., a^), with |a |=fc and 03^2, we define elements ^^9x3
recursively on 03 by

MP+2£3,J::=- Z MP+2e^J•»
l^i=w
i^3
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where P==(Pi, . . ., ?„), |P[=A;-2. Then, since (Tr®id)z;=0, we see that (2.21) holds
for all a= (o^, . . ., a^), with | a | = k; we also have

(2-22) E^p^-o,

for y= l , 2 and P=(Pi, . . ., P,), with |p |==fe-2 . For all j>3 and |a|=A;, let
M^=0. For any choice of the u^^e^ the equations (2.19) will be satisfied. For
|P|=A;-l ,with P^(fe-l)83,weset

^P+ea, 3 == — ^P+ei, 1 — ^P+es, 2

and ^3=0. Then equation (2.20) holds for j =^3 and all |a|=A:-2. On the other
hand, equation (2.20), withy =3 and 03=!, is a consequence of (2.22). Finally, the
surjectivity of the mapping (2.16), with T replaced by its subspace of dimension n-\
generated by [S^ 8^ 8^ . . ., ^}, gives us the existence of elements u^^e^y with
[ a | = k and 03 = 0, satisfying

n

^ MP+28(• ,3= = MP+el+e3, l + M p +s;, 3 ^P+ei+es,! ' l"P+£2+e3,29

i^3

for all | P | = k - 2; thus (2.20) also holds when 7=3 and 03 = 0.
We now give the proof of Theorem 2.2. By Proposition 2.2, we need only demon-

strate that (2.18) is exact at S^T*®^ for ̂ 2. In fact, the diagram

S^T*®^ S 8^*09 ^ @ s^T*
1 ̂ a^r

| Tr®id i Tr®id | Tr

S^T*®^^-2^®^2 @ s^^T*
l^a^r

commutes. Thus, if ^eS^OOg, with k ̂ 2, satisfies Tr. \|̂  (v) = 0, then \|/fe_2(Trz;)=0
and, by Theorem 2.1, there exists MeS^T*®^ such that ^-^W^TTY. Since the
mappings (2.16) are surjective, there is an element u e S^+1 T* ® 9 such that
Tru'=u. Then M" is an element of/^®g such that

^-(id®(p)M /eS^T*®9.

The hypotheses of Lemma 2.5 are satisfied, and hence v belongs to (id®(p)(/^®g).
For k ̂ 2, the kernel of

id®(p: /^fc®9^SkT*®9

is equal to the kernel of

(a,_2®id)e(id®(p):SfeT*®T*®9^(Sfc-2T*®T*®9)e(SfcT*®9);
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hence ^+2 ls ^e fe-th prolongation of h'^ for k^2. Under the hypotheses of
Theorem 2.2, from the exactness of the sequences (2.18) and from the involutivity of h^
we deduce by a standard argument (see [4]) the following result:

COROLLARY 2.2. — Ifn^3 and (X^, X^, X^)e\J^ we have

H^ 2 (/^IR^, Hkfi(h^=0,

fork^l andi>2.
Thus, under the hypotheses of Corollary 2.2, if d= sup (^), then

H-'^/i^O,

fora l lm^rf+1 and 7^0.
Let

(A^-, B^)^^^^^^

be an element of Qn(n+l). Let ;? be a homogeneous polynomial of I (9) of degree
rf+ 1. We define a linear mapping

(2.23) %p: S'T*®^-^

by
Up (u)= Z -L {^ (X^6., [^^^ A,,]) -7^ (X", PC,, XJ, K^^, B,])},

lo( l=d-i a!
i^j\^"

where
dx^

u= ^ —O^eS^T*®^
|a |=d a!

with ^eg. We now derive an expression for ^p(u), which we shall need in
Section 4. First, we have

^ 1? (X^6., [{u^ B,] + [B,, ̂ ], XJ)
| a |=d- l O c '
1^J,^»

= Z \ [P (xa- [x^ x^ K+ep B,] - K^^., Bj )
| o c | = d - i a'
i^j',^"

+ ^ ^^(X^6.-^, PC, XJ, [M^^, B,]-K .̂, Bj)}
1 = 1

=2 E l^(Xa,pC,,XJ,K^,B,])
| a |=d - l a'
^^J,l^n

+ Z -^XP+£J' ̂  x^ ̂ .̂̂ F ̂ -^Wf BJ)•
|P |=d-2 P '
l^i,j,^n
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Since Mp+g^ is a symmetric function of; and /, we see that

^ p(X^ PC, XJ, [u^^ B,])=0,
l^,^n

for 1 ̂ j^n and | P | = d— 2. On the other hand, we obtain

Z -^(X^^PC.X^^^^^BJ)
=d-2 P'|=d-2 P.

l ^ i , j , l ^n

= S ^(X^P^X^^BJ)
|a |=d- i a'
l^ i , j ,^n

= ̂ - 1) S -1, P (xa. K. x^ K+e^ BJ).
| a |=d- l OC!
l^i ,^n

We therefore have verified the equality

^ 1 p (X^6., [K^^., BJ + [B, ^^J, XJ)^ . ̂  v . ̂  a-rfc,
| a |=d- l a!
1^J\^"

= (^+ 1) E -1. ̂  (X", [X,, XJ, [î , B,]),
| a |=d- i a!
1^7, ̂ n

from which we deduce the relations

(2.24) Xp (^ = I -L ̂  fx^^ k^^ A,J - —— [K .̂, BJ + [B,, ^^J, X,]\
l a l = d - i a! \ ^+1 /
l^J.^n

= E ^ ̂  fx', K_^,, A,,] - — [K, B,] + [B,, M._^,], xA
| a ] = < ) 01' \ " r l /

ISj. lSn

We define a mapping
X,:S*T*®9^ @ S^-^T*

1 ^a^r

by
Xfc (̂ ) = ((Xp,)+(fc-d,) (^))l ̂ ^r.

for ^eS^'T*®^. If v is the element (2.2) of S^T*®^ and w^ is the element (2.5) of
S^'^T*, for l^a^r, the equation XfcC^)^^!? • • • » ^r) ls equivalent to the system

(2.25) ^ 1 {^ (X^6., K,.p^^ A,J) -^ (X", [X,, XJ, [z^^, B,])} = w,, p,
| a |=da- l 0^!

l^J,^"
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with |P|=fc-^0, l^a^r. For l^a^r, l^l^n and Meg, we set

1
^^ 7T~^ s ̂ ^i0"15 x^ ̂  ̂ -PaQ^~\ [X,, xj, ̂  B,])};

\da~ l)! J = l

if MG 9x1» we see that

(2.26) T,,OO= ———— t MX^-\ X,, [M, A,,-[X,, B,]]).
{Cl^—1J! ^=1

PROPOSITION 2.5. — If n ̂  2 ^flf

(Xi, X^, . . ., X^, Aii-[Xi, BJ, A,,-pCi, BJ, . . ., A^-[Xi, BJ)

belongs to L^, ^/z^n ^/z^ mapping

X^- © S^-^T*
l ^ a ^ r

is surjective for k^ 1.

