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POLYNOMIAL BOUNDS FOR THE NUMBER
OF AUTOMORPHISMS OF A SURFACE

OF GENERAL TYPE

BY ALESSIO CORTI (*)

ABSTRACT. — We study Weierstra(3 points and discriminants on algebraic surfaces of general type and we
give applications to a polynomial type estimate in c^ for the order of the automorphism group.

1. Introduction

In this paper we bound the order of the group of automorphisms of a complex surface
of general type by an effective polynomial function of degree 10 in the second Chern
class (Theorem 7.10). From this respect, our result is completely analogous to the
classical bound 84 (g—1) for curves of genus at least two. We do not know of any
example where the growth is more than linear, but perhaps the belief that a linear bound
should hold is too naive. It would be nice to see an example of quadratic growth.

Andreotti [1] gave an estimation of exponential type in the geometric genus. The
problem of giving polynomial bounds has been more recently attacked by Howard and
Sommese [8], and by Horstmann [7] in his Ph. D. thesis, but as far as we know, no one
was able to prove the result in its generality.

We use the same method as Howard and Sommese, who understood that the problem
can be solved producing an invariant locus on the surface. That such a locus exists is
proved in sections 5-6.

The search for an invariant locus led us to study the notion ofWeierstrap points. They
were introduced, at least to our knowledge, by litaka [9] and Ogawa [15]. Unfortunately
here the theory can not be as rich as one would like. In general Weierstra? points do
not exist. We have been able to bound their associated classes in the Chow group. This
is done is sections 3-4. The only reason why we include here these estimations is that
we think they could be of some technical interest. The problem is to bound the zero
cycle of a section of a vector bundle of rank bigger than the base space. Our methods

(*) This paper was written while the author was supported by a government scholarship as a student of the
graduate school in mathematics at the Scuola Normale Superiore, Pisa (Italy). It was revised while the author
was supported by a teaching fellowship as a graduate student at the University of Utah.
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114 A. CORTI

could perhaps be used in different or more general situations. The reader that is not
interested can skip section 3 and 4.

It is a pleasure for me to thank my friend and teacher Fabrizio Catanese. Without
his stimulating conversations and his help, both human and professional, this paper
would have never been written.

I also wish to thank the referee of the Annales scientifiques de VEcole Normale
Superieure, for pointing out some mistakes in the first version of this paper, and C. Peters
for valuable discussions during its revision.

Added to the last version (Nov. 15, 1989): we received a few weeks ago a preprint by
Huckleberry and Sauer. They also obtain polynomial bounds, that actually are a little
better than ours [of the order \og{c^)c\5'2}. Their method is completely different and
ultimately relies on finite group theory.

NOTATIONS. - In this paper S denotes a smooth algebraic surface over the field of
complex numbers. In sections 3 to 6, S is a minimal surface of general type with ample
canonical sheaf. In section 7, S is a surface of general type. For the definition and
standard properties of algebraic surfaces of general type we refer to Barth, Peters and
Van de Yen [2].

We use the following notations freely.
the field of complex numbers.
the ^-dimensional projective space.
the structure sheaf of a non singular algebraic variety.
the rank of a coherent sheaf on an algebraic variety.
the dual of a coherent sheaf.
the determinant line bundle of a coherent sheaf.
an injective homomorphism of coherent sheaves.
a natural isomorphism of coherent sheaves.
the sheaf of sections of a vector bundle E.
the graded bundle associated to a filtration 0 = Eo c= . . . c= E^ = E. Namely,

C:
P":
^
rg(^):
^*:
det(^):
^ c :̂

^F^\
^P(E):
Gr(E.):

k

Gr(E.)=©E,/E,_,.

the dual of a vector bundle E.E*:

AE:
S'E:
EOOE':
P(E):

the r-th exterior power of E.
the r-th symmetric power of E.
the tensor product of two vector bundles E and E\
the projective bundle associated to a vector bundle.
we take from Fulton [5], P (E) = P roj( ® (9 (S" E*)).

In our notation, that

n^O

Y-E
c,(E):
VL:

the restriction of a vector bundle to a subscheme Yc^ X.
the f-th Chern class of E.
the r-th jet bundle of a line bundle L.
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 115

(9 (D): the sheaf of sections of the line bundle associated to a divisor D.
(9 (D + D'): D and D' being two divisors, the sheaf (9 (D)®^ (D7).
D=D': the divisors D and D' are linearly equivalent.
| D |: the complete linear system of effective divisors linearly equivalent to D.

