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CONNECTIONS WITH PRESCRIBED CURVATURE
AND YANG-MILLS CURRENTS:
THE SEMI-SIMPLE CASE

By Dennis DETURCK (%), Husertr GOLDSCHMIDT (?) AND
JaNeT TALVACCHIA (3)

In this paper, we prove the local existence of real-analytic solutions of two closely
related systems of real-analytic non-linear partial differential equations arising from
geometry, in which the unknown is a connection in a principal bundle whose structure
group is semi-simple. The main features of these two systems and of our ensuing
discussion of them are extremely similar, and at times surprisingly so.

Let P be a principal bundle over a manifold M whose structure group G is semi-
simple. The first problem we consider is to prescribe the curvature form of a connection
on P, when M is three-dimensional. The second one is to solve the inhomogeneous
Yang-Mills equation for a connection on P, when M is a Riemannian manifold of
dimension = 3.

We prove that, if F is an analytic 2-form on M with values in the Lie algebra of G,
whose 1-jet at xe M satisfies a certain genericity condition, then there exists a connection
on P whose curvature is determined by F on a neighborhood of x (Theorem 4.2). For
the inhomogeneous Yang-Mills equation, our existence result may be expressed in a
similar manner (Theorem 5.2).

Each of the problems is naturally cast as a system of partial differential equations
with a connection as an unknown. The equations are difficult to solve because they are
highly degenerate: every cotangent direction at every point of M is characteristic. This
degeneracy stems from their equivariance under the infinite-dimensional pseudogroup of
local gauge transformations of the bundle and changes of coordinates in the base
manifold. Upon taking this invariance into account, we obtain identities which the
(unknown) connection must satisfy in order that it be a solution of the original problem,
and which involve the right-hand side and its covariant derivatives. From the point of
view of power-series solutions, the new identities can be interpreted as obstructions to
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58 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

prolonging a formal solution of order k to one of order k+1. In general, for a system
of non-linear partial differential equations, if one adds to the original system all of the
equations which arise as obstructions to extending a formal solution of finite order to
one of higher order, one might obtain a new system with no solutions. This is indeed
the case for the equation for prescribed curvature when the dimension of M is >3
(see [10]). It is quite remarkable that for the dimension-three prescribed-curvature equa-
tion, and for the Yang-Mills equation, that one can actually compute these obstructions
explicitly and determine their precise nature.

For both our systems, as in other situations in which one precribes a curvature tensor
(see [2]), the Bianchi identity, an equation of order zero, is the obstruction to prolonging
a formal solution of order k to one of order K+ 1. In contrast to other problems, where
the solvability of the Bianchi identity is automatic, here there are obstructions to
prolonging formal solutions of this equation. Indeed, the semi-simplicity of the group G
leads to a set of further identities which the connection must satisfy. Each homogeneous
invariant polynomial of positive degree on the Lie algebra g of G gives us such an
equation. We extract a complete set of these identities composed of r equations, where r
is the rank of g; the nature of this set depends in a delicate way on the structure of the
Lie algebra g. Using work of Kostant ([7],[8]) and Rais on semi-simple Lie algebras,
we are able to explain why these identities occur and why this complete set should provide
us with all the obstructions to solvability. We then consider the system consisting of
the original equations and the Bianchi identity, together with the r equations of such a
complete set of identities. The task of extending a formal solution of order £ of this
new system to one of order £+ 1 reduces to a problem in linear algebra, which we solve
explicitly using results from the structure theory of semi-simple Lie algebras. Thus we
do not have to rely on the general theorems on the existence of formal solutions of [5],
and are able to prove existence directly. The method of majorants then leads to the
convergence of power-series solutions (see [9]).

We point out that, previous to our study, for G=SL(2) or SL(3), local existence of
solutions for the prescribed-curvature equation in dimension 3, had already been proved
in [10], using the Cartan-Kéhler theory of [5] (see also [3]). R. Bryant has also obtained
similar results for the group SL(2), while S. Tsarev [11] has outlined another approach
to this case.

This paper consists of two parts, which we now proceed to describe. The first one,
consisting of Sections 1 and 2, is devoted to the algebraic results about semi-simple Lie
algebras which we require in solving our non-linear equations. We rely greatly on the
work of Kostant ([7], [8]) on complex semi-simple Lie algebras. Let g be a real or
complex semi-simple Lie algebra of rank r, and let I(g) denote the algebra of invariant
polynomials on g. According to Chevalley’s theorem, we may choose a set {py, ..., p, }
of homogeneous generators of I(g), which are algebraically independent. The degrees
of these polynomials depend only on g and are =2. The differential (dp;) (X) of the
polynomial p; at Xeg is a linear form on g which we identify with an element of g, via
the Killing form of g. An element of g is said to be principal if the dimension of its
centralizer is equal to the rank of g. The principal elements of g form a non-empty
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 59

Zariski-open subset of g. The first result of Kostant, which is used constantly through-
out Sections 1 and 2, is his criterion for recognizing when an element of g is principal:
an element X of g is principal if and only if the r elements (dp,) (X), . . ., (dp,) (X) of g
are linearly independent (see [8]). An immediate consequence of this criterion is the
following characterization of the image of ad X:g— g, when X is principal: an element
of g belongs to this image if and only if it is orthogonal to the r vectors
dp,) X), ..., (dp,)(X) (see Theorem 1.1). The other result of Kostant which we need
is his explicit construction, given in [7], of a set {H, X, Y} of principal elements of a
complex Lie algebra satisfying the commutation relations

H, X]=2X, H, Y]=-2Y, [X, Y]=H,

with X, Y nilpotent and H regular and semi-simple; such a set of elements of a complex
Lie algebra is called a principal S-triple. In Section 1, we use these two results together
with work of Rais to prove that certain Zariski-open subsets of various powers of g,
defined in terms of the polynomials { p;, . . ., p, }, are non-empty.

In Section 2, we develop a certain amount of linear algebra over the semi-simple Lie
algebra g, which sould be of some independent interest. We solve various overdetermi-
ned systems of linear equations whose unknowns and coefficients are elements of the
Lie algebra g. Just as Kostant’s theorem, for a generic element X of g, characterizes
the image of ad X:g— g in terms of the invariant polynomials {p,, ..., p,}, we are
able to express the compatibility conditions for these systems by means of these polynomi-
als under explicit genericity assumptions on the coefficients —certain of these should
belong to one of the open subsets considered in Section 1. As consequences of the
solvability of these systems, we obtain various results concerning Spencer cohomology,
which are not needed in this paper, but which are interesting in their own right. They
provide us with examples of subspaces whose Spencer cohomology can be explicitly
computed and which is entirely concentrated in degree 2.

After reviewing in Section 3 the necessary material about connections in a principal
bundle, we prove in Section 4 the existence of formal solutions for the equation of
prescribed curvature in dimension 3. Each homogeneous polynomial of I(g) of degree
d+1, with d=1, gives us a new scalar-valued equation of order d—1, obtained by
repeatedly differentiating the Bianchi identity d-times and taking into account the original
system. Let F be a g-valued 2-form on M, whose l-jet at xeM satisfies a genericity
condition expressed in terms of {p,,...,p,} and of one of the open subsets of
Section 1. We seek a connection whose curvature form is F; then over an open neighbor-
hood of x, the identities corresponding to the polynomials {p1, ..., p,} form a complete
set. Under these assumptions on F, we construct formal solutions of the system consist-
ing of the original equation, the Bianchi identity and these r scalar-valued equations. The
sub-system of order zero consisting of the Bianchi identity and the identities correspond-
ing to the polynomials of degree 2 of the set {p,, . . ., p, } is highly non-trivial. In fact,
the number of these polynomials of degree 2 is equal to the number of factors in a
decomposition of the complexification of g into minimal ideals, and is therefore always
=1. We first show that this non-linear sub-system of order zero admits solutions at x
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60 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

by solving a system of linear equations. Next, we extend any formal solution of order k
of our completed system to one of order k+1 by solving one of the systems of linear
equations of Section 2. Because we have included the identities corresponding to the
set {p, ..., p,}, the requisite compatibility condition for this linear system is satisfied.

Section 5 is devoted to the existence of formal solutions of the homogeneous and the
inhomogeneous Yang-Mills equations. The proof for the inhomogeneous Yang-Mills
equation follows the same lines at that of Section 4 for the equation of prescribed
curvature. However, in this case a homogeneous polynomial of I1(g) of degree d, with
d=2, gives us a new identity of order d obtained by differentiating the Bianchi identity
(d+1)-times. Thus the Bianchi identity is the only equation of order zero which needs
to be added to the original system. It is quite remarkable that the linear system of
Section 2, which we need to solve in order to extend a solution of order £ to one of
order k+1, is so closely related to the one which we consider in Section 4 for the
analogous problem.

The genericity conditions imposed on the right-side of our equations are described in
the remarks preceding Propositions 4.1 and 5.1. We wish to point out that the
exactness of the sequences (2.8) or (2. 18) corresponds to the completeness of the set of
identities derived from {p,, ..., p,}; on the other hand, we use the exactness of the
sequences of Corollary 2.3 or Corollary 2.5 to show that no further identities need be
added to our systems. Relation (2.30) provides us with an unexpected link between
our two problems and the systems of linear equations associated to them in Section 2.

The main substance of our existence proofs is to be found in Sections 4 and 5. We
strongly recommend that the reader start directly with Sections 3, 4 and 5, referring back
to the first two sections for the appropriate definitions and results whenever necessary.

We would like to thank H. Jacquet for several helpful discussions and M. Rais for
making us aware of the importance of principal S-triples in the theory of complex semi-
simple Lie algebras and for kindly communicating to us the proof of Theorem 1.2.

1. Invariant polynomials on semi-simple Lie algebras

Let K be the field of real numbers R or of complex numbers C. If V is a real vector
space, we write V, for its complexification. Let g be a semi-simple Lie algebra over K
of rank r. The dimension of the centralizer gx of an element X of g is =r. We say
that X egq is principal if dim gy =r; the set of all principal elements of g is a non-empty
Zariski-open subset of g, containing the regular semi-simple elements of g.

We now suppose that g is a real semi-simple Lie algebra. We denote by S*g* the
k-th symmetric power of g*. If ueg, we denote by u* the element of g* all of whose
coordinates are equal to u. The rank of g is equal to the rank of the complex Lie
algebra g,. Thus Xegq is a principal element of g if and only if it is a principal element
of g.. Let G be any connected Lie group with Lie algebra g. Let I(g,) [resp. I(g)] be
the algebra of all complex (resp. real) polynomials on g, (resp. g) invariant
under G. Note that I(g.) and I(g) depend only on Ad(G) and that I(g,)x~1(g),.
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 61

Let p be a homogeneous element of I(g,) of degree k; to p corresponds a unique
element of S*g* invariant under G, the polarization of p, which we shall also denote
by p and consider as a function on g¥. Let B be the Killing form of g,. If k=1, we
associate to p the unique element § of S*~! g*® g, determined by the equality

p(ul’ M uk—la v)=B(ﬁ(u1, MRS uk—1)> 'U),

for uy, ..., u,_y, veg, If the restriction of the polynomial p to g is real-valued, then
PQuy, ..., u_,) belongs to g, forall u,, ..., u,_;€q.

According to Chevalley’s theorem, we may choose r algebraically independent homo-
geneous polynomials p,, . . ., p, of I(g,) which, together with 1, generate I(g.). We may
suppose that the p, are real-valued on g; then p,, ..., p,, together with 1, generate
I(g). If degp,=d,+1, the integers d, depend only on g and are =1 (see
Varadarajan [13], Theorem 4.9.3 and p. 410).

For Xeg,, let
iy g, — C
be the mapping sending u into

(Pl ‘(Xdl’ u)a ces Dy O(dra u))

The following result is due to Kostant [8], Theorem 9 (see also Varadarajan [12],
Theorem 3).

THEOREM 1.1. — Let X be an element of g.. The complex

ad X X

g =g —~>C -0

is exact if and only if X is principal.
Consequently, if X eg, the sequence

adX Tx

g—>g-oR -0
is exact if and only if X is principal. The preceding theorem asserts that X eg (resp. g,)

is principal if and only if the r elements {5,(X%)};,<, of g (resp. g,) are linearly
independent and constitute a basis for gy (resp. g, x). We set

g=r+ Y, d,
a=1
J={(a, k)|1<a<r, 0<k=d,}.

Let U, (resp. U)) be the set of all (X, Y)egx g (resp. g, X g.) for which the g elements

{ Pa (Xka Yd“—k) }(a, kel
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62 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA

of g (resp. g.) are linearly independent. Thus (X, Y)eg X g belongs to U, if and only if
the g elements

u—p,(X*, Y™ u),  ueg,

of g*, with (g, k)€J, are linearly independent. Clearly, by Theorem 1.1, if (X, Y)eU,,
then X and Y are principal. The proof of the following theorem has been kindly been
communicated to us by M. Rais.

THEOREM 1.2 . — The set U, is a non-empty Zariski-open subset of g X g.