Proo/. - For l^^r, consider the elements n^eS^'^T* given by (2.5), with
H^ p e IR. We wish to solve the system S of equations consisting of

EP^^-o, |oc|=^-i,j = i
and (2.25), with |P|==^-^^0, l^^^r, for an element v of S^T*®^ of the
form (2.2). Let m be an integer satisfying 1 ̂ m^k. The system S^ of equations

n

(^^ [Xi, z^+p]+ Z PC,,^,_i^^p^^.]=0,
J=2

n

(2.28) \,l(Vn,^+^=^a,(m-da)^+^~ Z ̂  f (^(m-1) si + P+s,)

E -^(X^, h^(,_^,^p^, A,J)
| a | = da - 1 a •

ai <da-l

l ^ j , l ^n

-PaQ^^P XJ, [^+^_^^+p+^,Bj)},

with ^^w, P==(0, P^, . . ., ?„), \^\=k-m and l^^^r, is a sub-system ofS. Note
that the right-hand sides of (2.27) and (2.28) only involve the Vi^+y, with l<m and
Y == (0, Y2^ • • • » 7n)-> \y\=fc~l' We denote by So the empty system of equations. Under
our hypotheses, we now construct a solution v of the form (2.2) of S, or equivalently of
all the systems S^, with l^m^k. For P = (0, P^, . . ., ?„), with | P | == fc, let ̂  = 0. Let w
be an integer satisfying 1 ̂ m^k and assume that we have chosen elements v^ +B 6 ^ for
all 0^/<w, P=(0, ?2, . . ., ?„), | P|=^-/, satisfying the systems So, Si, . . ., S^_i. Let
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P=(0, P^, . . ., ?„), with | ̂ \=k-m. Since X, is principal, we may apply Lemma 2.2 to
the element u of S"1 T* (g) 9 defined by

^ dx^
u= L —®^+p.

I a | =w 0^ •

and we may choose Mp e g satisfying
n

[Xi,Mp]+ E [x^z^-D^p^o.
J=2

If ^a, (m-da) ei + p denotes the right-hand side of (2.28), by (2.26) and the remark preceding
Lemma 1.2, our hypothesis enables us to solve the equations

^ 1 (M?) = < {m - da) ei + (3 - ̂  1 (^p). ! ̂  ̂  ̂  r.

for Mp69xr Then ^ w £ l + p = M p + M l l l s a solution of the equations (2.27) and (2.28), and
we have thus constructed a solution of S^.

If W is a real vector space, we define the mapping

\K: (s^^ew-. @ s^T*
1 ^a^r

by v[/fc(z;, w)=v|/fc(^), for ^eS^T*®^ and weW. From Theorem 2.1 and Proposi-
tion 2.5, we deduce the following:

COROLLARY 2.3. — If n ̂  2 ^fif

(X,, X^, . . ., X, A,,-[X,, BJ, A,,-PC,, B,], . . .,A,,-[X,, BJ)

belongs to \3^ then the sequences

<plL®Xfe+1 ^fe

S^T*®^———^(SkT^(x)9)e @ S'-'^^*-^ @ s'-^^^O
l^fl^r l^a^r

ar^ exact for k^O.
Let af=sup(^) and, for m^O, denote by g^+w tne subspace of Sd+mT*(x)g equal to

the kernel of ^d+m-iQtd+m- Then g'd+m ls tne ^"^ prolongation of g'^ From
Corollary 2.3, we deduce by a standard argument (see [4]) the following result:

COROLLARY 2.4. — If n ̂  2 ^zrf

(X^, X,, . . . . X,, A,,-pC,, BJ, A,,-PC,, BJ, . . ., A^-PC,, BJ)

belongs to L^, then
H^^^O,

/or ^// w,y^0.
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Let

(2.29) :̂ S^TW^Q-^R

be the linear mapping defined by

W= E -W '̂ P^ ̂ ^ B,]+2[B,̂ .J]|a|=d a! \
1^», J'^n

\
-2[A,,, M,̂ ,,]- ^ a^[A,,, M^2c,-£^-] ,

1=1 )

where

M= ^ ^^rfx^M^.eS^1^®^®^,
la|=d+i a!

with u^jeQ. Let
.-. ^a

u= ^ —®M,,
[ a | = d + 2 ^'

with M^eg, be an element of S^^T*®^ By Proposition 2.1, we have

^ ^(X^pC.JB^^^ ]])=0,
| a | = d a!
i^j^"

for all 1 ̂ i^n. On the other hand, if u belongs to ^+2» by Lemma 2.3, we see that

^ ^ (X«, [A,,, ̂ ^ ])=(),
|a|=d a!

for all 1 ̂ i,j^n. Therefore, if u is an element of g^+z, we obtain

W= Z -L^(xa' ̂  ̂ ^e, B,]+2[B,, u^^]]
I a | = d ^ - \

l^i,j^n

\
-2[A^., U^^^- ^ ^[A^., M^+2e,-£,+e,]

^=1 /

= I: ^(X", [X,, K^, B,]])- ^ -^^(X^^, [A,,, u^,^])
|a |=d a! |a|=d-i a!

l^i,j^n l^i,j,^n

= S -'.{/'(X-^ K+2e,+^ A.^-^CX", PC,, X,], [»^e.+er Bj) } '
l o i | = d - i a!
l ^ i , j , l ^n

=tp(y\
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where z;=(Tr®id)M belongs to g^ thus we have shown that

(2.30) X;(M)=Xp.(Tr®id)(M),

for all uegd+2-
We define a mapping

X^TW*®^ @ S^-IT*
1 ̂ f l^r

by
Xt (") = ((Xp»)+(k-d<,- l)("))l £a^

for y 6 S^ T*<g)T* ® 9. Then by (2.30), we obtain

(2.31) Xt+i(")=Xf(Tr®id)(«),

for all M6^+2.

PROPOSITION 2.6. — If n^2 and

(Xi, X,, . . ., X,, An-[Xi, Bi], A^-pCi, B^}, . . ., A^-[Xi, B,,])

belongs to V^, then the mapping

x^i:^- e s'1-"^*
l ^a^r

^ surjective for k^Q.