For a smooth algebraic surface S we have the following notations:
Aut(S): the group of automorphisms of S.
I(C): the inertia group of a curve C on S. It is the subgroup of Aut(S)

of elements fixing pointwise C. Namely, I(C)={^eAut(S) s. t. g (p)=p,
V^eC}.

A^(S): the Chow ring of cycles mod. rational equivalence. For 8eA^(S) we have
a natural decomposition 5=80+81+82 according to the dimension. For a
subscheme Y c^ S, we write [Y] for its class in A^ (S) (see Fulton [5]).

D. D': the intersection product of two divisors on S.
Q1: the cotangent bundle of S [and not the cotangent sheaf, which is denoted

by the symbol ^(Q1)].
K: the canonical bundle of S, or a canonical divisor.
f\nK\'' tne ̂ h canonical map /j „ K |: S — -> | ^ K |*.
pg: the geometric genus hP (K).
p^\ the n-ih plurigenus h° (n K).
q: the irregularity h° (Q1).
h19 1: the dimension over C of the vector space H1 (Q1).
7 (<^s): the Euler characteristic of the structure sheaf: ^ (^s) = 1 — q -\-pg.
Ci, c^. the first and second Chern classes of the cotangent bundle.
/^(D): the arithmetic genus of a divisor D on S.
deg(L|c): for a reduced irreducible curve C on S, and a line bundle L on S, the

intersection number L. C.

For a smooth algebraic curve C:
g(C): the geometric genus of C.

For a homology manifold M:
e(M): the topological Euler characteristic of M.

For a finite set Z:
| Z |: the order of Z.

For a finite group G acting on S:
[G: G']: for a subgroup G' of G, the index of G' in G.
Gp: for a point peS, the stabilizer ofp in G. Namely, Gp== [geGs. t. g(p)=p}.
G (p): the orbit of p: G (p)={ g (p\ g e G }
x= 0 (y^: there is a constant c such that x^ cy^. We always use this notation meaning

that we know how to compute the constant c, that is universal independent
of the situation, but we are too lazy to do so.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



116 A. CORTI

2. Definition of Weierstra? points

We give in this section the basic definitions of canonical Weierstrap points, following
Ogawa [15]. He defined Weierstrap points for algebraic varieties of any dimension
relatively to any line bundle L. We simply specialize to surfaces and to the canonical
bundle. Throughout this section S denotes an algebraic surface. We begin with the
fundamental:

DEFINITION 2 .1 .—Let S be an algebraic surface, and ( O i , . . . , o)p a basis for
H°(K). It is then defined a homomorphism of vector bundles ^'.O^ -> ^(J^K), s.t.

^ (e^ ==/ (c0f), where/(co^) is the k-th jet of co^. Let m=mm^pg, ( ) ^ . The k-th

canonical Weierstrap locus W^ (S) is the subscheme of S defined by the vanishing of the
W. Wl Wl

sheaf homomorphism z^: (9^9 -> (9 ( f K).
There is a natural stratification of Wj^ (S):

DEFINITION 2.2. — Let u be an integer, 0 ̂  u ̂  ( ), and m = min {u, pg}. W^ (S)

is the subscheme of S defined by the vanishing of the sheaf homomorphism

^: (9^^(9( J^K).
We say that a Weierstrap scheme is non-trivial if it is different from 0, S, and in this

case its associated class [W^(S)] in A^(S) is [W^(S)]o+[W^(S)]i, where [W^(S)]o is the
class of a zero dimensional cycle and [W^(S)]i is a divisor. Let us study Wo and W^
first. We state a lemma which we shall use a plenty of times in this paper:

LEMMA 2.3. — We have, for all integers k, an exact sequence (called the principal parts
exact sequence):

0-^ S^O^K-^ J^K-^J^-1 K-^ 0.

Proof. — There are many sources. See for instance Ogawa [15].
Q.E.D.

LEMMA 2.4. — Let S be a surface of general type. If p g ' ^ 1 , Wo(S) is the base locus
of the complete canonical system | K |, and the following estimates hold:

deg ([WJo) ̂  K2 + c^, [WJ2 ̂  [WJi. K ̂  K2.

If p g ' ^ 3 , W^ (S) is the locus of points where the first canonical map f\^\ is not a local
immersion, and the following estimates hold:

degaWJo^^K^^, [WJ^4[WJi.K^16K2.