Let p be a homogeneous element of I(g,) of degree d+1, with d=1. From the
invariance of p, we infer that

(1.n X, pX Y 9=(d-R)p (X~ [X, Y], YT,
for X, Yeg, and 0<k=<d. Let X, Y be elements of g, satisfying
[Y, X]=4AX,

where A e C, and consider the elements

of g, for 0<k<d. Wesetv, =0, for k>d. From (1.1), we deduce that
(12) [Y9 vp,k]=k7\'vp,ks [Xa vp,k]=_)"vp,k+1'

We set v, ,=v, 4 for 1=a<r. The following proposition, due to Rais, is the crucial
ingredient of the proof of Theorem 1.2.

ProrosiTioN 1.1. — If X is principal and L#0, the q elements

{ va, k }(a, k)el
of g, are linearly independent.

Proof. — Suppose that we have a linear relation

Z ba,lva,lzo’

(a, el

where the coefficients b, ;€ C are not all zero. Let d be the largest integer for which
there is a non-zero coefficient b, ,, with d,=d. Now let k be the smallest integer, with
0=<k<=d, for which there is a non-zero coefficient b, ,, with d,=d. Then b; ;=0 if
d;>d, or if d;=d and I<k. By (1.2), we have

0=(adx)d_k- Z ba,t"’a,l=("7‘-)d—k Z ba,lva,l+d—k=(_)")d_k(u1+u2)’

@hel @ el
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 63

where

U= Y by a Uy = Y ba 14,140k
do=d do<d
0sl+d—k=d,

According to (1.2), we see that u, is an eigenvector of adY with eigenvalue d), while
u, is a linear combination of eigenvectors of ad Y whose eigenvalues are different from
d\. It follows that

u = Z b,, xPa (X9 =0.

dg=d

Since X is principal, according to Theorem 1.1, the elements {5,(X%} of g, with
d,=d, are linearly independent. Hence b, , =0, for all 1<a<r, with d,=d, which is a
contradiction.

Since Uj is a Zariski-open subset of g, X g, and
U, =UiN(gxg):.

to prove Theorem 1.2 it suffices to show that U} is non-empty. According to
Kostant [7], § 5.3, g. contains a principal nilpotent element X. Then the Jacobson-
Morozov theorem gives us the existence of elements H, Y of g, such that

(1.3) [H, X]=2X, [H Y]=-2Y, [X Y]=H.

- By Proposition 1.1, the pair (H, X) belongs to Uj.

Any set {H, X, Y } of elements of g, satisfying the commutation relations (1. 3), with X
principal, is called a principal S-triple. The element H of such an S-triple is regular and
semi-simple, and the element Y is also principal (see Kostant [7], § 5.2, 5.3). The
following result is a consequence of Proposition 1.1.

PropositioN 1.2. — If {H, X, Y} is a principal S-triple of g,, then

{ﬁa Xk, Hda_k)9ﬁa (Yl’ Hda_l) } 1<asr
0=k, 1=d,
>0

is a basis for g..
Proof. — Since Y is principal, by Proposition 1.1,

{ﬁa (Xk, Hda—k) }(a, k)el {ﬁa (Yl’ Hda_l) }(a, el

>0

are two sets of linearly independent elements of g.. By (1.2), the first set consists of
eigenvectors of ad H whose eigenvalues are >0, while the second set is entirely composed
of eigenvectors of ad H with negative eigenvalues. As the dimension of g, is equal to
2q—r (see [13], § 4.15), the lemma follows from the preceding remark.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Let U, (resp. Uj}) be the set of all (X, X,, X3)eg® (resp. g2), with (X,, X,)eU,
(resp. U}), for which

{ﬁa ()q"), p~a (Xga) }1 <asr {ﬁa (Xga)’ ﬁa (Xga) }1 <asr

are two sets of 2r linearly independent elements of g (resp. g,). If {H,X,Y} is a
principal S-triple of g, since Y is principal, by Proposition 1.2 we see that (H, X, Y)
belongs to U,. As U, is a Zariski-open set of g2 and U, =U} N g3, we obtain:

PRrOPOSITION 1.3. — The set U, is a non-empty Zariski-open subset of g>.
Lemma 1.1. — If {H, X, Y} is a principal S-triple of g, then the r elements
wa=2(da_ 1)P~a(X’ Y, Hda_z)_ﬁa(Hda)’ l1<asr,
of g, are linearly independent.

Proof. — Let p be a homogeneous element of I(g.) of degree d+1. By (1.3), we
have

@AX)*. 5 (X, H ) =(=2F@-D(d—I-1)...(d—I—k+ )X HITIH),
for 0</<d and 1<k <d—I; by the invariance of p, we also see that

adX.p(X, Y, H ") =50, [X, Y], H )+ (@—1-DFX, Y, [X, H], H72)
=p'(X” Hd—l)_z(d_l_ l)ﬁo(l+1, Y, Hd—l—Z),

for 0</<d—1. Consider the positive integers a,, .. ., a, defined recursively by the
equalities a, =1 and

a=d-1+1)a_,+(d—2)(d—3)...(d-D,
for 2<I<d. It is easily verified that

(@dX).p(X, Y, H"?)
=(-2@d-2)(d-3)...d—1-D)pX"* Y, H" ")+ (=2) 1qpX, HTH,

for 15/<d—1, and
(@dX).p(X, Y, H" ) =(-2)*"1q,p (X%.
Hence, if d=2, we obtain
@dX)!.2(@-1)FX, Y, ") - pHY)=(-2)'(d— D a,+d)j (X7
and
@dX)"*t.2@d-DpX, Y, H"H)—-p(HY)=0.
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PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 65
On the other hand, if d=1, we have
adX.p(H)=-—-25(X), (ad X)%.p(H)=0.

Suppose that there is a linear relation
r
Y b,w,=0,
a=1

where the coefficients b, C are not all zero. Let d be the largest integer for which
there is a non-zero coefficient b,, with d,=d. Then b,=0 if d;>d. From the above
relations, we infer that

r

0=@dX)". Y bw,= ¥ b,(adX).w,=—(~2*(d—)a,+d!) ¥ b,p,(X?).

a=1 dg=d dg=d

Since X is principal, by Theorem 1.1, the elements p,(X%) of g, are linearly
independent. As

(d—1)a,+d! #0,

the b,, with d,=d, are necessarily all zero, which is a contradiction.

Let n be an integer =2. If X,,...,X,, A, ..., A, are elements of g, we set

Za= Z [Aja ﬁa(an_la Xj)],
j=1

j
for 1<a<r, and consider the mapping
Aig.—g@®C,
sending u€ g, into
Aw)=(X;, ul, B(Zy, w), . . ., B(Z,, u)).

Let V be the set of all (X,,...,X,, A;,...,A,)eg?" for which the mapping A is
injective. We consider the following Zariski-open subsets of g2™:

Us={Xp .- X Ay, .., ADeV|(X, Xp)eU, },

and, when n=3,

Uy={Xy, ... Xp Ay, .., ADeV| (X, X,, X;3)e Uy b
The following proposition implies that U} and U}, are non-empty.
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ProposiTION 1.4. — Let {H, X, Y} be a principal S-triple of g,, and let X, ..., X,
be arbitrary elements of g.. Then:

(i) the element (H, X, X5, ..., X,,0,Y,0,...,0) of g2" belongs to U;

(i) if n=3, the element (H, X, Y, Xy, ..., X,,0,Y,0,...,0) of 2" belongs to U,,.

Proof. — If X,=H, X,=X and A;=0, for j>2, then Z,=[Y, p,(H%!, X)], for
1<a=<r. By-the invariance of p,, we see that Z, is equal to the element w, associated
to {H, X, Y} in Lemma 1.1. It is easily verified that w, belongs to the centralizer b of
H in g.. Since H is regular and semi-simple, §) is a Cartan subalgebra of g, and the
Killing form B is non-degenerate on hx[. From Lemma 1.1, it follows that A is
injective. The assertions of the proposition are now immediate consequences of
Proposition 1.2.

We set U,;=U5Ng*, and U,=U, N g>" when n=3. From Proposition 1.4, we
deduce the following result:

THEOREM 1.3. — The set Uy (resp. U,, when n=3) is a non-empty Zariski-open subset
of g*".

Let X,..., X,, A,..., A) be an element of U,. If Beg and {e R*, since f,(X%)
belongs to gy, it is easily seen that

X Xy, oo X A —[X, BL A, LAY, Xy oo X CALL, ..., CA)

are also elements of U,. If p is a homogeneous element of I(g) of degree d+1, we
have

J

P(X'i—l’ Xja [Aj’ u])
j=1

j=

B(@ (X171, X)), [A, u])
=1

n

z B([ﬁ (X‘i_15 Xj)’ Aj]9 u),

i=1

for ueg. If ny :g®R"— R’ is the mapping sending (u, z) into my, (u), for ueg, zeR’,
according to Theorem 1.1, the sequence
A "3(1
0->g—->gdPR >R -0

is exact; therefore, if (¢4, . . ., ¢,) is an arbitrary element of R’, we can solve the system

Pa (X‘;a_l’ Xj’ [Aj’ u])=ca5 l§a§r>
j=1

J

for uegy,.
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We now use Theorem 1.3 to prove the following result:

LEMMA 1.2. — There exists a non-empty Zariski-open subset Us of g*"*' having the
following properties:

(@) Forall Xy, ..., X Aqs -« -y Ay, BYeUs, there exists (By, . . ., B,)eg" such that

Y [X; B]=B,
j=1
(Xla L) Xm Al_p(la Bl]’ sy An_[xla Bn])EU3'

Gi) Xy, ..., Xy Ay, ..., A)eU,, then Xy, ..., X,, Ay, .. ., A,, 0) belongs to Us.

Proof. — Set s=q—r; the dimension of g is equal to g+s=r+2s (see[13],
§ 4.15). Choose an element (X9, ..., X% A9, ..., A?) of U,. Fix s linearly indepen-
dent elements {Z, .. ., Zs} of g which span a complement to the g-dimensional subspace
of g generated by the elements

{ B (X)X, XD% "M} ke
For (X,, X,)eg % g, consider the mapping
A(X,, Xy) g > RIFS,
defined by

}"(Xla XZ) (u)=(nx1 (u)a Pa (X‘{, X‘;a—k’ u)’ B(Zla u)a RS B(Z.v u))(a, k)el>

k<d,

for ueg. When (X,, X,)=(X9, X9), it is an isomorphism. Therefore by Cramer’s rule,
there exist polynomials A, ' on g x g with values in Hom (R?*%, g) and R, respectively,
such that

M (X X5) AKXy, Xp) =" (Xy, X,).id,,

for (X;, X,)egxg, and f' (X9, X9)#0. Let q be a fixed complement to 9x9 ing. The
mapping

(1.4 adX:q—-g

is injective when X=X9. By Cramer’s rule, there exist polynomials p, /' on g with
values in Hom (g, q) and R, respectively, such that

(1.5) ux X, ] =" X)u,
for Xeg, ueq, and f”' (X9)#0. If f”" does not vanish at Xeg, then the mapping (1.4)

is injective. Let 1: R" —» R"@R?® be the mapping defined by 1(x)=(x, 0), for xe R", and
consider the Hom (g, q)-valued polynomial ¢ on g X g whose value at (X;, X,) is equal

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



68 ' D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA
to the composition

nx N V(Xy, Xp) n(Xp)
g_)er_)Rr-f-Zs > g > q.

2n*+1 whose value at the element

We denote by f the polynomial on g
x=Xy oo X Ag, - .., AL B)

of g+ is f (X, X5)=f" (X, X,) .f” (X;), and by @:g>"*" — g" the mapping sending x
into

Xis -5 X ()AL f () Ay —[X;, 0 Xy, X5) Bl f(X) As, ..o, f(X) AY.
Then
Us={xeg™" | f(x)#0} N (Uj)
is a Zariski-open subset of g2"*1; since 1 (X¢, X9)#0, the element
X9, ..., X% A% .. .,A%0)

of g?"*! belongs to Us. It remains to show that Uy satisfies propérty ). Let
x=X .., X, Ay, ..., A, B) be an element of Us; then (X,, X,) belongs to U;. Set
B,=(/f (x))o (X, X,)B. Then

1
v=———— A (X}, X,) . 1.7x, (B)
f (Xla XZ) ' ? *
satisfies pu (X,)v=f"(X,)B, and
1.6 pa(Xie, v)=p, (X%, B),  p, (X%, v)=0,

for 1<a<r. Since f"'(X,)#0, by Theorem 1.1, the sequence

ad X, X,
0>q—g— R -0

is exact. By (1.6), we know that ny, (v)=0. Therefore, from (1.5) we deduce that
[X3, By]=v.
By Theorem 1.1 and (1.6), we are able to solve the equation
Xy, By]=B—v=B—[X,, B,],
for B, eg. Since

D) =(Xy5 -5 Xy [ () A, () (A= [Xp, Bo]), f () A, -, f(X) A,
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by the remarks following Theorem 1.3, we see that
(Xla s Xn’ Al - [Xl’ Bl]’ AZ_[XZ’ BZ]’ A39 ERRE) An)

belongs to U;. Thus the element (B,, B,, 0, . . ., 0) of g" has the desired properties.
If n=3, according to Theorem 1.3 and Lemma 1.2, the subset

Us={(KXs, .. -» X Ay, . . ., A, B)eUs | (X, X,, X3)eU, }

of Uy, is also a non-empty Zariski-open subset of g2"*1,

2. Linear algebra over semi-simple Lie algebras

Let n be an integer =1. Let g be a real semi-simple Lie algebra, whose rank is equal
tor. We consider the objects associated in Section 1 to the system of generators
{p1, ..., p,} of I(g), in particular the subsets U, of gx g and Us of g**, the subset Us
of g?"*! given by Lemma 1.2, and, when n>3, the subsets

U,cg¢?®, U,cU,, UgcU,.