Proof. - Let fc^ 1 and H^eS^^T*, for 1 ̂ ^^r. According to Proposition 2.5 and
its proof, there exists an element v of gj, given by (2.2), with ^=0 whenever ai=0,
satisfying ̂  (v) = (^i, . . ., w,). We define an element

Y- dxa^u= ^ —0^,
I a |= f c+2 a!

with ^eg, of S^^*®^ as follows. For P=(0, P^, . . ., Pn), with [p |==fc -w+2 , we
let M ^ ^ + p = 0 if w=0, 1 or 2, and we define the M^+p, with 3^w^fe+2, recursively
on m by

n

^mei+^^m-Dsi+P" S ̂ m-l) ei + P+2 s/
J=2

Clearly, we have (Tr®id)M=z?. To prove that M belongs to g^+2, we now verify by
induction on l^m^k+2 that

n

(2.32) £[X,,^-i)^p^.]=0,
j=i
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for all P=(0, ?2, . . ., P«), with |P |==A:-w+2. This is obviously true for m=l
or 2. Assume that w^3 and that (2.32) holds when m is replaced by m-2. The left-
hand side of (2.32) is equal to

n n

X P '̂' ^(m-S^i+p+s,]" ^L P^ M(m-3)el+P+2el+e,•-h
J=l f,J=l

i>l

the first term of this expression vanishes because v belongs to g^ and the second one
vanishes by our induction hypothesis. Hence, u is an element of ^+2 ^d so? by (2.31),
we see that Xfc+i (^=(^1, . . ., w,).

Since ^+2 is a subspace of Afc+i®9, from Theorem 2.2 and Proposition 2.6, we
deduce the following:

COROLLARY 2.5. — If n ̂  3 and

(Xi, X2, . . ., X^, A^-[XI, BJ, A2i-[Xi, 82], . . ., A^-[Xi, BJ)

belongs to \]^, then the sequences

/̂ g0!!̂ ^^^)® C S^T^-^ ©S^-T^O
l ^ f l ^ r l ^ f l ^ r

ar^ exact for k^l.
For fe^2, we denote by /^ the kernel of the mapping

(afe-2(x)id)©(id(g)(p)©^ S'T^T*®^->
(S^T^T^^ffiCS^T*®^ @ s'-^-^*.

l ^ a^ r

Let rf=sup(^,); then for w^O we see that ^+^+1 is the w-th prolongation of/^+i.From
Corollary 2.5, we deduce the following result:

COROLLARY 2.6. — If n ̂  3 <3W

(X^, X2, . . ., X^, Aii-[Xi, BJ, A2i-pC,, 82], . . ., A^-[Xi, BJ)

belongs to ^4., then
H^^^W^O,

/or ^// w,y^0.

3. Connections on a principal bundle

Let M be a manifold of dimension n. We shall denote by T* the cotangent bundle
of M. By A^T* and S^*, we shall mean the A:-th exterior product and the k-th
symmetric product of T*, respectively. Let E be a vector bundle over M. We denote
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by E^k= (X^E the k-th tensor power of E, by ^ [resp. Jfe(E)] the sheaf (resp. the vector
bundle of fe-jets) of sections of E over M, and by n^'.Jj,+^E)->J^(E) the natural
projection. We identify Jo(E) with E and set J^(E)=0, for k<0. If s is a section ofE
over a neighborhood of .xeM, then jk(s)(x) is the k-]et of s at x. For fc^O, we have
the exact sequence

0 -> S'T^E -^ Jfe(E)-^-^ J fe_ i (E) -. 0,

given by Lemma 2.1 of [4].
If V is a finite-dimensional vector space, we also denote by V the trivial vector bundle

M x V over M, and we write A^ ̂ "*(x)V for the sheaf of sections of A^ T*(X)V over M. If

d: A^^V-^A74'1^'*^

is the exterior derivative, there exists a unique morphism of vector bundles

a^rf): S fc+lT*®A• /T*®V->S fcT*(x)AJ+lT*®V

such that
A W (x) =j, (du) (x) + Ofc (d) E- 1^ i (^/ - M) (x),

where M, M' are sections of A^T^V over a neighborhood of xeM satisfying
h(u)(x)=j^u'){x).

Let G be a Lie group and let P be a principal bundle over M with structure
group G. We denote by Rg the right-action of an element g e G on P and by V (P) the
bundle of all vertical tangent vectors of P. Consider the vector bundle

E = P > < G Q

over M associated to P corresponding to the adjoint representation Ad of G on g. It is
easily seen that the bracket of g induces a bracket

E(x)E->E;

thus we also have brackets

(A^T^E^A^T^E) -> (A^T^E),
(A '̂ T* (x) Q)®^ T* (x) g) -> (A^ T* (x) 9),

determined by
[a®^, P®^]=(aAp)®[M, v\,

for aeA^'T*, peA^T*, M, z^eE or u, ve^.
The bundle of all connections on P is an affine bundle over M modeled on the vector

bundle T*®E. In fact, if F, F7 are two connections on P, which we identify with their
connection forms, then (0=1'-:? is a g-valued 1-form on P satisfying

R^Ad^-1.®, <^ , co>=0 ,
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for all geG and ^eV(P). Such a 9-valued 1-fbrm (D on P can be identified with a
section of T*(g)E. The co variant differential corresponding to the connection F gives
rise to a first-order differential operator

(F\ A^*®^-^-'1^*®^.

The curvature of F is a 9-valued 2-form Fr on P satisfying

R^F^Adg-1.^, ^)Fr=0,

for all geG, ^eV(P), and can be identified with a section of A^^E. Then we have

cP.cFu^^u},

for MeA7^"*®^, and the equation

^^=0

is equivalent to the Bianchi identity for Y(see [6]).
A section s of P over an open subset U of M gives us a trivialization

U X G — — ^ P | U

sending (x, g)e\J x G into s(x)g, and a corresponding trivialization

(3.1) Uxg^Eju.

If r' is the connection on P| u induced by s, whose horizontal spaces are equal to

{R^(T,)|xeU,^eG},

in terms of this trivialization of E, we see that c F ' corresponds to the exterior derivative

d\ A^^Q-^A-74-1.^*®^

and that (D is identified with a section of T* 00 9 and ^ with the differential operator

d^. A^Og-.A^1^'*®^

defined by
dtou=ciu-^-[o), u],

for ueAj ̂ '*®g, and F^ with the section

F^=^co+_ [o, co]

of A2 T* ® 9. The Bianchi identity for F is now written as

^F^^+tG), FJ=0.
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Given a section F of A2 T*®E over U, finding a connection F on P| y, whose curvature
Fr is equal to F, is equivalent to solving the equation

(3.2) rfco+i[o),G)]=F

for a section G) of T* ® 9, where F is identified with a section of A2 T* (x) 9 by means of
the trivialization (3.1). A solution CD of this equation must also satisfy the Bianchi
identity

(3.3) rfF+[(o,F]==0.

Let p be a linear function on (X)^1 9. We consider the morphism of vector bundles

:̂ (A2^®^)^® ̂ T^A^^g-^A^*)0^^

determined by

Tp((ai®Mi)® . . . (x)(ad®^)®Pi® . . . (x)P<,(8y®tO
=^(Mi, . . ., u^ ?0(aiApi)®. . .®(adAp,,)(g)y,

for ai, . . ., a^eA2^, Pi, . . ., P^:T*, yeA3^, MI, . . ., M^ ^eg. If V is a connection
in T*u, a solution co of (3.2) on U also satisfies the equation

(3.4) ^(FWW+KF]))^

of order d, where F^A2^®^)^ is the d-\h tensor power of F.