Let X,;,...,X, be elements of g and let T be a real vector space of
dimension n. Choose a fixed basis {d,...,d,} of T and consider the dual basis
{dx', ..., dx"} of T*. We denote by A*T* and S*T* the k-th exterior power and the
k-th symmetric power of T*; we set S T*=0, for k<0. If £eT*, we write £* for the
k-th symmetric power of &, which is an element of S*T*. If a=(a,,..., a,) is a multi-
index of length n, with |a|=0, + ... +a,=k, we set

X*=(X%4,..., X% eg,

dx*=(dx)* - ... - (dx")*neSFT*.
For 1 <i<n, we denote by g; the multi-index (8;,, . . ., ;). If ueS*T*, we may write
d o
u=Y u, ",
lal=k  O!

with »,eR; if 1<i,, ..., i <n, then

u(0 5 0,))=u

i1> * o

where a=(a, . . ., ®,) and a; is the number of the i,’s equal to j.

Let V, W be real vector spaces. If k=1 and A, ,: S**"T* > S"T*®S*T* is the
natural inclusion, the m-th prolongation (A),,, of a linear mapping

AL:SFT*QV->W

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



70 D. DETURCK, H. GOLDSCHMIDT AND J. TALVACCHIA
is equal to the composition

Am,k

®id id®A
S T*RQV— S"T*RS T*@V— S"T* @ W.
For m<0, we let
W gpm: SET"T*QV - S"T*QW

be the zero mapping. If g, denotes the kernel of A, for m=0, the kernel of (A),,, is
equal to

S T*V) N (" T*®gw)

and is called the m-th prolongation of g,. We set g,=S"T*®E, for m<k. The
mapping

3: AT*RS™ I T*®V - A T*®@S"T*®V
equal to A; ,®id when i=0, and determined by
S(a®@u)=(—1)'a A du,
for ae AiT*, ueS™* 1 T*®V when i>0, gives us by restriction a morphism
8 AT*®gisme1 > AT T* @it

We thus obtain a complex

3 d )
0-gim = T*®Liim-1 > A T*®sm-2 - > A" T*®Fy 10— 0,
whose cohomology at A'T*®g,,,.—; is the Spencer cohomology group H¥*™ “i(g,)

of g;; we have H™°(g)=H™(g,)=0, for all m=k. If H™/(g)=0 for all m=k and
j=0, we say that g, is involutive (see [1], Chapter IX, [5]).

Let
¢0:T*®g—g

be the morphism defined by
(P<Z dxi®ui>= Z [Xia ui],
i=1 i=1

for u,, ..., u,eg, and comsider the k-th prolongation
O S T*®g > S T*®g
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of p=0, If ueS*"!'T*®gq, veS*T*®g are expressed as

2.1 u=y, -1—dx°‘®uu,
lal=k+1 O

2.2) v="Y ia'x"@v,,,
ts1=k B!

where u,, v3€g, the equation @, (1) =v is equivalent to the system
n
2.3 Y Xi i ] =00
i=1

for all a, with |o|=k.
Let p be a homogeneous polynomial of I(g) of degree d+1. For ueg, using the
invariance of p, we see that

p(Xas [Xja u])= z cxip ([Xis Xj]a Xa_eis u)9

i=1

where 1<j<n and |oc | =d, and hence that

n

1 & ate;i—¢;
2.9 P X uh)=— 3 pX*TEE, X, u]).
i=1 Clj+1
i#j

We consider the linear mapping
v, S'T*®g—-R

defined by

‘l’p(v)= Z p(Xil, e Xid’ v(ail’ RS aid))’
i1,...,ig=1
for veS*T*®g. Then it is easily seen that
v, ([dx*®@v)=p (X*, v),

for veg,

a|=d.

ProrosiTioN 2.1. — If p is a homogeneous element of 1(g) of degree d+ 1, with d=1,
the sequence

v
ST *@g S S T*®g S R
is a complex.
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Proof. — If ueS**1 T*® g, then

\llp ((Pd (u))= . Z P(Xils o Xida [Xj’ u(aj’ ai;ﬁ ] aid)]);

Jrits .. ig=1

using the invariance of p, we see that
\I’p((Pd(u))=d e Z lp([xk, Xj]s Xil, RS Xid_ly u(aj, ak’ aila LR aid—l))=0'
JsRsl1seoeslg—1=
The m-th prolongation
V) im: ST T*®@g— S™T*

of V, is given by

dx® 1 dx?
(‘I’) m( ®va)= _p(xvav )_’
r |a|=zd+m a: |B|Z=m Y' e B'
lyl=d
where v, €g; it clearly satisfies ()., ° Pg4m=0.
We define a mapping
VU S T*@g—> P S %T*
1Zasr
by
Yy (v)= ((‘l’p,,) +(k—dg) ()4 <asr
for veS*T*®g. If v is the element (2.2) of S*T*® g and
B
@.5) we= Y we, X es4TH,  1gasr,
181=k-da, B!

with w, ;€ R, the equation Y, (v)=(w;, . . ., w,) is equivalent to the system

(2.6) Y i'pa(X“, Vg p) = Wa, s |B|=k—d,20, 1=<a<r.

la|=dg
ProposiTiON 2.2. — For k=1, if X, is principal, the mapping \, is surjective.

Proof. — Consider the elements w,eS*~%T* given by (2.5), with w, jeR. If v is
the element (2.2) of S*T*®g and m is an integer satisfying 1 <m <k, the system S, of
equations

1 4 1 .
2.7 E_'Pa(xl“a Umey +p)= Wa, m—dg)e1 +p Z _Tpa(X s U(m—dg) ey +u+B)’
a* la|=d, %:
ay <dg
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with d,<m, B=(0, B,, .. ., B,), |B|=k—m and 1<a<r, is a sub-system of (2.6). Note
that the right-hand side of (2.7) only involves the v, ., with /[<mand y=(0, v,, . . ., v,),
|'y|=k—l. We denote by S, the empty system of equations. If X, is regular, we now
construct a solution v of the form (2.2) of the equation {, (v)=(w,, ..., w,), or equiva-
lently of all the systems S, with 1<m<k. For p=(0, B,, ..., B,), with |B|=k, let v,
be an arbitrary element of g. Let m be an integer satisfying 1 <m<k and assume that
we have chosen elements v, ,z€g, for all 0</<m, B=(0, B,, . . ., B,), |B|=k—1, satis-
fying the systems S,,S,,...,S,_;. Then, according to Theorem 1.1, for each
B=(0, By, . . ., B,), with | B|=k—m, we may choose v,,, +5€g satisfying all the equations
2.7), withd,<m and 1<aZ<r.

According to Proposition 2.1, we have the complexes

¥,
@.8) SHIT*@g S S T*@g— @ S %T*—0

1<asr

for k=20. If n=1 and X, is principal and if d=sup(d,), it is easily seen that, for k=d,
the sequence (2. 8) is isomorphic to the complex

ad X "xl
g—>g—-> R -0,

and so is exact by Theorem 1. 1; this theorem also shows that the sequence (2.8) is not
exact at S*T*®g, for k<d. The following theorem gives a condition for the exactness
of these complexes.

THEOREM 2.1. — If n=2 and (X,, X,)eU,, then the sequences (2.8) are exact for all
k=0.

Proof. — We know X,, X, are principal. Thus by Proposition 2.2, \, is surjective
for all k=0. We now demonstrate the exactness of the sequences (2.8) at the middle
position S*T* ® g by induction on n. We first consider the case n=2.

If n=2 and V is a complex vector space, we identify S*T*®V with V¥*! in the
following manner. If
dx

o
u= Yy ®u,, with u,eV,
la|=k o!

for a=(j, k—j), we write u;=u; ,_; and then identify u with the (k+1)-tuple
(ugs Uy, ..., ) of V1 If wu=(uy,...,uw,,) belongs to S**'T*®g and
v=(vg, . . ., v,) belongs to S*T*® g, the equation @, (u) =7 is equivalent to

Xy w4 ]+ Xy, wl=0,
for 0<I<k, and (V) + k-, (v) is the (k—d,+ 1)-tuple

d,

1 _
(Z ;'—(—d__ﬁpa (Xll’ Xga ls vl+i)) s

1=0 i=0, ..., k—dg
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for 1<a<rand d,<k.

The following proposition implies the exactness of the sequences (2.8) at the middle
position when n=2.

PROPOSITION 2.3. — Suppose that n=2 and that X,, X, are principal. Given an
element v= (v, . . ., v,) of S*T*® g and Y e g satisfying
Y, () =0, Pa ga’ Y)=0,
1

m 1 )
d,—m m — d,—1 1
(29) m!(da—m)!pa(xl ’ XZ’ Y) lgo l!(da_l)!pa(xl ’ X27 vm—l)a

for all 1<a<r and 0<m=min(k, d,— 1), there exists an element u=(uy, . . ., U 1) of
S**1 T*® g such that ¢, (u)=v and

[Xz, uO] =Y.
Proof. — We proceed by induction on k. If k=0, the conditions imposed on Y are
P (Xga’ Y) = O’ P (X';a, Y) =Da (X'i“, 'Uo),

for 1<a<r. The first equalities and Theorem 1.1 give us the existence of an element
of g satisfying

[XZ’ uO] =Y.
The latter conditions and Theorem 1.1 tell us that we can solve the equation
X1, u]=vo =Y =05 = [X;, o],

for u;eg. Thus @ (uy, 4;)=v,. Suppose that the proposition holds for k—1, with
k=1. Consider the element v'=(v,, ..., v,_;) of S* ' T*®g. We easily see that the
assumption VY, (v)=0 implies that {,_, (+")=0. By our induction hypothesis and the
condition imposed on Y, there exists an element u’'=(u, . . ., #;) of S*T*®g such that
[X,, us]=Y and @, (u)=v". We now wish to solve the equation

(2.10) Xyt 1= 00— X2, 0,

for u, ., €g; a solution %, ; of (2.10) determines a solution u=(u, . . ., %, ;) of the
equation @, (x)=v. According to Theorem 1.1, in order to solve (2.10) it suffices to
verify that

2.11) Pa(X%, v~ Xy, w])=0,
for 1<a<r. Since @, (¥')="1", according to (2.4), we have

1

o a1 gl
l!(da-—l)!pa(XI s X5 [Xas the_i])
=_ 1 d,—1-1 yl+1 _

B (l+1)!(da—l—1)!""’(Xl X2 s X ),
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for 0</<min (k, d,); hence, if d,>k, we obtain

1 1 ) ‘ i}
;pa(X‘ia, X5, w])= m Pa(Xda=k XE, Z 1= l)'pa(X‘ia L XS, o),

and if d,<k

d
1 4, _ - 1 dy—1 i
apa (X3, [Xo w]) = 2:1 ﬁ(_da—_l)—!p“ (X5, X35 )

If d,>k, equation (2.11) is therefore equivalent to our hypothesis (2.9), with m=k; on
the other hand, when d, <k, the left-hand side of (2.11) is equal to the last component
of the element (V)4 -g4, () of S¥~4aT*, Thus (2.11) holds for all 1<a<r, and we
have completed the proof of the proposition.

We now continue the proof of Theorem 2.1. Let n=3 and assume that the sequences
(2.8), corresponding to X;, ..., X,_,; and the basis {dx',...,dx""'} generating a
certain hypersurface T§ of T*, are exact at the middle position. Let v be an element of
S*T*®g given by (2.2) and satisfying |, (v)=0. If u is the element (2.1) of S**! T*®gq
and m is an integer satisfying 0 <m <k, the system S,, of equations

n—1

z X ua+ei+men]=vu+men—[xm ua+(m+1)s”]’

i=1

for all a=(a,, . . ., a,_, 0), with Ioc[=k—m, is a sub-system of (2.3). This system S,
is of the form @, _,, (u")=7', where v'e S* "' T¢®g, v'eS* "T¥®g and ¢ is defined in
terms of Xy, ..., X,-; and {dx!,...,dx""'}. We now construct a solution u of
the form (2.1) of the equation ¢, (x)=v, or equivalently of all the systems S,, with
0<m=k. Let uy,y, be an arbitrary element of g. We denote by S, the empty
system of equations. Let m be an integer, with 0<m=k, and assume that we
have chosen elements ug,, €g, for all m+1=</<k+1, B=(B,,..., B,—;, 0), with
|B|=k—1+1, satisfying the systems S,,;,..., S;4;. Then we wish to solve S, for
Uyims,, With a=(ay, ..., a,_;,0), |a|=k—m+1. According to our induction hypo-
thesis, it suffices to verify that

(212) Z _pa(Xa’ Vat+men+p~ LS ua+(m+1)s,,+|3])=0’
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for B=(By, ..., Bu-1, 0), |B|=k—m—d,, and 1<a<r, with k—m=d,. According to
2.4),if k—mz=d,, for 0</<d,, we have

1
Z —p, (X% Xf., X ua+(m+l+1)e,,+[3])

la|=dg—1 alll

a,=0

1
== z —_'Y'(l+ 1)'Pa(XY, Xn+19 vy+(m+l+1)e,,+ﬂ_[xm uy+(m+l+2)e,,+ﬂ])7
lvi=dg—1-1 Y* :

=0

for B=(B,, . - ., By, 0), with |B|=k—m—d,. Hence, we see that the left-hand side of
(2.12) is equal to the expression

d, ]

A 1

y z | 'pa (Xa’ Xn’ va+(m+l)e,,+5)9
1=0 |a|=dg—1 alll

ay,=0

~

which vanishes because (U, ), x-q,(»)=0. We therefore can solve the system S,, and
the equation @, ()= 7.

We have completed the proof of Theorem 2.1. We denote by g,,, be the kernel
of ¢,. For k=1, let m, be the number of the d,’s equal to k. Under the hypotheses of
Theorem 2.1, from the exactness of the sequences (2.8), we deduce by a standard
argument (see [4]) the following result:

COROLLARY 2.1. — If n=2 and (X, X,)eU;, we have
Hk’z(gl);RmIH‘I’ Hk‘i(g1)=03
for k=0 and i>2.
Thus if =2 and (X,, X,)e Uy, if d=sup (d,), then

H™(g,) =0,

for all m=d and j=0.

LeMMA 2.1. — Suppose that k=0 and that X, is principal. Assume that the elements u
of S**1T*®g and v of S* T*® g given by (2.1) and (2.2) satisfy the following conditions:

(@) for all2<j<n and a=(ay, . . ., &), with |a|=k+1, a; =0, we have

[Xj’ ua] =O;
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(i) for all a= (o, . . ., o), with |o|=k, oy <k, we have
(2.13) 2 X i )= 04
ji=1

(iii) for all 1 <aZ<r, if d,=min(d,, k), we have

dg

2.14
( ) zzo IBl= l(d l)'ﬁ'

B1=0

Xt XP > V- l)al+B) 0.

Then there exists u' € g such that

n
[Xl’ ul]+ z [Xj9 uk£1+l:_,]=vk£1‘
j=2

Proof. — We proceed by induction on n. For n=1, the result follows directly from
Theorem 1.1. Assume that the lemma holds for n—1, with n=>2. Letu and v be
elements of S** ! T*®g and S*T*®g, given by (2.1) and (2.2) respectively, satisfying
the three conditions of the lemma. Then we have

n—1

z X up+ej]=va’"[xm Up+e,ls
j=1

for all B=(B,, . - ., By—1, 0), with |B|=k and B, <k. For 1<a=<rand a=(a,,...,a,),
with |o|=d, and o, +k>d,, we set

1
cI)a (al’ Ba Qs u)=;pa (Xaa [Xm ua+(k—da)s.1 :f—a,,])’

1
\Pa (als B’ U‘n; v)=<'x—'Pa (Xaa vu+(k—da)sl)’

where B=(0, a,,...,a,_;, 0). By our induction hypothesis, in order to solve the
equation

[Xla u,]+ z I.-Xj’ uksl +sj]=vkel_[xm uksl +en]’
j=2

it suffices to verify that

4
(2.15) oY (Y.d,—1L B, 0;0)—®,(d,~1 B, 0; u)=0,
1=0 |B|=I
B1=Pn=0
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where d,=min(d,, k), for all 1<a=<r. According to (2.4), for 0<s<d, and 1Za<r,
we have

di—s

Y Y @,d,~I-sB, 5w

1=0 |BI=!

B1=Bn=0
dg—s—1
= z @,d,—1-s—1,8, st w)—-¥,d,—I—s—1, B, st 1; v)).
=0 |BI=1
B1=Bn=0

Here, we have used condition (i) when k<d,, and the relation (2. 13), with
a=(k—-I—-1)e +B+(s+1)eg,

for 0</<d,—s—1and B=(B,, ..., B,), with |B|=7/and B,=PB,=0. Thus we see that
the left-hand side of (2.15) is equal to

dg di—s

Y Yy Yy VY.d,~I-s58, 50)-0,d,—d,0,d; w.
s=0 1=0 |B|=I
B1=Bn=0

The second term of the above expression vanishes, by the invariance of p, when k>d,,
and by condition (i) when k<d,. Therefore the equality (2.15) is equivalent to the
relation (2. 14).

The following lemma is an immediate consequence of Lemma 2. 1.

LeEMMA 2.2. — Suppose that k=0 and that X, is principal. Assume that the element u
of S**1 T*® g given by (2.1) satisfies the following conditions.
(@) for all 2<j<n and a=(ay, . . ., &,), with |a|=k+1, a; =0, we have

D(ja uu] = 0;

(i) for all a=(0y, . . ., &), with |a|=k, oy <k, we have
2 X ty4,]=0.
j=1
Then there exists u' € g such that

Xy, ]+ Y [X), they 1] =0.
j=2

LEMMA 2.3. — Let p be a homogeneous element of 1(g) of degree d+1, with d=1,
and u be an element of g, given by

u=y la'x"'@ua,,

la|=d o!
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with u,eqg. Then, for all Y € g, we have

S PO IY, 1) =0
la|=d O*

Proof. — By the relation (2.4) corresponding to the n+1 elements {X,, ..., X,, Y}
of g, we obtain

1 . o; —e;
Z —P (Xa’ [Y9 ua])= - Z ——J‘p ()(cl I, Y, [Xj9 ua])
lal=a O! laf=a o!

1=5jsn

1
= _””:Zd_l _!p(XB; Ya [Xj5 u|3+cj])=0’
15jsn

We shall require the following result to prove Lemma 2.5 and Theorem 2.2.
LeMMA 2.4. — Assume that n=3 and that, for all 1 <i<j<3, the 2r elements
{PaX{), PaXi) }1 <asr
of g are linearly independent. Then, for all weg, there exist u, ve gx, satisfying
Xy, ul+[X;, v]=w.
Proof. — Since { p, (Xg9) h <a<, is a basis of 9xp for j=1, 2, 3, we see that
| x, M 8x;=8x, M 8x, =0.
Hence, by Theorem 1.1, the sequence
ad Xj "Xj

O—»gx3—>g-—>|R’—>O

is exact for j=1, 2. Let w be an element of g; according to our hypothesis, there exists
Y € g satisfying
X, Y)=p, (X, w),  p, (X%, Y)=0.

Then ny, (Y)=0 and we can solve the equation
Xz, v]=Y
for vegy,. Finally, since ny (w—Y)=0, we can find an element ue gy, such that
X, ul=w—Y.

If n=3 and (X,, X,, X;) belongs to U,, the hypotheses of the preceding lemma are
satisfied.
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We denote by g the unique scalar product on T for which {61, ..., 0,} is an
orthonormal basis of T. Let

(2.16) Tr: SKT* - St 2T,
Tr, : S*T*®T* - Sk~ 1 T*

be the trace mappings depending only on g and defined by

(Tru)(ﬂp MRS nk—2)= Z u(aj’ aj’ nh RS le—z),
j=1

(T Mgy - -0 k=)= Z UMy - -5 Mi—15 0j, 0y,
i=1

for ueS*T*, veS*T*®T* and n,...,N,_,;€T. Both these mappings are
surjective. We denote by St T* the kernel of (2.16). If
u=Y uaf’L’
laj=k 0!

with u, e R, is an element of S*T*, then

. dx?
Tru= 3}, (Z“Mzei)“‘

IB1=k-2 \i=1 B!
Let

o:S2T*QT* > T*
be the mapping Tr®id — Tr,; its k-th prolongation
o, : SFTIT*@QT* -» S*T*®T*

is equal to Tr®id—A, ,.Tr,,,. For k=2, we denote by 4, the kernel of o, _,; clearly,
Sk*1T* is a subspace of A,.

PRrOPOSITION 2.4, — If n=3, the subspace h, of S*T*®T* is involutive and the
sequences

o Tr,
2.17) 0By p = S 2T*@T* = SET*QT* — S 1 T* - 0
are exact, for k=1.

Proof. — 1t is easily verified that (2.17) is a complex and that Tr, is the (k—1)-th
prolongation of Tr,, for k=1. Let O(T) be the orthogonal group of the Euclidean
vector space (T, g). From the relation

o, (dx! - (dx®)?®dx?) =2 dx' @dx?,
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we infer that the irreducible O (T)-modules A? T* and S2 T* of T*®T* are both contained
in the image of o,. On the other hand, Tr, is non-zero and we have the decomposition

T*QT*=A’T*®S: T*®Rg

of O (T)-modules. It follows that (2.17) is exact when k=1. For 1<j<n, let V; denote
the subspace of S? T* composed of those elements u of S? T* satisfying

u(d;, m)=0,
for all 1<i<jand all neT; set Vo=S2T*. For 1<i, j<n, with i#j, we have
o ((dx)’@dx))=2dx, o ((dx)*®dx)=0;

hence we obtain
o (V,®@T*)=T*,

for 1<j<n—1, and we see that o (V,_;®T*) is equal to the subspace of T* spanned
by {dx!,...,dx""'}. Since dim V,_,=1, we have

n—1 n—2 n—1
Y dim(h,\V)=n Y dimV;,—)+1=n Y dimV,-(n>-1)
j=0 j=0 j=0

=dim S} T*@T* — dim T*QT* — dim R=dim A;,

by the exactness of (2.17) with k=1. This equality implies that A, is involutive (see [1],
Theorem 2.14, Chapter IX). By a standard argument (see [4]), from the involutivity
of h, and the exactness of (2.17) with k=1, if follows that the sequences (2.17) are
exact at S*T*®T* for all k> 1.

For k=2, consider the mapping
id®e : S*T*@T*®g —» S*T*®g.

Let p be a hombgeneous element of I(g) of degree d+1. If ueh,,,®gq, with k2=d,
then, for i, 4, . .., {,<n, we have

(T (V) s -ar)- (A®P) 0) By 15 - - -5 85)

= Z P (Xils LR Xida [Xla u(ail’ LR aik, ajs aja al)])

i1, 0. 0ridy Jy1=1

n

= z P (Xila st Xid’ [Xl’ u(aila et ai;p al’ aj: a;)])

ity e ig pl=1
=((‘|’p)+(k—a)-(Pk-Trk+2u) (aidﬂa cee 5ik)=0,

by Proposition 2.1. Therefore, if
Tr: @ St%T*> P St % 2T*

1<asr 1=<aZsr
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is the surjective mapping sending (wy,...,w,) into (Trw,, ..., Trw,), with
w,€S¥"%T*, we obtain the complexes

i ‘ Tr.y
2.18) h®g— SFT*®g—— () S*42T* -0,
1<aZsr
for k=2. The following theorem gives a condition for their exactness.

THEOREM 2.2. — If n=3 and (X, X,, X35)eU,, then the sequences (2.18) are exact
Sfor all k=2.

We require the following lemma for the proof of Theorem 2.2.

LEMMA 2.5. — Assume that n=3 and that, for all 1 Zi<j<3, the 2r elements
{ﬁa (X?a), Pa (X'}") }1 <asr
of g are linearly independent. Then we have
S6 T*® g = (i[d®¢) (1,®49),
for k=2.

Proof. — Let v be an element of S§T*®g, with k=2, given by (2.2). We seek an
element

1 .
u= Y, —d'@dr®u, ;S T*@T* @ gx,,
lal=k O
15jsn

with u, ;€ gx,, satisfying

(2.19) [X;5 ty, 1=,
=1

J

for |o|=k, and
(220) z (ua+£i+£j,i_ua+28i,j)=0
i=1
for all 1<j<n, |a|=k—2. First, using Lemma 2.4, for a=(a, ..., a,), with |a|=k
and o3 =0 or 1, we choose elements u, ; and u, , of gx, satisfying the equation

(2.21) X Uy, JH Xy, u,, 2=,

For j=1, 2 and a=(a,, . .., &,), with |a|=k and o;>2, we define elements u, ;€gy,
recursively on a5 by
Upt2es,j= — > Up + 2¢;, jo

1<isgn
i%3
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where =B, . . ., B,), |B|=k—2. Then, since (Tr®id)v=0, we see that (2.21) holds
for all a=(a,, . . ., a,), with |a|=k; we also have

n

(2.22) Z Up+2e;, ;= 0,

i=1

for j=1, 2 and B=(B,,...,B,), with |B|=k—2. For all j>3 and |a|=k, let
u,,;j=0. For any choice of the u, ;€gy,, the equations (2.19) will be satisfied. For
|B|=k—1, with B+#(k—1)¢;, we set

Uptey, 3T ~Uptey, 1~ Upte,,2

and u,,, ;=0. Then equation (2.20) holds for j#3 and all |a|=k—2. On the other
hand, equation (2.20), with j=3 and a3=1, is a consequence of (2.22). Finally, the
surjectivity of the mapping (2.16), with T replaced by its subspace of dimension n—1
generated by {0,, d,, 04, ..., 0,}, gives us the existence of elements Uy, 3 €Gx,, With
|o|=k and oy =0, satisfying

Z uB+2ei, 3= uﬂ+sl +e3, 1 + u|3+82+a3, 2>
i=1
i#3

for all | B|=k—2; thus (2.20) also holds when j=3 and a;=0.