4. Connections with prescribed curvature

Let (x1, . . ., x") be a coordinate system on an open subset U of M. If a= (o^, . . ., o^)
is a multi-index of length n, with | a | = fc, we consider the section

dx^=(dx^ « . . . -(AcT"

of S^* over U and we set

^=8^=(-8-\l' '(-^-Y
~~S^ \8x1) ' " ^8^)

Let © be a section of T* ® 9 over U given by
n

co= ^ rf^OOo,,
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where the 0, are 9-valued functions on U. For P=(Pi, . . ., ?„), with | P|=A:+ 1, we set

"p=—,s p^-6^-;K-r- 1 ^-=1

then
^ dx^

"= Z -R,-®^

| p | = t + i P'

is a section of S*4' 'T* ® g. For a = (a^, . . ., a,), with | a | = k, and 1 ̂  /^ n, we have

"^^—rf^0^ a^ct-6J+E'^)K-r- 1 \ ^-=i /

and

(4.1) ^a),=^,+——Eoc,^{^-^).
A:+1 ^= i \^•/ 5x /

A section F of A2 T* (x) c\ over U can be written as

1 n

F=- ^ dx^d^Wip
2 f , j = i

where the F^. are g-valued functions on U satisfying F^.= —F^. The equation (3.2) is
equivalent to

^-es^-f- —-
Henceforth, in this section we suppose that ^=3. If F is a section of A2!"*® 9

over U, we write
F== Pi dx2 A dx3 + F^ ̂ x3 A ^x1 + F3 dx1 A rfx2,

divF= E ^;A^
if a=(ai, 03, 03), with |a|=A:, we consider the c^-valued function Fa=(FO[l, F^2, F^3)
on U. For x e U, let

q^J^T*®^-^7

be the surjective mapping sending j\ (F)(x) into

('F, (x), F^x), F3(x), ̂  (x), ̂  (x), ^(x), (divF)(x)\
\ 8x1 8x2 8x3 )
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Let F be a fixed section of A2 T* (x) g over U. We have

3

[0), F] = (dx1 A dx2 A dx3)® E [co,, F,],
j= i

rfF = (Ac1 A dx2 A ̂ (gdiv F;

the Bianchi identity (3.3) is equivalent to

3

^[F,,co,]=divF.
j = i

Let V be the flat connection in T|\j determined by

V^'=0,

for 7= 1, 2, 3. If^is linear function on ^)d+l g, the equation (3.4) is equivalent to

(4.2) ^ 1 p (l^ 8- fdiv F + ^ [co,, F,])) = 0.
l a l = d a! \ \ ,=i //

We assume for the remainder of this section that 9 is a semi-simple Lie algebra, whose
rank is equal to r. We consider the objects associated in Section 1 to the system of
generators [ p ^ y . . ., p y ] of I (9), in particular the subsets U\ of 9 x 9 and U^ of g6, and
the subset L^ of g7 given by Lemma 1.2. We suppose that d^d^. . . ̂ dy. For
xeU, since (p^ is surjective, we see that 6^=(p^1 (Uy is a non-empty Zariski-open subset
ofJ^T*®^.

Let p be a homogeneous element of I (9) of degree d+\, with ^L By
Proposition 2.1, with X,=F,(x), for xeU and fory= 1, 2, 3, and by (4.1), we obtain

E i,(F.,[a.«,,F,])-— E ^(''••[•'"'•'(^-^N)-| a | = d a! ^+1 | a | = d a! \ L \^ 8x1 ) \)
l^l^3 l^J',^3

Thus, we may write

(4.3) ^ 1 p fp", a" fdiv F + ^ [(o,, F,]))
l a l = ^ a! \ \ j = i //

= O (co) + 1 ^ ^ ̂  ("F", r^-6. fjco + 1 [co, co] - F) , F,1\
rf+1 i » | = d a! \ L \ 2 /„ J/

l ^ j , J ^ 3
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where Op(o)) depends only on the derivatives of CD up to order d- 1. In fact, for d^2,
we have

(4.4) Op(co)= ^ ^p(^ r^"6^ ̂ 1- —— [[^-^co,, coj+[co,, a"-6^], Fj)i a i =d ^ \ L a^j ^+1 /
l ^ j , l ^3

+Pp(F,(o),

where pp(F, ©) is an expression which only involves derivatives of co up to order d—l\
i f^==l , we see that

(4.5) Op(co)= ^ ^fF.Jco^l-1^,^,],^])
l ^ j , l ^3 \ L ^ J 2 /

^ /u ru T7 i \ . v- ^ 3divF\-3/?(Fi, [F^, F3])+ ^ /? F,, ——— .
^i \ 3X-7 /

If G) is a solution of (3.2), clearly we also have the equality Op (co) = 0.
Fix x e U and set

X, == F, (x), A,, = J^ (x), B = (div F) (x),

for 7, /= 1, 2, 3. For d'^ 1 and cOoeT^(x)g, we define a linear mapping

a^^S^T^T^g-^

as follows. If rf^ 2, then it is the unique linear mapping satisfying the relation

Op (0)') (x) = Op (o)) (x) + a (0?),, (u\

whenever ®, o/ are sections of T*00g over U and u is an element of S^'^T^OOT^OOg
such that

h -1 (o)7) O") =7d -1 (®) W + e M

and CD(x)=o)o. If fif= 1, then o(0p)^ is the differential at coo of Op along the fibers of
the vector bundle T* ® C( over M. For d^ 1, if

3

(4.6) o)o- E ^®B,,
j'=i

with B^.eg, and
rfx"

M= £ —(Sdx^u .,
|a|=d-i a!
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with u^jGQ, then

(4.7) CT (O^ («)

= E ^(xtl' ["-̂  " ̂ '3- —— [["-̂  B']+^ "-ŝ  xA
| a | =d (JL • \ M i 1 /

1^J,^3

The m-th prolongation

^W^ S^^T^T^g-^T?

of CT(<Dp)^ has the following property: whenever w+^2, ifco, o/ are sections of T* (8)9
over U and u is an element of S^'^"1"1 T^®T^®9 satisfying co(x)=G)o and

Jd+m-l W W =J'd+m- 1 (®) (̂ ) + S M,

then

(4.8) 7, (<^ (co7)) (x) =7, (0^ (o))) (x) + sa, (̂ ),, (u)

(see [5]). Let ©o be the element (4.6) of T^OOg and let

:̂ 8^(8)9^

be the mapping (2.23), with T*=T^, defined in terms of the dx\XpAji and B .̂. Then
by (4.7) and (2.24), we see that

^(^ols^s-Xp;

therefore, we also have the equality

(4 • 9) ^m (^p)a>o | S^-T^g == 0^)+m-

For k^O, let R^^ be the subset ofJ^(T*(x)g)^ consisting of all k-]etsj\(w)(x), where co
is a section of T* (x) g over U satisfying the equations

^ ̂  A-i(^+l[o),co]-F)M=0,

A-,^ i (^ (co)) (x) == 0, A (^F + [o, F]) (^ - 0,

forrf^^+1, l^a^r.
We recall thaty'i (F)(x) belongs to ̂  if and only if

(X^,X^,X3, A^^, A^i, A3^, B)

belongs to the subset L^ of g7 given by Lemma 1.2 (with ^=3) and defined in terms of
the subset L^ of g6. An element

(Y^Y^Y^v 1,^2^3)
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of g6 belongs to L^ if and only if the q elements

{^(Y^Y^U^eJ

of g are linearly independent and if the mapping

^-^©ir,
sending M e g into

^)=([Yi,4 B(Z^), . . .,B(Z,,M)),

where
3

Z^Z^A^-SY,)],

J= l

is injective.