We now give the proof of Theorem 2.2. By Proposition 2.2, we need only demon-
strate that (2.18) is exact at S*T*®g, for k=2. In fact, the diagram

: ¥
SHIT*@g > S'T*®g — @ ST

1<asr
l Tr®id l Tr®iq l Tr
k—1 Pe-2 g2 k-2 k—d,—2
STIT*®g — STT*®g — 6—) Sk7da=2T*
1Zasr

commutes. Thus, if veS*T*®g, with k=2, satisfies Tr.\{, (v)=0, then {,_, (Trov)=0
and, by Theorem 2.1, there exists ueS*~! T*®g such that @,_,(w)=Tro. Since the
mappings (2.16) are surjective, there is an element #'eS**'T*®g such that
Tru'=u. Then «' is an element of 4, ®g such that

v—(1[d®) u' e Sk T*® .

The hypotheses of Lemma 2.5 are satisfied, and hence v belongs to (id® o) (4, ®g).
For k=2, the kernel of

id®e: h,®g - S*T*®g
is equal to the kernel of

(6,_,®iDB(A®Q): SFT*RT*Rg— (S* ?T*RT*R g)®(S* T*® g);
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hence k., is the k-th prolongation of A, for k=2. Under the hypotheses of
Theorem 2.2, from the exactness of the sequences (2. 18) and from the involutivity of 4,,
we deduce by a standard argument (see [4]) the following result:

CoROLLARY 2.2. — If n=3 and (X,, X,, X;3)€U,, we have
H* 2 (hy) = R™, H* (k) =0,
for k=2 and i>2.
Thus, under the hypotheses of Corollary 2.2, if d=sup (d,), then
H™ 4 (k) =0,
for all m=d+1 and j=0.

Let
(Aijs Bj)l <i,j=n

be an element of g"®*!Y. Let p be a homogeneous polynomial of I(g) of degree

d+1. We define a linear mapping

(2.23) X S T*®g - R
by
W= 3 PO Dy A =P X X XU, B B
15j,1sn
where
u= 3 dxa@uueS"T*(@g,
la|=d &:

with u,eg. We now derive an expression for y,(x), which we shall need in
Section 4. First, we have

1
)y =P (X%, [ty e BAH By thyre)s XiD)
la|=d—1 O

la_s_j,lgn

1
= Z —'{P(Xa, X, Xil, [um+sp Bj]_[ua+aj’ B])
la|=d—1 .
15j,15n

+ z o6 p (Xu+8j_ai’ D(b Xl]9 [ua+sp Bj]_[ua+sj9 Bl])}
i=1

1
=2 ¥ p(X% X, Xl [ty B)
|a|=d—1 .
1<j,1sn

1
+ Yy =
1p1=a-2 B!
1=<i,j,lsn

p(Xﬁ+Ej’ [Xi’ Xl]’ [uﬂ+si+ep Bj]_[uﬂ+si+8j’ Bl])'
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Since ug ., 4, 1 @ symmetric function of i and /, we see that

Z P(XB“", X Xil, [uﬂ+s.‘+al’ Bf])=0’

1=5i,I=n

for 1<j<nand |B|=d—2. On the other hand, we obtain

1
IﬂI;—Z B!

1=i,j,1=n

p(XBH", [Xia Xl]s [uﬂ+ei+8j9 Bl])

o
2 &i' p (Xu’ [Xi’ Xl]’ [ua+si’ Bl])
la|=d-1 .
1<i,j,1=n

1
(d— 1) Z '_’p(xa9 [Xi’ Xl]5 [uu+ai9 Bl])'
|a]=d—1 O:
1<i,l=n

We therefore have verified the equality

z 1
laj=d—1 O!
1=j,1sn

p(Xu+£j’ [[uu+&:j’ Bl]+ [Bj’ u<1+£1]: Xl])

—@+) T p(X% X, X ey B,

laj=d—1 &
1<j,12n
from which we deduce the relations
1 ate; 1
(2’ 24) Xp (u)= Z ; p X Iy [ua+sl’ Ajl]— ;_;_1 [[uu+ej5 Bl]+ [Bj’ ua+sl]5 Xl]
la|=d—1 .

15j,1=n

a; 1
= z a_J'p<Xa, [ua—aj+cp Ajl]_ m [[uu’ BI]+[Bj’ uu—aj+zl]’ Xl]>
|a|=d .

1=5j,1sn

We define a mapping
X ST*@g—> @ S %T*

1=<a=sr
by
X ()= (('X.p,,)+(k—da) () <asm

for veS*T*®g. If v is the element (2.2) of S*T*®g and w, is the element (2.5) of
S¥~4aT*, for 1 <a<r, the equation x, (v)=(wy, . . ., w,) is equivalent to the system

1
(2 25) Z ; {pa (X“‘H:j, [va-i-§+el’ Ajl])_pa (Xu, [Xj’ Xl]’ [va+B+£p B_]]) } = wa, B>
|a|=dg—1 .
1<j,lsn
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with |B|=k—d,20, 1<a<r. For 1Za<r, 1<I<nand uecg, we set

1 n
Ta,l(u)= —'r_" z {pa(X'ia_ls Xja [ua Ajl])_pa (X‘ia_ls [Xja Xl]: [u> B]])}’
d,— 1! =1

if ue gy,, we see that

= ___1 : d;—1 —_
(2 . 26) Ta, 1 (u) (da_ 1)' jglpa (Xl ’ Xj> [ua Aj 1 [Xl, B_]]])

ProrosiTioN 2.5. — If n=2 and
(X1 Xgo - oos X A — Xy, Byl Agy =X, Byl - -y A, 1 —[Xy, B,
belongs to U, then the mapping
N &> D SHTLT*

1<asr

is surjective for k= 1.

Proof. — For 1<a<r, consider the elements w,eS* %T* given by (2.5), with
w,, p€R. We wish to solve the system S of equations consisting of

Z J° vu+sj]=09 'a,=k_15
j=1

and (2.25), with |B|=k—d,20, 1<a<r, for an element v of S*T*®g of the
form (2.2). Let m be an integer satisfying 1 <m=<k. The system S,, of equations

(2.27) [X1> Omey+pl Z‘,z [Xj’v(m—l)el+B+aj]=0’
j=

(228) ‘ca,l(vmsl+B)=wa,(m—da)al+B_ Z ta,l(v(m—l)el+ﬂ+el)
1=2

1 .
- Z a {Pa (0, GRAA [va+(m—da)£1 +B+ep Ajl])
la|=dg—1 :
ay <dg—1
15j,15n

= p. (X5 [Xj’ Xy, [va+(m—da)sl +B+ep Bj]) },

with d,<m, B=(0, B,, ..., B,), |B|=k—m and 1<a=<r, is a sub-system of S. Note
that the right-hand sides of (2.27) and (2.28) only involve the v, ,,, with /<m and
¥=(0, Y3, - - -» Yn) | Y|=k—1 We denote by S, the empty system of equations. Under
our hypotheses, we now construct a solution v of the form (2.2) of S, or equivalently of
all the systems S,,, with 1<m<k. For B=(0, B,, ..., B,), with |B|=k, letv,=0. Letm
be an integer satisfying 1 <m =k and assume that we have chosen elements v, ,g€g, for
all 0</<m, B=(0, B, . . ., B,), | B|=k—1, satisfying the systems Sy, S;, ..., S,,_;. Let
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B=(0, B, . . ., B,), with |B|=k—m. Since X, is principal, we may apply Lemma 2.2 to
the element u of S" T* ® g defined by

dax*
u= Z —'®va+|3,
laj=m O

and we may choose uj € g satisfying
n
X, “fs]"" Z [Xj’ v(m—1)51+ﬂ+s_;]=0‘
i=2

If W, m-a, e, +p denotes the right-hand side of (2.28), by (2.26) and the remark preceding
Lemma 1.2, our hypothesis enables us to solve the equations

ta,l(uB)=w¢,1,l[m—da)el+ﬁ_Ta,l(uil)5 1§a§r,

for ugegy,. Then v, s=uz+u; is a solution of the equations (2.27) and (2.28), and
we have thus constructed a solution of S,,.

If W is a real vector space, we define the mapping

Vi 8 T* @)W > (P ST

1<asr

by VU (v, W)=V, (v), for veS*T*® g and weW. From Theorem 2.1 and Proposi-
tion 2.5, we deduce the following:

COROLLARY 2.3. — If n=2 and
Xy Xgs ooy Xy Ag =X Byl Agy =Xy, Bol, - - A — Xy, B
belongs to U, then the sequences

Sk+1T*®g¢kexk+l(SkT*®Q)® 6_) Sk—da+1T*_‘|’_"; @ Sk_d“T*—>0

1<asr 1Zasr

are exact for k=0.

Let d=sup(d,) and, for m=0, denote by g}, the subspace of S**™"T*®g equal to
the kernel of @4 ,—1®PYs+m Then gj., is the m-th prolongation of g;. From
Corollary 2.3, we deduce by a standard argument (see [4]) the following result:

COROLLARY 2.4. — If n=2 and
(X Xgs o v oy X All_[xla Bl]’ A21_[Xla B2]s cees Anl_-[xl’ Bn])

belongs to U,, then
He* ™ (g) =0,
for all m, j=0.
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Let
(2.29) X STIT*T*®g - R
be the linear mapping defined by

’ 1 o
Xp(u)= z ap<x H [Xj’ [ua+ei, i Bj]+2[Bia uu+ai,j]]
laj=a O
1=i, jsn

—2[Ayj, Uyyey, ) Z o [Ayj, Uys -y, j])’
=1
where
dx® ;
u=_y i6<)dx’(>3um,jeS"‘“1T*®T*®g,
lal=d+1 O!
with u, ;eg. Let
dx*

u= _
lal=d+2 O!

®u,,

with u, e g, be an element of S**2T*®g. By Proposition 2.1, we have

1
| |Z—d ;p(Xa’ [Xja [Bi’ ua+si+sj]])=0a
15jsn

for all 1<i<n. On the other hand, if u belongs to g, ,, by Lemma 2.3, we see that

1
Z _p(Xas [Aij’ uu+ei+e~)=0’
!

la|=d &
for all 1<i, j<n. Therefore, if u is an element of g, ,, we obtain

, 1/

Xp(u)= Z — P Xa’ [Xj’ [ua+25i’ Bj]+2[Bi9 um+si+e']]
laf=a O! !
al|= : \

156, j=n

n
_Z[Aij’ uu+si+'aj]_ Z al[Alja ua+2¢,~—s,+aj]>

=1

1 1
= Z ap(xu’ [xp [ua+25,~’ B]]])_ Z "—'p(Xa+et’ [Alj9 ua+25i+zj])

lal= la|=d—1 &
1<i,jsn 1<i,j,Isn
1 .
= Z a{l’(xaﬂ’, [ua+25i+ep Ajl])_p(xa: [Xj’ Xl [ua+28i+el’ Bj])}
la|=d—1 .
1<i,j,1n
=%, (),
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where v=(Tr®id) u belongs to g,; thus we have shown that
2.30) %, ()=, - (Tr®id) (),

for all ueg, ,.
We define a mapping

e ST*RT*g—> P St% 1T*

1=<asr
by
e (W)= ((X;;a)+(k—da— 1) (), <asr

for ue S*T*®T*®g. Then by (2.30), we obtain
(2.31) Xie+1 ()= % - (Tr®id) (w),

for all ueg, ., ,.

PropPOSITION 2.6. — If n=2 and

(Xp Xz, sy Xm A11—|_X1, B1], AZI_[XI’ Bz]’ ERRE) Anl_[Xl’ Bn])

belongs to U,, then the mapping

Yi+1: 8x+2 = @ Sk-daT*

1<a=r
is surjective for k=0.

Proof. — Let k=1 and w,eS* % T*, for I<a<r. According to Proposition 2.5 and
its proof, there exists an element v of g, given by (2.2), with »,=0 whenever o, =0,
satisfying x, (®)=(w,, . .., w,). We define an element

ax®
u= Z —'®ua,
la|=k+2 O:

with u,eg, of S**2T*®g as follows. For B=(0, B,, ..., B,), with |B|=k—m+2, we
let 4, =0 if m=0, 1 or 2, and we define the u,, ., 4, With 3Sm=k+2, recursively
on m by

n
Umer+B~ Vm—2)e1+B Y Um—2)ey +p+2¢j
j=2

Clearly, we have (Tr®id)u=v. To prove that u belongs to g,,,, we now verify by
induction on 1 <m<k+2 that

©.32) 2. X =)0y 45421 =0,
ji=1
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for all p=(0,B,, ..., B,), with [B|=k—m+2. This is obviously true for m=1
or 2. Assume that m=3 and that (2.32) holds when m is replaced by m—2. The left-
hand side of (2.32) is equal to

n

n
[Xj’ ‘U(m—s)el+s+e,~]' z [Xj’ u(m—3)81+|3+25i+5j];
=1 ij=1
i>1

J

the first term of this expression vanishes because v belongs to g,, and the second one
vanishes by our induction hypothesis. Hence, u is an element of g, , , and so, by (2.31),
we see that ., (W) =W, ..., w,).