PROPOSITION 4.1. — Assume that j\ (F) (x) belongs to the open subset (9^ of
J^T*®^,. Then:

(i) There exists an element G)() e R() ^ ̂ z^/z fty (4.6) satisfying

(4.11) (X,,X2,X3,A^-[X,,BJ,A^-[X,,BJ,A3i-[Xi,B3])eU3.

(ii) If veR^x ana tne element CDo^Tio^, given by (4.6), satisfies (4.11), then there
exists v e R^+1 ^ ^MC/Z f/zfl^ Tij^ z^' = ̂ .

Proof. — (i) Our hypothesis implies that

(X^, X^, ̂ 3, A^, A^^, A3^, -B)

is an element of L^. According to Lemma 1.2, there exist z^, z^, ^3 eg such that
3

ZPM=B
j=i

and
(Xi,X2,X3,Aii-[Xi,z;J,A^-[X,,^],A3i-pCi,z;3])eU3.

If^i, . . . ,ps are the elements of { p^ . . . , p y } of degree 2, we set

c. = 3 Pa (Xi, PC,, X3]) - ̂  ̂  fx,,adlvF (x)) - E ̂  fx,, [̂  A,J - ! [[z;,, ̂ , Xj),
^1 \ OXJ ) j,i=i \ 2 /

for 1 ̂ a^s. According to the remarks preceding Lemma 1.2, we are able to solve the
equations

3

^^(X,,[W,A^-PC,,Z;,]])=C,,
j= i
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for wegxi and all l^a^s. We set w^=\v, w^==w^=0 and B^=^+H^., for 7=!,2,3;
then [n .̂, H^]=O, for 7, /= 1,2,3. Since [Xi, w]=0, we have

3

^[X,,B,]=B;
j= i

on the other hand, we obtain

3 / 1 \^ A, X,,[B,,A,J-.[[B,,B,],XJ
j^=i \ 2 /

= S L/X^^A^-^^.^Xj)
j , l = l I \ 2 /

+^ fx,., [̂ , A,J - j [[̂ , v,J + [w,, v^ X,]\ I

3 / i \ 3

= 1L Pa( X,, h, A,J - _ [h,, z;J, XJ + ̂  ̂  (X,, [w. A,, - [X,, z.,]])
j , l = l \ 1 / j=l

=3^(X,,[X,,X3])- ^^fx,,5^^)).
,=i \ 5^ /

Hence cOgeRo ^\ since wegxi? tne relation (4.11) also holds.
(ii) Let ^i=7'fc+i (o))(^) be an element of Jk+i(T*(x)g)^ satisfying 7i^=z?, where © is

a section of T*00g over U. Then (4.10) holds and we have the following equalities
among elements of S^1 T^®A3 T^®g:

^-l(^£ - lA(^+^[^®:l-F)(^)=£ - lA-l(^^

--^A-i^+^F])^)
==0.

By the exactness of the sequence

CT^(d) CTfc _ i (d)

0-^S f c+2T*®9->S f c+ lT*(x)T*(x)9——^ S^T^A^*®^ ——> Sfc- lT*®A3T*®9,

there exists we^^T^^T^^g such that

afc(rf)w=-£- l^(rfco+ l[(o,co]-FK^).

Let
v- dxa^u= ^ —®u,

| a | = f e + 2 ^'
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be an element ofS^2!^®^ with U^EQ, and
3 3

(0'= ^ dx3®^ ^"= s ^•/®®y
J = l J = = l

be sections of T* ® g over U satisfying

Jk+iW(x)=v^f.w, ^(co'K^'yi+SM+ew;

then we have

(4.12) A (^ + -̂ l K, G/] - F") (x) =j\ (d^" + j [co", on - F") (x) = 0.

We now will choose the element u in such a way that the equations

(4.13) ^i(^F+[^,F])(x)=0, A-.^2(^(co'))(^=0,

with rf^fe+2, l^a^r, also hold. If a =(01,03,03), with [ a |= fe+ l , we have

/ 3 \ / 3 \ 3

(4.14) a01 div F + ^ [o;/, F,] (^) = 8- div F + ^ [o;, F,] (^) + ^ [u^ X,].
\ j = i / \ j= i / j= i

By our hypothesis on j\(¥)(x), we know that (X^X^) belongs to Ui. Therefore,
according to Theorem 2.1, if

(4.15) ^ l^fF a ,a a +PfdivF+ ^ [co;, F,])) (x) = 0,
|a |=^ a! \ \ j=i //

for all 1 ̂  a ̂  r, with d^k-^-l, and all P, with | P | = k + 1 - rf^, we may choose the element
u of S^2 T^®g in such a way that the right-hand side of (4.14) vanishes. Since

j\ (dF + [G/, F]) (x) =^ (dF + [co, F]) (x) = 0,

by (4.3), (4.12) and (4.10), the left-hand side of (4.15) is equal to

^ ( S ^-Pa (^ 8'1 fdiv F + ̂  [(D;, F,] W (x) = (aP 0^ (co7)) (x) = (^ 0,, (co)) (x) = 0.
\ l < x | = d a a! \ \ j= i ///

Ifrf^fe+2 and l^a^r, we set m^k^l-d^ according to (4.10), (4.8) and (4.9), we
have the following equalities among elements of S^T^:

^ ̂  (̂  (co')) W = £- ̂  (̂  (co)) (̂  + ̂  (^Joo (M+ w)

= e- 'Jma ̂ Pa ̂  W + a^ (°̂ )<"0 (w) + (̂ ) ̂ ).

As (4.15) holds for all l^a^r, with rf^A:+1, and all P, with |P |=fc+l-^ , by (4.11)
and Corollary 2.3, we are able to find a solution MeS^^^OOg of the system of
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equations
3 / 3 \
E [X,,^^ divF+ E [O);,F,] (x),

j= i \ j = i /
OCJ4-., (u) = - E- ̂  (̂  (o))) (x) - a,, (0^ (w),

for all a, with |a [=A:+l , and for all l^^r, with d^k+l and m^=k+2-d^ With
this choice of u, the section ©" of T* 0 9 satisfies the equations (4.13), and so 7^ ^ (a/7) (x)
belongs to Rk+i,^.

The preceding proposition together with Theorem 2.2, Chapter IX of [1] (due to
Malgrange [9], Appendix) applied to the system of equations

7fc-Jrf(D +-^ [(0, G)] - P) = 0,
(4.16) k '\ 1 )

A-^i(^Jo)))=0, A(rfF+[co,F])=0

of order A: for a section o of T*®g over U, where k=sup(dy— 1,1) and 1 ̂ a^r, yields
the following result:

THEOREM 4.1. — Suppose that F^, F^, F3 are real-analytic functions of(x1, x2, x3) on
U. L^ x e U a^irf assume that j^ (F) (x) belongs to the open subset (9^ of
J^ (A2 T* ® 9)^. TTz^/z ^A^r^ exists a solution

3

CD= E dx^Wj

of the system (4.16) and of the equation (3.2) on a neighborhood V c: U of x, where the
(QJ are real-analytic 9-valued functions of(x1, x2, x3) on V.

Remark. — Under the assumption that j\ (F)(y) belongs to Gy, for all ye\J, using
Proposition 4.1, Corollary 2.2 and results from [5], it is easily seen that the subset R^
of Jfc(T*®g)| u, corresponding to the system (4.16), with k=sup(dy— 1,1), is a formally
integrable differential equation, whose symbol is involutive, in the sense of [5].

Assume that M is a real-analytic manifold and that P is a real-analytic principal
G-bundle over M. Suppose that the section s of P over U is real-analytic and that
(x1, . . ., x") is a real-analytic coordinate system on U. Let @^ be the non-empty Zariski-
open subset of J^ (A2 T*g)E)^ equal to the image of (9^ under the isomorphism

Ji (A2 T* (g) 9), u ̂  Ji (A2 T*(g)E)i u

determined by the trivialization (3.1). From Theorem 4.1, we deduce:

THEOREM 4.2. — Assume that M is a real-analytic manifold of dimension 3 and that P
is a real-analytic principal G-bundle over M. Then, for any real-analytic section F of
A^^E over a neighborhood of x, withj\ (P)(x)edJ^ there exist a neighborhood V of x
and a real-analytic connection F on Pi y whose curvature Fj- is equal to F on V.
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5. The Yang-Mills equation

We consider the principal bundle P over M with structure group G of Section 3, and
the objects associated to it. We suppose that 9 is a semi-simple Lie algebra. It is easily
seen that the Killing form B of 9 induces a scalar product on the vector bundle E. Let
g be a Riemannian metric on M. We denote by ( , ) the scalar product on the vector
bundles T* and A7 T*®E induced by g and this scalar product on E. If F is a connection
on P, we denote by

y: A^1^*®^-^'^'*®^
the formal adjoint of <F with respect to the metric g and the scalar product of E. The
section 8^^ of T*®E over M is called the current of the connection r; later, we shall
verify that it satisfies the Bianchi identity

(5.1) 8^8^=0.

Given a section C ofT*®E over M, we consider the inhomogeneous Yang-Mills equation

(5.2) 8^=0

for a connection F on P. In view of (5.1), a solution F of this equation must also
satisfy
(5.3) 8^=0.

We endow the trivial vector bundle 9 over M with the scalar product induced by the
Killing form B. Let © be a section of T* (X) 9 over M. We denote by

8": A^^'^Q-^A^*®^

the formal adjoint of the differential operator

d^. A^*®^-^^1^*®^

and by
co*: A^T*®^-^?16®^

the morphism of vector bundles equal to the adjoint of the morphism

A^T*®^-^^1?'6®^

sending M e A7 T* ® 9 into [co, u}. If d* is the formal adjoint of d, then we have

80)M=^*M+CO*(M),

for u E A3f+1 ̂ "* ®g. If x e M and k ̂  0, the mappings

a, (810) = a, (^*): S^1 T?®T^®g ̂  S^ T;®g,

a,(8^=a^*^: S^T^T^g^S^®^
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are equal to the mappings -Tr^OOid and -c^OOid respectively, where Tr^ and CT^ are
the mappings defined in Section 2, corresponding to the vector space T^ endowed with
the metric g. Let h^+2,x be the subspace of S^2^®!^ equal to the kernel of this
mapping a^. If ̂ 3, Proposition 2.4 implies that the sequences

(5.4) O^A^^^g^S^1^®^®^-'-^^^1^®^®^0'^^

are exact, for k^ 1.
Let ^ be a section of P over an open subset U of M; consider the connection V on

P|U induced by s and the trivialization (3.1). Let F be a connection on P. In terms
of this trivialization of E, we identify o)=r—P with a section of T*®g; then we see
that 8^ corresponds to 8 and that 8^ is identified with 8®. Let .xeU and { ^ i , . . .,^}
be an orthonormal basis of T^ and Meg. If

F= Z ,̂®F,,,
l^Kj^n

with F^. e g, is an element of A2 T"' ® 9, then we see that

<[F,^],F>= ^ B([F^],F,,)=0.
1^i<j^n

Therefore, if M is a section of g over U, we have

<^^,F,>=<[F,,MLF,>=O;

from this equality, we deduce that

(5.5) 8(0.80^F,=0

and that (5.1) holds.
Let (x1, . . .,x") be a coordinate system on U and let C be a section of T*®E over

U. Finding a connection T on P| u satisfying the equation (5.2) is equivalent to solving
the equation

(5.6) 8"(^co+^[o),o)]^=C

for a section co of T* ® 9 over U, where C is identified with a section of T* ® g over U
by means of the trivialization (3.1).

Let

C= ̂  ^®C,^(
1=1

be a section of T*®g over U, where the C^ are 9-valued functions on U. For 1 ̂ i^n,
we set

n

Q=E^c,,
.7=1
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and for a =(04, . . .,a^), with |a|=A:, we consider the c^-valued functions

C01 = (C°;i, . . ., Q"), C- = (C^i, . . ., C^")

on U. Let co be a section of T* ® g over U given by
n

©= ̂  dx1®^,

where the co^ are 9-valued functions on U; for 1 ̂ i,j^n, we set

, a®. 3o).
^^-^•'^

Then it is easily verified that

/ 1 \ n

501 ^co+ -[G),O)] = - E dx^Qp
\ 2 / f = i

where

«,- E {»*(^+l».•*»l)+S*»+ S ^-g*-}.
i,k=l I \^ / O X l,m=l CX )

Hence, for | a | = d and 1 ̂ j^n, we may write
n n f

(5.7) ^ ^a^6.^^^ ^ \gik(8a+^^t''^-[8a+t^^,^-2[^,8'l+^^
i,k=l i, k = 1 (.

n 3 ifc ^
+[co,,aa+e.•o)J)+ ̂  ^-^(a,^^/; co) ^ +aae,+(p(aJ; co),

1 = 1 3x1 J

where the (p(a,;',fe,/; (o) only involve derivatives of (0 of order d-\-1 and the (p(a,7; (o)
depend only on the derivatives of © up to order d.