Since g, ., is a subspace of h,,,;®g, from Theorem 2.2 and Proposition 2.6, we
deduce the following:

COROLLARY 2.5. — If n=3 and
Xy Xgo v o5 Xy A =Xy, Byl Ay —[Xy, Bl ... A = [Xy, B
belongs to U,, then the sequences

(id®¢) Dy} Tr . Vi,
hk+1®9 ¢ 7”‘“(Sk+1"[~:x=(>9g)€_) @ Sk—dg T "+,1 (_B Sk—da—1T* _,

1=<asr 1<asr

are exact for k=1.
For k=2, we denote by #; the kernel of the mapping

(04—, ®iD)B(IARP)Dx;: S T*R@T*Rg —
S IT*RT*®9)D(S'T*®g)® P S % 'T*

1<asr

Let d=sup(d,); then for m=0 we see that 4}, ,,,, is the m-th prolongation of A, ,.From
Corollary 2.5, we deduce the following result:

COROLLARY 2.6. — If n=3 and
(XD Xz’ vy X A11_[Xv B1]’ Azl"[xp Bz]’ X Anl_[Xl’ Bn])

belongs to Uy, then
HO L (B ) =0,

for all m, j=0.

3. Connections on a principal bundle

Let M be a manifold of dimension n. We shall denote by T* the cotangent bundle
of M. By A*T* and S*T*, we shall mean the k-th exterior product and the k-th
symmetric product of T*, respectively. Let E be a vector bundle over M. We denote
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by E® = Q)*E the k-th tensor power of E, by & [resp. J, (E)] the sheaf (resp. the vector
bundle of k-jets) of sections of E over M, and by =, :J,,,(E) > J,(E) the natural
projection. We identify J, (E) with E and set J, (E)=0, for k<0. If s is a section of E
over a neighborhood of xeM, then j, (s) (x) is the k-jet of s at x. For k=0, we have
the exact sequence

0 - S*T*QE 5 J, (B)——> J,_; (E) > 0,

given by Lemma 2.1 of [4].

If V is a finite-dimensional vector space, we also denote by V the trivial vector bundle
M x V over M, and we write A* 7 *®YV for the sheaf of sections of A*T*®V over M. If

d NT*QV > N1 T*@V
is the exterior derivative, there exists a unique morphism of vector bundles
o, (d): SFTIT*QA T*®V - S T*QA Y1 T*QV
such that
Ji(du') (x) =i (du) () + oy (d) &7 iy y (' — 1) (%),

where u, u' are sections of A’T*®V over a neighborhood of xeM satisfying
Ji @) (x) =i (@) (%)

Let G be a Lie group and let P be a principal bundle over M with structure
group G. We denote by R, the right-action of an element ge G on P and by V (P) the
bundle of all vertical tangent vectors of P. Consider the vector bundle

E=Pxsg

over M associated to P corresponding to the adjoint representation Ad of G on g. It is
easily seen that the bracket of g induces a bracket

E®E - E;
thus we also have brackets
(N T*QE)Q(A*T*®E) —» (A T*QE),
ANT*@9RA T*®g) > (A T*®g),
determined by
[e®u, PR]= (A P)®[u, ],

for ae A’ T*, Be A*T*, u, veE or u, veg.
The bundle of all connections on P is an affine bundle over M modeled on the vector

bundle T*®E. In fact, if I', I"” are two connections on P, which we identify with their
connection forms, then ®=I"—T" is a g-valued 1-form on P satisfying

Rifo=Adg '.o, <(§ 0)=0,
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for all geG and £eV(P). Such a g-valued 1-form ® on P can be identified with a
section of T*®QE. The covariant differential corresponding to the connection I' gives
rise to a first-order differential operator

A" NT*QE - N T*R6.
The curvature of I' is a g-valued 2-form F. on P satisfying
R}Fr=Adg ™ '.Fp, i(€)Fr=0,
for all ge G, £eV (P), and can be identified with a section of A2T*®E. Then we have
d".d" u=[Fr, ul,
for ue AV 7*®4¢&, and the equation
d"F.=0

is equivalent to the Bianchi identity for I" (see [6]).
A section s of P over an open subset U of M gives us a trivialization

UxG—>Py

sending (x, g)e U x G into s(x)g, and a corresponding trivialization

3.1 Uxg—5E,y.
If I is the connection on P,y induced by s, whose horizontal spaces are equal to
{R,u5,(T)|x€U, geG},
in terms of this trivialization of E, we see that d* corresponds to the exterior derivative
d NT*Qg—> N T*®ag,
and that o is identified with a section of T*®g and d* with the differential operator
d®*: NT*Rg—> N T*®g,

defined by
d°u=du+|w, u],

for ue AV 7 *®g, and Fy. with the section
1
F,=do+ - [0, ]
2
of A2T*®g. The Bianchi identity for I is now written as
d*°F,=dF +|[o, F, ]=0.
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Given a section F of A2T*®E over U, finding a connection I" on P, y, whose curvature
Fr is equal to F, is equivalent to solving the equation

(3.2) d(o+%[m, o]=F

for a section @ of T*® g, where F is identified with a section of A2T*® g by means of
the trivialization (3.1). A solution ® of this equation must also satisfy the Bianchi
identity

3.3) dF + [0, F]1=0.

d+1

Let p be a linear function on (X)?*'g. We consider the morphism of vector bundles

Tp: (AZ T* ®g)®d @) ®dT*®A3 T* ®g N (A3 T*)® @da+1)
determined by

T, (0 ®u))® . .. Q(;Qu)RB;® . . . ®B,RYR®7)
=p@y, .-, ugy V) (A ABD® ... ® (1A B)®Y,

for oy, ..., 0, € A2T* By, ..., B,eT* yeA3T* u,, ..., u,, veg. If Vis a connection
in T}y, a solution o of (3.2) on U also satisfies the equation

3.4 1, (F'QV*(dF + [0, F]))=0

of order d, where F?e (A2T*® g)®! is the d-th tensor power of F.

4. Connections with prescribed curvature

Let (x!, ..., x") be a coordinate system on an open subset U of M. Ifa=(ay,..., a,)
is a multi-index of length n, with |oc | =k, we consider the section

dx*=(dx)*t - ... - (dx")

(ae)"

of S*T* over U and we set

P =<_5_ "
ox* \ ox!

Let ® be a section of T*® g over U given by

o= Y dxX'®w,

i=1
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where the ; are g-valued functions on U. For B=(B,, .. ., B,), with |B|=k+1, we set

P oo
" k+1 Z Ps

then

u= ®
.B.Zm 1o

is a section of S**'T*®g. For a=(ay, ..., a,), with |a|=k, and 1 </<n, we have

1 i —E;TE
ua+al= ;4-_1 (6 O‘)l+ Z 0(15‘ J+ ’0)1>

j=1

and

1 o 0w, O0w;
4.1 ro=uy,,, + —— o0 — — — ).
@D boTera k+1,-§1 J <axf 6x’>
A section F of A2T*® ¢ over U can be written as

1 n

F=- Y dx'andX'®F,,
2i,j=1

where the F;; are g-valued functions on U satisfying F;;= —F;. The equation (3.2) is
equivalent to
@_1 aml + [ ] = F, .

axi a I i) léi’jén'

Henceforth, in this section we suppose that n=3. If F is a section of A2T*®g
over U, we write

F=F,dx* ndx®+F,dx3 ndx' +Fydx* ndx?,

divF= Z oF;.
j=1 Bx’

if a=(ay, oy, a3), with |a|=k, we consider the g*-valued function F*=(F}1, Fg, Fy)
on U. For xeU, let
(px: Jl (A2 T* ® g)x - g7

be the surjective mapping sending j, (F) (x) into

aF1

<F1 (x), F5(x), F3 (X), ( ) ~—( )s = (%), (divF) (X))
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Let F be a fixed section of A2T*®g over U. We have

3
[0, F]=(dx' Adx* A dX*)® Y [0, F],

j=1

dF = (dx* A dx?® Adx*)®divF;

the Bianchi identity (3.3) is equivalent to

3
Y [F;, o]=div F.

j=1
Let V be the flat connection in T}, determined by

Vdxi=0,
for j=1, 2, 3. If p is linear function on X 4+1g, the equation (3.4) is equivalent to

3
4.2) y i' p<F°‘, 6°‘<divF+ Y [0, F,.]>>=0.
j=1

la|=d ! j=

We assume for the remainder of this section that g is a semi-simple Lie algebra, whose
rank is equal to r. We consider the objects associated in Section 1 to the system of
generators {p,, ..., p,} of 1(g), in particular the subsets U, of g x g and U, of g°, and
the subset U5 of g’ given by Lemma 1.2. We suppose that d;<d,<...<d,. For
xe U, since @, is surjective, we see that 0, =@ ' (U,) is a non-empty Zariski-open subset
of J, A’T*®g),.

Let p be a homogeneous element of I(g) of degree d+1, with d=1. By
Proposition 2.1, with X;=F;(x), for xe U and for j=1, 2, 3, and by (4.1), we obtain

1 1 o 0w, Ow;
— Fa, aam’ FD= - ' Fa’ 08 l _ J , F .
|a|z=d (l'p( [ ! l]) d+1 le:d Cl'p< |: <6x’ 6x’) l:l)
113 1<j,1=<3

Thus, we may write

@3 Y i'p<Fm, 6"<divF+ Y (o) F,]))

Ja]=d & ji=1
=0 (a))+—1— Y ﬁp(F“ [6““i<da)+l[(o o]-F},F
? d+1 | Sis al ’ 2 P
154,153
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where @, (w) depends only on the derivatives of ® up to order d—1. In fact, for d>2,
we have

a; o o —¢; aF 1 —¢; a—¢;
. 0,@= 3 2p(r |00, I |- 10y 0l o, #va) F))

15,153

+ pp (F’ (l)),

where p,(F, ®) is an expression which only involves derivatives of  up to order d—2;
if d=1, we see that

@.5 o,= Y p(Fj, [m aFl}-l[[mj,m,], F,])
<3

1~
1551 ox’ | 2

3
“3p(Fu P FD+ T p(F 055
i=1 ox

J

6divF>

If o is a solution of (3.2), clearly we also have the equality ®,(w)=0.
Fix xe U and set

X,=F,(), Ay= !

jt - (x), B=(divF) (x),
ox’

forj,I=1,2,3. Fordz1 and 0,eT{®g, we define a linear mapping
6(D,),, S ' TIR®TI®g— R
as follows. If d=2, then it is the unique linear mapping satisfying the relation
D, () ()=, (@) (x) + (D), (),

whenever o, @’ are sections of T*®g over U and u is an element of S ! T*@T*®g
such that

Ja-1(@) (X)=jg-1 (@) (x) +eu

and ®(x)=w,. If d=1, then o(®,),, is the differential at o, of @, along the fibers of
the vector bundle T*® g over M. For d=1, if

3

(4.6) ®o= ) dx’'®B,,
j=1
with B;eg, and
u= X di@dx’@uu,j,
laj=d-1 O!

1=j=3
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with u, ;eg, then
(4.7) 0(@p)a, ()

o
= Z G’—J'P<Xua [uu—t:j, 4] Ajl]_ [[ua—aj, Jj° Bl]+[Bj9 ua—ej, l]! Xl])

1
d+1
The m-th prolongation

O (@) S** "I TE@TE®g — S"T%

of 6(®,),, has the following property: whenever m+d=2, if o, @' are sections of T*®g
over U and u is an element of $?*"~ ! T*®@T*®gq satisfying o (x) =, and

Jam-1 (@) () =jysm-1 (@) (x) +eu,
then

4.8) Jm (@ (@) (X) = (@, (@) (%) + €0, () ()
(see [S]). Let o, be the element (4.6) of T¥®g and let
% S Ti®g - R

be the mapping (2.23), with T*=T%, defined in terms of the dx’,X;, A; and B;. Then
by (4.7) and (2.24), we see that

9 (q)p)o)o | SdT§®g= Xp;
therefore, we also have the equality
(4 . 9) Om ((I]Ip)«)o | S‘H'"'T,"“®g = (Xp) +m*

For k=0, let R, , be the subset of J, (T* ® g), consisting of all k-jets j; (o) (x), where @
is a section of T*® g over U satisfying the equations

Jk-1 (d@"‘ % (o, m]—F)(x)=0,

Ji-tg+1 (@, (@) (x)=0,  ji(dF +[o, F])(x)=0,

(4.10)

for d,<k+1, 1<a<r.
We recall that j, (F) (x) belongs to O, if and only if

o(la XZZ’ X3> A11$ A21a A31’ B)

belongs to the subset Us of g’ given by Lemma 1.2 (with n=3) and defined in terms of
the subset U, of g°. An element :

(Y1, Y5, Y5,04,05,03)
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of g° belongs to U, if and only if the ¢ elements
{ (Y1, Y2 }(a, kel
of g are linearly independent and if the mapping
r:ig—g@R,
sending u€g into

)"(u)=([Y19u]a B(leu)’ . '9B(Zr’ u))’

where
3

Za = Z [vjaﬁa (Y‘{a_ la Yj)]s
i=1
is injective.

ProOPOSITION 4.1. — Assume that j,(F)(x) belongs to the open subset O, of
J,(A’T*®g),. Then:

(i) There exists an element wy€R,, , given by (4.6) satisfying
(4.11) (X1, X5 X3, A1~ [Xy, Byl Ay —[Xy, Bol, Ay — [Xy, B3) e Us.

(i) If veR, , and the element wy=m,v, given by (4.6), satisfies (4.11), then there
exists v' € Ry, . such that m,v'=v.

Proof. — (i) Our hypothesis implies that

(Xl’Xza X3: Al 1 A21’ A31’ B)
is an element of Us. According to Lemma 1.2, there exist v,, v,, v3€g such that
3
2. [X;v]=B
j=1

and
(X1, X2, X5, A = [Xi v1), Agy = [X, 0], Ay — [Xy, v3]) € U

If p, . ..,p, are the elements of { p;, .. .,p, } of degree 2, we set

3 . 3
ddivF 1
ca=3pa (X19 [XZs X3])_ Z Pa (Xj7 axj (x)>_ Z Da (Xj’ [vb Ajl]_ E[[vﬁ z;1]9 Xl]) ’
j=1 j, 1=1

J J

for 1<a<s. According to the remarks preceding Lemma 1.2, we are able to solve the
equations

3
z D, (Xj> [w, Ajl X4 7-’;]]) =Cys
j=1
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for wegy, and all 1=a<s. We set w,=w, w,=w;=0 and B;=v;+w,, for j=1,2,3;
then [w;, w]=0, for j, [=1,2,3. Since [X;, w]=0, we have

3
z [Xj’Bj]=B;
j=1

on the other hand, we obtain

3

S . (X,-, [B, A1 %[[B,-, B, XJ)

il=1

> 1
= . Z { Da <st [v;, Ajl] - 5[[‘0,', v, Xz])

il=1

+pa (Xj:' [wb Aﬂ] - ';‘[[vj: Wl] + [wj’ vl]a Xl]> }

3 3
= Z Da (Xj’ [vs, Aﬂ]_ %[[vp v, Xl]) + Z Pa (Xja [w, Ajl - X1 'Uj]])
pl=1 j=1

3 .
ddivF
=3p, (X, [X5, X3 — Z pa(xj’ ; (x))
ji=1 ox

Hence w,€R, ,; since we gy, the relation (4.11) also holds.

(i) Let v, =jj+, (®) (x) be an element of J, ., (T*® g), satisfying n, v, =v, where o is
a section of T*®g over U. Then (4.10) holds and we have the following equalities
among elements of S* "1 T*@A3 T*®ag:

o1 (e, (da)+ %[0), (o]—F) x)=¢"1j_, <d<d(o+%[(o, m]—F)) )

= —g Y,_, (dF +[o, F)) (x)
=0.

By the exactness of the sequence

o (d) oy _ 1 (d)
0- S 2 T*®g » S  T*ET*®g—— S T*OA’ T*®g — S ' T*@A T*®g,
there exists we $** ! T*®@ T*®g such that

o (dw= —-a‘ljk<d(o+ %[w,m]—F)(x).

Let

dx*
u=y — ®u,
lal=k+2 O
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be an element of S**2 T*®g, with u,eg, and
3 3
o'=Y diQuw), o'=Y ddQw}
j=1 j=1
be sections of T* ® g over U satisfying

Jer1 @) ()=vitew,  ji (@) (X)=v, teutew;

then we have
1
(4.12) Ji (dw' t [0, @]~ F) () =J <dw_" + % [ F> (x)=0.

We now will choose the element u in such a way that the equations
(4.13) Jer1 @F 0", F)()=0,  ji_g,+2(P@,, (@) (x)=0,

with d,<k+2, 1<a<r, also hold. If a=(a,,a,,®;), with ]cx|=k+ 1, we have

4.14) o <d1vF+ Y. [of, F,]) x)=0" <d1VF+ z [}, FJ]> (x)+ Z [ty 40 X1

ji=1 j=1

By our hypothesis on j, (F)(x), we know that (X,,X,) belongs to U,. Therefore,
according to Theorem 2.1, if

4.15) Y lpa<F“ 6“+”<dlvF+ Y [, ,))(x)=o,

|a|=dg a! j=1

for all 1<a<r, with d,<k+1, and all B, with | B|=k+1—d,, we may choose the element
u of S**2T*®g in such a way that the right-hand side of (4.14) vanishes. Since

Ji(dF + [0, F]) (x) =}, (dF + [0, F]) (x) =0,

by (4.3), (4.12) and (4. 10), the left-hand side of (4.15) is equal to

69( Y 1' (F"‘ o* (dlv F+ Z [0}, F; ))) (x)=(@"@,, (0") (x)=(* D, (@) (x)=0.

lal=ds & i=

Ifd,<k+2and 1<a<r, we set m,=k+2—d,; according to (4.10), (4.8) and (4.9), we
have the following equalities among elements of S™s T#:

€7 Jimy (@5, (0)) () =&, (D, (@) (X) + G, (D)0 Ut W)
=g" ljma (q)pa ((!))) (x) + cma ((Dpa)mo (W) + (Xpa) +ma(u)‘

As (4.15) holds for all 1<a<r, with d,<k+1, and all B, with |B|=k+1—d,, by (4.11)
and Corollary 2.3, we are able to find a solution ueS**2T*®g of the system of
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equations
3 3
Y (X ths ) = 0° (div F+ Y [o,F ,.]) @),
j=1 j=1
o) +mg W)= =€ i (@, (0)) (X) = G, (D) (W),
for all a, with |a|=k+1, and for all 1<a<r, with d,<k+2 and m,=k+2—d,. With

this choice of u, the section o’ of T* ® g satisfies the equations (4. 13), and so ji , ; (©"") (x)
belongs to R, ¢ .

The preceding proposition together with Theorem 2.2, Chapter IX of [1] (due to
Malgrange [9], Appendix) applied to the system of equations

jk_1<d0)+ %[w, (o]—F>=0,

Jk—dg+1(@p, (@)=0,  ji(dF+ [0, F)=0

(4.16)

of order k for a section ® of T*®g over U, where k=sup(d,—1,1) and 1 <a<r, yields
the following result:

THEOREM 4. 1. — Suppose that F,, F,, F; are real-analytic functions of (x*, x*, x®) on
U. Let xeU and assume that j, (F)(x) belongs to the open subset O, of
J,(A*T*®q),. Then there exists a solution

3
o=) d’®o;
j=1

of the system (4.16) and of the equation (3.2) on a neighborhood V<U of x, where the
; are real-analytic g-valued functions of (x*, x*, x*) on V.

Remark. — Under the assumption that j, (F)(y) belongs to 0, for all yeU, using
Proposition 4.1, Corollary 2.2 and results from [5], it is easily seen that the subset R,
of J, (T*®g), y, corresponding to the system (4.16), with k=sup(d,— 1, 1), is a formally
integrable differential equation, whose symbol is involutive, in the sense of [5].

Assume that M is a real-analytic manifold and that P is a real-analytic principal
G-bundle over M. Suppose that the section s of P over U is real-analytic and that
(x!, ..., x") is a real-analytic coordinate system on U. Let @, be the non-empty Zariski-
open subset of J, (A2 T*®E), equal to the image of @, under the isomorphism

L (AP T*®g)u— I, (A’ T*®E) y

determined by the trivialization (3.1). From Theorem 4.1, we deduce:

THEOREM 4.2. — Assume that M is a real-analytic manifold of dimension 3 and that P
is a real-analytic principal G-bundle over M. Then, for any real-analytic section F of
A2T*®E over a neighborhood of x, with j, (F) (x)e @, there exist a neighborhood V of x
and a real-analytic connection I" on Py whose curvature Fy. is equal to F on V.
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5. The Yang-Mills equation

We consider the principal bundle P over M with structure group G of Section 3, and
the objects associated to it. We suppose that g is a semi-simple Lie algebra. It is easily
seen that the Killing form B of g induces a scalar product on the vector bundle E. Let
g be a Riemannian metric on M. We denote by { , ) the scalar product on the vector
bundles T* and A’ T*®E induced by g and this scalar product on E. If I is a connection
on P, we denote by

AN T*RE-S>NT*® E

the formal adjoint of 4 with respect to the metric g and the scalar product of E. The
section 8" F1. of T*®E over M is called the current of the connection I'; later, we shall
verify that it satisfies the Bianchi identity

¢.1 . 8" Fr=0.
Given a section C of T*®E over M, we consider the inhomogeneous Yang-Mills equation
(5.2 MFr=C

for a connection I on P. In view of (5.1), a solution I' of this equation must also
satisfy

(5.3) sFc=o.

We endow the trivial vector bundle g over M with the scalar product induced by the
Killing form B. Let o be a section of T*® g over M. We denote by

3 A T*Rg > AN T*®g
the formal adjoint of the differential operator
d*: NIT*®g—-> AN+ T*®g

and by
o*: VI T*@g > A T*®g

the morphism of vector bundles equal to the adjoint of the morphism
NT*®g->AN"'T*Q®g,
sending ue A/ T*®g into [w, u]. If d* is the formal adjoint of d, then we have
°u=d* u+ o* (u),
for ue A\*1 7*®g. If xeM and k=0, the mappings

0, (8°)=0, (d*): S* ' T*@T*®g — S* T*®g,
0, (8°d)=0,(d*d): S*"*TIQT*®g - S*T* ®g,

4° SERIE — TOME 24 — 1991 — N° 1



PRESCRIBED CURVATURE AND YANG-MILLS CURRENTS 103

are equal to the mappings —Tr,®id and —o,®id respectively, where Tr, and o, are
the mappings defined in Section 2, corresponding to the vector space T, endowed with
the metric g. Let A, , be the subspace of S¥*2T*®T* equal to the kernel of this
mapping o,. If n=3, Proposition 2.4 implies that the sequences

6 _ 1 (d* d) ) — o (39)
(5.4) 0->hy,, @3-S T*RT*Rg —— S I T*@T*®g—— S* 2 T*®g — 0

are exact, for k> 1.

Let s be a section of P over an open subset U of M ; consider the connection I'" on
P,y induced by s and the trivialization (3.1). Let I" be a connection on P. In terms
of this trivialization of E, we identify @=I"—T" with a section of T*® g; then we see
that 8 corresponds to & and that 8" is identified with 8°. Let xeU and {&,,...,E,}
be an orthonormal basis of T¥ and ueg. If

F= Z EiA &j®Fij’

1<i<j=n
with F;;eg, is an element of A?T*®g, then we see that

<[F,u],F>= Z B([Fij’uL Fij)=0-

1<5i<j=zn
Therefore, if u is a section of g over U, we have
{d®.d°u, F,>={[F,ul, F,>=0;
from this equality, we deduce that
5.5 8°.8°F,=0

and that (5.1) holds.

Let (x!, ..., x") be a coordinate system on U and let C be a section of T*®E over
U. Finding a connection I" on P, satisfying the equation (5.2) is equivalent to solving
the equation

(5.6) 6 <dm + % [0, w]) =C

for a section m of T*® g over U, where C is identified with a section of T*® g over U
by means of the trivialization (3. 1).

Let
C=) dx'®C;

i=1

be a section of T*® g over U, where the C; are g-valued functions on U. For 1Zi<n,
we set

C:= Z gijcja

Jj=1
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and for a=(a, . . .,a,), with |a|=k, we consider the g*-valued functions

C*=(Cx, . ..,C), C*=(Cp,...,C)

on U. Let ® be a section of T*® g over U given by

o= d'®w,
i=1

where the ®; are g-valued functions on U; for 1<i, j<n, we set

_Ow; o
Yoooxt ox

v

+[w; 0 j]'
Then it is easily verified that

8"’<dco+ %[w, 03]) =—3 dxX'®8,

i=1
where

" . /6\]] 5g"k " agik }
0,= 2 (o, U] )+ =y + . gim S .
, z{g (5 +to w,,]) Eobt T 58" b

Hence, for |o|=d and 1<j<n, we may write

(57) z gikau+ei+skmj== z { gik(aa+aj+skmi_[aa+ekmi’ mj]__z[o)i, aa+skwj]
k=1 k=1
ik

+[mi’a¢+ajmk])+ Z aagl(p(asisk’l; (o)}+6°‘91+(p(0t,]; 0))’
1=1 0X

where the ¢ (a,i,k,/; ®) only involve derivatives of o of order d+1 and the ¢ (a,j; ®)
depend only on the derivatives of ® up to order d.