If CD is a solution of (5.6), by (5.5) it must also satisfy the identity
n

(5.8) S-C^C+^tq.co^O,
J= l

where

d*c=-S 8C1.
A 9x'

Clearly, the equation (5.8) is equivalent to

" " fir"
S[c^]=E-f.

j= l j= l ox
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We suppose that the semi-simple Lie algebra 9 has rank r and consider the objects
associated in Section 1 to the system of generators [p^ . . . , p y ] of I (9), in particular
the subsets

U^cr93, U^g2", U^g2"^,

when n >. 3. For x e U, let

^JiCr^)-^1

be the surjective mapping sending j\ (9) (x), where

9= ^ ^8)9,
j=i

is a section of T* (g) g over U, into

( .an/ -an/ n ,a/v \
91(x),...,9;(^-^(x),.,^(x), E ^(x)),

3x1 5;c" ^=1 ̂  /
n

with 9^= ^ g^Qj. lfn^3, for xeU, since (p^ is surjective, we see that ^x=^x~l({J6) is

j= i
a non-empty Zariski-open subset ofJi (T^®g)^.

Let p be a homogeneous element of I(g) of degree rf+ 1, with d^ 1. We consider the
morphism of vector bundles

T;:^*®^®®^2^®^^!

determined by

T;((ai®Mi)® . . . (x) (o^(x)^)®pi® . . . ®P^2®zO

=p(Mi, ...,^,t;)<ai,Pi> ... <o^P,><P^i,P,+2>,

for a^, . . .,a^. Pi, . . . ,P^+26T*, MI, . . .,^, z?eg. Let V be a connection in T*u; if co
is a solution of (5.6), it also satisfies the equation

Tp(Cd®Vd+2(5GlC))=9

of order ^+2, where C^eCT*®^)^ is the d-th tensor power of C.
Assume that V is the flat connection in T*y determined by

Vdx^Q,
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for 1 ̂ j^n. Then we have

(5.9) ^(e^V^^C))

= I ̂ fc-^a^^^f^c+E^^l))
|a |=d a! \ \ j=i //

l^i, fe^n

= s ^fc-^fca^^^co.i+ir^^^^con
|a |=d a! \ \ \_OX J

1 ^i,j, k^n

+ i oJ^^^'^Tf) +pp(c.®)'^ = 1 |_ dx J//

where p (C, co) is an expression which only involves derivatives of 0) up to order d. By
Proposition 2.1, for 1 ̂ ;, fe^^z, we see that

Z ^fc-Stq.^a-^^^co^o,
M=d a! \ j=i /

S -^fc- ^ [c;,̂ ^^^6 ,̂]]) =o.
I a | = d a! \ j=i /

Hence, by (5.7), we may write

(5.10) T;(cd®vd+2(8roc))=-o;(co)+ S ^(c-tq.a^e.+c,)]),
|a |=d a'
l ^ J ^ W

where Op(o)) depends only on the derivatives of co up to order J+ 1. In fact, we have

<W- I l^(c/^^([C;,[3a+£^,co,]+2[co^a+^^^
j a | =d OC. \ \ L -I

l^i,j,k^n

-,s<^•a"••"-"<B-])-,£[CJ•^v(°•u•'•'B)])
+Pp(C,co),

where p7 (C, CD) is an expression which only involves derivatives of co up to order d. If
co is a solution of (5.6), clearly we also have the equality Op(co)=0.

Fix xeU and assume henceforth that (x1, . . .,x") are normal coordinates at x. For
l^/, l^n, we set

X,=C,(x)=C;.(x), A,,= J^(x)= ̂ (x),

•"^ ^<^
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then the equality

(5.11) 0;(o))= ^ l^fca,[C,,[aa+e-a)„(o,]+2[co^a+£'(o,]]
| a | = d a! \

l^J^n

-^•^••^-^{f-3"2'""'])^^
holds at x.

Let
n

(5.12) o)o=E^®B,
j = i

be an element of T^®g, with B^.eg, and let

^S^T^T^^

be the mapping (2.29), with T*= T^, defined in terms of the rfx7, X .̂, Aji and B^. Then,
whenever ©, G/ are sections of T*®Q over U and u is an element of s^"^1 T^®T^®g
satisfying CD (x) = (OQ and

Jd+m+l (0 (̂ ) =Jd+m+l (®) (̂ ) + S M,

from (5.11) it follows that

(5.13) ^(^(^(^^(^(^W+step)^^)

(̂  [5]).
For fe^O, let Rj^ ^ be the subset of Jfc(T*(x)g)^ consisting of all A:-jets j\ ((o) (x), where

0) is a section of T* ® 9 over U satisfying the equations

7fc_J8(ofrfo)+ ^[CD.CD]) -C^ =0,
(5.14) \ \ ^ ) )

A-^-i(<D^(co))=0, y^C)^,

for^^^-1, l^a^r.
We recall that^'i (C) (x) belongs to ̂  if and only if

(X^, . . . ,X^ ,A^^, . . .,A^,B)

belongs to the subset U^ of g2"^1 given by Lemma 1.2 and defined in terms of the
subset IJ4 of g2". An element

(Yi, . .,Y^i, . . .,^)

of g2" belongs to IJ4 if and only if the q elements

{^(Y^Y^L^eJ
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of 9 are linearly independent, if

{ Pa (YH Pa (Y^) }l ̂  { Pa (Y^ Pa (Y^) }l^r

are two sets of 2 r linearly independent elements of 9 and if the mapping

).: 9-.9©r,

sending u € 9 into
^)=([Yi,M],B(Zi,M), . . .,B(Z,,M)),

where

Z^Zh^Y^.Y,)],
j=i

is injective.

PROPOSITION 5.1. — Assume that n ̂  3 awrf rAar 7\ (C) (x) belongs to the open subset (9'^
o/Ji(T*®9L Then:

(i) There exists an element ®o e Ro, ^ ^^72 ̂  (5.12) satisfying

(5.15) (X^X^, . . .,X,A^-[Xi,BJ,A^-[X,,B2:|, . . .,A^-pC,,BJ)eU4.

(ii) IfveRk^ and the element ^Q=KQV, given by (5.12), satisfies (5.15), then there
exists v e R^ +1 ̂  ^MCA ^a ̂  TI^ ̂ / = v.

Proof. — (i) Our hypothesis implies that

(X^, . . .,X^,AH, . . .,A^i,B)

is an element of U^. According to Lemma 1.2, there exist elements B^, . . ., B^ e 9 such
that

^[X,,B,]=B
j=i

and such that (5.15) holds. Then the element ©o given by (5.12) satisfies the required
conditions.

(ii) Let k^O and ^ i=A+i (co)(x) be an element of Jfe+i(T*(g)9)^ satisfying 71^1=1;,
where

n

co= ^ dx^^j
j= i

is a section of T*®9 over U. Then the equations (5.14) hold. If fe=0, we have
(§® C) (x) == 0 and there exists an element

n

u= ^ dx^dx^Uij
i , j= i
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ofT^(X)T^(x)g, with M^.eg, satisfying

f; [X,,^]=-a(^*C+ ̂  [C;,co,])(x),
j= i ox \ j = i /

for l^i^n; then, if co7 is a section of T* (x) g over U such that

7\(0(x)=^+eM,

we have 7\ (6" C) (x) = 0, and so J\^)(x) belongs to R'î . We now suppose that
k^ 1. By (5.5), we have the following equalities among elements of S^"2 T^(x)g:

^-2(8ro)£-lA-lf8M^co+j[co,o)])-C\x)=£-17^

=-£- lA-2(8G)C)(x)
=0.

The exactness of the sequence (5.4) gives us an element w of S^1 T^(x)T^(x)g such that

^-l(^^^=-£-lA-l[8ffl^(D+j[(D,(0])-cVx).

Let
M== z -L®^®^,l a l = f e + i a!

be an element of /^+i^®^ with z^ ^.eg, and
n n

o/= ^ dx^w'p co / /= ^ dx3®^'
j = i j-i

be sections of T* (x) 9 over U satisfying

7fe+i(<)(>")==^i+£^ ^(onOO^i+eM+sw.

Since /^+ ^ ^®g is the kernel of a^_ i (J* ̂ ), we see that

(5.16) A-l(8?/Y^co7/+ l[(o7^(D/^-Cy^

=A-1 (̂  ̂ (o7 + 1 [co7, G/]') - C') (x)

=A-l(8ra^co+j[(o,(D]^-C\x)+8a,.l(J*^w

=0.

We now will choose the element M of/^ 4.1^® 9 in such a way that the equations

(5.17) A+ i (8(B" C) (x) = 0, A-., (^ (co-)) (x) = 0,
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withrf^A:, 1 ̂ a^r, also hold. If |oc|=A:+1, we have

(5.18) ao((^*c+ ̂  [c,,o)y])(x)=aaf^c+ ^ [C;,(D;]\X)+ ^ [x,,^j.
\ J-l / \ J = l / J = l

By our hypothesis on7\(C)(x), we know that (X^, X^, X3) belongs to U^. Therefore,
according to Theorem 2.2, if

(5.19) E l^fca,^aa+P+£-+£^^C+ ̂  [C;,(D;.]))(X)=O,
|a |=da a! \ \ J=l //

1 ^i, k^n

for all \^a^r, with ,̂ ̂  fe — 1, and all (3, with 1131 = A; — ̂  — 1, we may choose the element
u of h^+1, ̂ ®g in such a way that the right-hand side of (5.18) vanishes. Since

A(8G)/C)(x)=7,(5(OC)(x)=0,

by (5.9), (5.10), (5.16) and (5.14), the left-hand side of (5.19) is equal to

^f I LPa(ct^gik9a+^(^C+^[C^^
\ \a\=da a! \ \ J = l ///

= - (^ ̂  (G)')) W = - (BP ̂  (G))) (x) = o.

As (5.19) holds for all l^^r, with ^^^- 1, and all P, with | P[=^-^-1, by (5.15)
and Corollary 2.5, we are able to find a solution u e h^+1 ,^®9 of the system of equations

S [X^J= -^afrf*C+ ̂  [C;,(o;.])(x),
j--=l \ j-l /

(XpJ^(k-^) (u)= - £- ̂ -d, (̂  (co')) (x),

for all a, with | a |= fc+l , and for all l^^r, with d^k. By (5.13), with this choice
of M, the section co" of T* (g) 9 satisfies the equations (5.17), and so j\+^ (co") (x) belongs
toRfc+ i , ^ .

Let rf=sup(^). The preceding proposition together with Theorem 2.2, Chapter IX
of [1] (due to Malgrange [9], Appendix) applied to the system of equations

Jd-i(^(dw-^ ^[G),G)N -c) =0,
(5.20) V V ^ ) )

7d-<J^>))=0, ^(S^C)^,

with 1 ̂ a^r, of order rf+ 1 for a section CD of T* (x) g over U yields the following result:

THEOREM 5 .1 .—Suppose that n^3 and that g and C i , . . . , C ^ are real-analytic
functions of(x1, . . .,x") on U. Let xeU and assume that j\ (C) (x) belongs to the open
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subset (9'^ ofJ^ (T*®g)^. Then there exists a solution

n

co= ^ dx^^j
j = i

of the system (5.20) and of the equation (5.6) on a neighborhood V c U of x, where the
CD. are real-analytic ^-valued functions of(x1, . . .,x") on V.

Assume that (M, g) is a real-analytic Riemannian manifold and that P is a real-
analytic principal G-bundle over M. Suppose that the section s of P over U is real-
analytic and that (x1, . . .,x") is a real-analytic coordinate system on U. Let S'^ be the
non-empty Zariski-open subset of Ji(T*®E)^ equal to the image of ^ under the
isomorphism

Ji(T*®9)iu^Ji(T*®E),u

determined by the trivialization (3.1). From Theorem 5.1, we deduce:

THEOREM 5.2. — Assume that (M, g) is a real-analytic Riemannian manifold of dimen-
sion n'^3 and that P is a real-analytic principal G-bundle over M. Then, for any real-
analytic section C of T*(x)E over a neighborhood of x, with j\ (C) (x) e S'^ there exist a
neighborhood V ofx and a real-analytic connection T on P| y satisfying the equation (5.2).

Let x be an arbitrary point of M. For fc=2, let N^ be the subset of Jfe(T*®g)^
consisting of all A:-jets j\ (oo) (x), where CD is a section of T* (x) g over M satisfying the
equation

A-2(8"FJ(x)=0.

The first part of the proof of Proposition 5.1, (ii), with C=0, also shows that:

PROPOSITION 5.2. — For xeM, the mappings

^1 '• ^2,x -> Jl (T* ® 9L ^k'-^k+l,x -̂  ^

are surjective, for k^2.
The preceding proposition together with Theorem 2.2, Chapter IX of [I], applied to

the equation

(5.21) 8^=0

of order 2 for a section © of T* (g 9 over M, yields solutions of the homogeneous Yang-
Mills equation and the following results:

PROPOSITION 5.3.—Assume that (M, g) is a real-analytic Riemannian manifold of
dimension n^3, and let x e M.

(i) If q is an element o/Ji(T*OOg)^ there exists a real-analytic solution co 6>/(5.21)
over a neighborhood of x such that j\ (co) (x) = q.

(ii) Assume that P is a real-analytic principal G-bundle over M. Then there exist a
neighborhood V ofx and a real-analytic connection Y on P| y satisfying the equation

5^=0.
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Remark. — Using Proposition 5.2 and results from [5], it is easily seen that the subset
N^ of J^ (T* (x) 9), whose fiber at x e M is equal to N^ ^ is a formally integrable differential
equation, whose symbol is involutive, in the sense of [5].
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