If © is a solution of (5.6), by (5.5) it must also satisfy the identity

5.8 BoC=d"C+ 3 G 0)=0,
i=
where
d*C=-Y% oG,
j=1 ox’

Clearly, the equation (5. 8) is equivalent to

. ac’
Y [Cal=Y =2
j=1

j=1 axj
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We suppose that the semi-simple Lie algebra g has rank r and consider the objects
associated in Section 1 to the system of generators { p,, . ..,p, } of 1(g), in particular

the subsets
2n+1

U2C93, U, =g, Ugcg

when n=3. For xeU, let

0;:J, (T¥@g) —» g>**!

be the surjective mapping sending j, (0) (x), where

=3 dx’'®0;
j=1
is a section of T*® g over U, into
N ) 00, 00
0, (%), ...,00(x),—(X),...,—(x), 1(x) ),
( 1(x) (%) e () o (%) ,-gl o (x))

n
with ;=) g0,. If n>3, for xeU, since ¢} is surjective, we see that 0= ;"' (Uy) is
j=1
a non-empty Zariski-open subset of J, (T¥®g),.

Let p be a homogeneous element of 1(g) of degree d+ 1, with d=1. We consider the
morphism of vector bundles

7, (T*®9)*'® @2 T*@g R

determined by

T'p (4 ®u)®. .. (1,Qu)®B;® . . . ®Py4,®2)
=puy, -5y 0) By ) o (0, Ba ) CBav 15 Basa )

for oy, ..., 0 By, ..., Bas2€T*, uy, .. .,uy, veg. Let V be a connection in Tfy; if ®
is a solution of (5.6), it also satisfies the equation

T (C{QV+2 (3° C)) =0

of order d+ 2, where C?e (T* ® g)®¢ is the d-th tensor power of C.
Assume that V is the flat connection in T}, determined by

Vdxi=0,
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for 1<j<n. Then we have

(5.9) T(C'®V!*2(3°C))
— Z lp <Cla, glk a“+81+8k<
la|=d ol

d*C+ z [C) >>
1<i,k=n =
1
)

; oC;
— _ Cla’ ik C’~,6u+si+a"(0-+2 __.J,aa+t:k0)_
. wl’( 4 ([ j il [ax' ,}
1<i,j,k=n
+Ya [acj
=1

aa+e,+ek LF0 :l)) + pp (C, (l)),
where p,(C, o) is an expression which only involves derivatives of ® up to order d. By
Proposition 2.1, for 1 <i, k<n, we see that

z %p(C'“, Z [C},gi" aa+sj+ekmi]>=
lo|=d ol j=1
)3 aP(C'“ Z [C} g™* [, 3“”fmk]]> =
|a|=4d

Hence, by (5.7), we may write

(5.10) ,(C'RVI* 2 (3°C) = -0, (@) + . P (C%[C, (8,4 C))
fal=d &
1<jsn
where @ (0) depends only on the derivatives of ® up to order d+ 1
o 1
O, (@)= 4

In fact, we have
la]=d

(Clu’glk([Cl [aaﬂ:ko) 0).]+2[wi, aa+akm]] 2[6
1<i,j,ksn “

j au+akm]
ox'
n , n ik
-y a,[gi’ o teite Etm]) Y [ g‘l o (o, i, k, ;o)
I=1 I=

+p, (C, 0),

where p,(C, ®) is an expression which only involves derivatives of ® up to order d. If
 is a solution of (5.6), clearly we also have the equality @ (0)=0

Fix xeU and assume henceforth that (x
1<), I<n, we set

") are normal coordinates at x. For
. 6C
X;=C;(x)=Cj(x), A= ’( )= —

n

B= Z ’(x)
j=1 ox’
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then the equality

, 1
(5.11) @, ()= | |2=d ap(@ [Cj, [0* " 0, 0]+ 2 [0, 0 o1 0]
1=<i,jsn
_2[3()31 e ] 2 I:axlj’aa+26, LT :|> +p'p(C, (0)
1=1
holds at x.
Let
(5.12) ®o= Y, dxX'®B;

i=1
be an element of T¥®g, with B;eg, and let

Xp: ST TI®TI®g > R
be the mapping (2.29), with T*=T}, defined in terms of the dx’, X;, A; q and B;.  Then,

whenever ®, ®’ are sections of T*® g over U and u is an element of S“""l+1 T*®T*®g
satisfying o (x) =, and

Jaam+1(0) () =jgsm+1 (@) (x)+eu,
from (5.11) it follows that
(5.13) Jm (@ (@) (X) = i (@, (@) (X) + € (Xp) 4 m (W)

(see [5]).
For k20, let R; , be the subset of J, (T*®g), consisting of all k-jets ji, (®) (x), where
® is a section of T* ®g over U satisfying the equations

1
s | 0% do+ -[0,0] | —C ) =0,
(5.14) . ( < 2! ]> >
Ji—dg-1 (@, (@))=0, i (3°C)=0,
for d,<k—1, 1<aZzr.
We recall that j, (C) (x) belongs to O, if and only if
X o X Agls - -5 ALLB)

belongs to the subset Ug of g*"*!

subset U, of g?". An element

given by Lemma 1.2 and defined in terms of the

Xy Y, e,
of g2" belongs to U, if and only if the g elements

{ p~a (Y,;’ Yga—k) }(a, k)el
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of g are linearly independent, if
{ Pa (Y‘i“), Pa (Yg") }1 <asr { Pa (Yg“), Pa (Y‘;a) }1 <asr
are two sets of 2r linearly independent elements of g and if the mapping
L:g—g®R,
sending u € g into
A=Y, ul,B(Z,,u),...,B(Z,u),
where
Z,= ¥ lophu (Y4 Y))
is injective. "

PROPOSITION 5.1. — Assume that n=3 and that j, (C) (x) belongs to the open subset O,
of ], (T*®g),. Then:

(i) There exists an element wy€ Ry , given by (5.12) satisfying
(5.15) (Xlaxzs cos X A X Bl Ay — X, Bol, - Ay — X Bn])EU4'

(i) If veR, , and the element ®,=m,v, given by (5.12), satisfies (5.15), then there
exists v' €Ry y, . such that m, v'=v.

Proof. — (i) Our hypothesis implies that
XKy XAy, .., A,LB)

is an element of Ug. According to Lemma 1.2, there exist elements B, . . .,B,eg such
that

3. [X,Bj]=B
j=1

and such that (5.15) holds. Then the element ®, given by (5.12) satisfies the required
conditions.

(ii) Let k=0 and v, =j,,, (®)(x) be an element of J,,, (T*®g), satisfying n, v, =01,
17 Jk+1 y
where

o= dQu;
=1

J

is a section of T*®g over U. Then the equations (5.14) hold. If k=0, we have
(6°C) (x)=0 and there exists an element

u= Y dx'®dx’'Qu;

i, j=1
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of T¥*@T¥®g, with u;;eg, satisfying

S X, ] = — ai (d* c+7Y (C, co,-]) ).
j=1 j=1

xi
for 1<i<n; then, if ®' is a section of T* ® g over U such that
J1 (@) (x)=v, +eu,

we have j; (8°C)(x)=0, and so j, (»)(x) belongs to R} ,. We now suppose that
k=1. By (5.5), we have the following equalities among elements of S*~? T*®g:

o () - A (8"’<dm+ %[0), 0)]>—C> (x)=e'1jk_2<5“’ <6“’<d0)+ %[m, m]> —C)) (x)

=&, (3° O (%)
=0.

The exactness of the sequence (5.4) gives us an element w of S*"! T*Q T*®g such that
1
o (@w=—-¢"1j,_, <8‘°<d0)+ 5[0),(0]) —C)(x).

Let
u= Z dx

|a|=k+1 O

®dxX'®u,

be an element of &, ., ,®g, with u, ;eg, and

n n
o'=) dXQw), o'=) diQw}
j=1 ji=1
be sections of T* ® g over U satisfying

Je+1 (@) (X)=0v; +ew, Jer1 (@) (x)=1v, +‘8“+8W'

Since A, ., ,®g is the kernel of o, _, (d* d), we see that

(5.16) ji_, (8“" (dco”+ %[0)”, ®" > —c> )

. 1
=ji-1 <8‘° <d(o’+ 5[(o', co’]) - C> x)
=j_1 <S‘°<d0)+ %[m,m]) —C)(x)+ec,,_1 (d*d)yw
=0.
We now will choose the element u of /., ; ,®g in such a way that the equations

(.17 Jer1 @GO (0)=0,  ji—g, (@, (@) (x)=0,
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with d, <k, 1<a<r, also hold. If |a|=k+1, we have

(5.18) o (d*C+ Z [C;, m}']) (x)=0" <d*C+ Z [C}, m}]) (x)+ Z X, uy, ;).
j=1 j=1 j=1

J

By our hypothesis on j, (C) (x), we know that (X,, X,, X;) belongs to U,. Therefore,
according to Theorem 2.2, if

(5.19) Z l'pa (C"’, glkortBreite (d* C+ Z [C), m}])) (x)=0,
lal=dg O i=1

1=i,ksn

for all 1£a<r, with d,<k—1, and all B, with | B|=k—da— 1, we may choose the element
uof i, ,®gin such a way that the right-hand side of (5.18) vanishes. Since

7@ O (x) =/ (8 C) (x)=0,
by (5.9), (5.10), (5.16) and (5. 14), the left-hand side of (5.19) is equal to
8"( Y 1 Da (C’“, gikoeteita (d* C+ Y [C) m§]>>> (x)
j=1

la|=dg al j=

1=<i,k=n

== (@}, () (x)= — (& D}, ()) () =0.

As (5.19) holds for all 1<a<r, with d,<k—1, and all B, with |B|=k—d,— 1, by (5.15)
and Corollary 2.5, we are able to find a solution ueh, ., ,®g of the system of equations

S X, u, J= - (d* C+ Y (C, m}]) ),

J= J

(Xpe) + G- W)= —€~ i -4, (@, (@) (%),

for all o, with |o|=k+1, and for all 1<a<r, with d,<k. By (5.13), with this choice
of u, the section o of T* ® g satisfies the equations (5.17), and so ji . (®") (x) belongs
to Rl,c+ 1, x*

Let d=sup(d,). The preceding proposition together with Theorem 2.2, Chapter IX
of [1] (due to Malgrange [9], Appendix) applied to the system of equations

e 1 _c)=
(5.20) Jao1 (5 <dm+ 5 [, 0)]) C) 0,
Ja-a, (@, (@)=0,  j;.,(8°C)=0,

with 1<a=r, of order d+1 for a section ® of T*® g over U yields the following result:

THEOREM 5.1. — Suppose that n=3 and that g and C,,...,C, are real-analytic
functions of (x',...,x") on U. Let xeU and assume that j, (C)(x) belongs to the open
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subset O of J, (T*®q),. Then there exists a solution

0= Z X’ @,

ji=1

of the system (5.20) and of the equation (5.6) on a neighborhood V<U of x, where the
o; are real-analytic g-valued functions of % ...,x"onV.

Assume that (M, g) is a real-analytic Riemannian manifold and that P is a real-
analytic principal G-bundle over M. Suppose that the section s of P over U is real-
analytic and that (x!, ...,x") is a real-analytic coordinate system on U. Let @, be the
non-empty Zariski-open subset of J, (T*®E), equal to the image of (. under the
isomorphism

1, (T*®g)y = I, (T*®E)

determined by the trivialization (3.1). From Theorem 5.1, we deduce:

THEOREM 5.2. — Assume that (M, g) is a real-analytic Riemannian manifold of dimen-
sion n=3 and that P is a real-analytic principal G-bundle over M. Then, for any real-
analytic section C of T*®QE over a neighborhood of x, with j, (C)(x)e @, there exist a
neighborhood V of x and a real-analytic connection T" on P,y satisfying the equation (5.2).

Let x be an arbitrary point of M. For k=2, let N, , be the subset of J, (T*®g),
consisting of all k-jets j, (@) (x), where ® is a section of T*®g over M satisfying the
equation

Je-2(3"F,) (x)=0.

The first part of the proof of Proposition 5.1, (ii), with C=0, also shows that:
PROPOSITION 5.2. — For xeM, the mappings

N, =1, (T*®g),, T Nyyp, x 2N,

k,x

are surjective, for k=2.
The preceding proposition together with Theorem 2.2, Chapter IX of [1], applied to
the equation

(5.21) 5°F,=0

of order 2 for a section ® of T*® g over M, yields solutions of the homogeneous Yang-
Mills equation and the following results:

PRrROPOSITION 5.3. — Assume that (M, g) is a real-analytic Riemannian manifold of
dimension n2>3, and let xe M.

() If q is an element of J, (T*®4q),, there exists a real-analytic solution ® of (5.21)
over a neighborhood of x such that j, (®)(x)=gq.

(ii) Assume that P is a real-analytic principal G-bundle over M. Then there exist a
neighborhood V of x and a real-analytic connection I" on Py satisfying the equation

8" Fr.=0.
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Remark. — Using Proposition 5.2 and results from [5], it is easily seen that the subset
N, of J, (T* ® g), whose fiber at xe M is equal to N, _, is a formally integrable differential
equation, whose symbol is involutive, in the sense of [5].
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