Proof. — The assertions about Wo are clear. Let indeed K = F + M where
F is the fixed divisor, and M is the moving part. Clearly [Wo]i=F and
K2 = K. F + K. M ̂  K. F =-- M. F + F2 ̂  F2. If K has isolated fixed points, they are the
fixed points of the moving part M, and there are M2 of them, counted with
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 117

multiplicity. To bound M2, observe first that C being any irreductible curve, K .C^O
unless C is an exceptional -1 curve (here K.C=-1), and there are at most ^ such
curves. So

K^K.F+K.M^K.M-c^F.M+M^c^M2-^.

We now prove that / j^ i is a local immersion at xeS if and only if v1 is surjective
at x. Let U be a neighborhood of x and 7:U^C^ a local lifting of f^\. The
differential df\ ̂ , is injective at x if and only if dj is injective at x and J (x) ̂  V, where
7(x)+V is the tangent space to7(U) at x. This means exactly that v1 is surjective
at x. Now, remember that we have the principal parts exact sequence (lemma 2.3):

O-^Q^K-^K-^K-^O,
3

which implies that A J1 K=4K.
Now Wi is the zero scheme of a global section a=(ai, . . ., aj of (4K)7", for

some m. If a vanishes on a divisor C, C+E^4K for some effective divisor E. Note
that C contains all the exeptional curves of S. Since 4K is numerically connected,
C.E^O and

16K 2 =4K(C+E)=4K.C+4K.E^4K.C=C 2 +C.E^C 2 .

To bound deg([WJo), we proceed as follows. Let D^ be the divisor of zeros of a,, then
assume D^ = F + D'l, D^ = F + D^, with D[, D; tranverse. Then clearly

deg([WJo)^D / l .D2+degZ(a3|F,. . . ,cT, |F)^D^D2+4K.F+4c2
^D / l .D2+F .D2+4K.F+4c2=4K.D2+4K.F+4c2=16K 2 +4c2 .

Q.E.D.
Let us say something about another extreme situation:

LEMMA 2.5. — The map v^: (9^ -> VQ K is infective.

Proof. - It follows easily from the theory of Wronskians. See litaka [9](1).
Q.E.D.

The aim of the next two sections is to give estimates for the fundamental classes of
Weier strap schemes. - In section 3 we give an upper bound for [W^(S)]i.K, and in
section 4 for deg[W^(S)]o. We wish now to observe that, despite litaka's conjecture
(cf. litaka [9]), surfaces with trivial Weierstra? schemes do exist, and it seems likely that
the generic surface has trivial Weierstra? schemes. In fact we have the following very
elementary:

EXAMPLE 2.7. — A generic quintic surface in P3 has trivial Weier strap schemes.

Proof. — To prove the assertion, it suffices to show that for S generic and smooth the
natural v 4 ' : (9^ -> J2 (K) is everywhere injective. It is easy to show that this means exactly

(1) At a first glance, litaka's definitions look different from ours, but what he actually defines is our W^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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2. Definition of Weierstra? points

We give in this section the basic definitions of canonical Weierstrap points, following
Ogawa [15]. He defined Weierstrap points for algebraic varieties of any dimension
relatively to any line bundle L. We simply specialize to surfaces and to the canonical
bundle. Throughout this section S denotes an algebraic surface. We begin with the
fundamental:

DEFINITION 2 .1 .—Let S be an algebraic surface, and c o ^ , . . . , ©p a basis for
H°(K). It is then defined a homomorphism of vector bundles ^'.(P^o -> ^(J^K), s.t.

^ (ei) ==/ (o)f), where/(cc^) is the k-th jet of co^. Let m=mm^pg, ( j ^ . The k-th

canonical Weierstrap locus W^ (S) is the subscheme of S defined by the vanishing of the
W. ffl ttl

sheaf homomorphism A ^: A (9^ -> (9 (A J^ K).
There is a natural stratification of W^ (S):

DEFINITION 2.2. — Let u be an integer, 0 ̂  u ̂  ( ], and m = min {u, p g } . W^ (S)

is the subscheme of S defined by the vanishing of the sheaf homomorphism
Tfl W. ttl

Az^A^-^AJ'K).
We say that a Weierstrap scheme is non-trivial if it is different from 0, S, and in this

case its associated class [W^(S)] in A^(S) is [W^(S)]o+[W^(S)]i, where [W^(S)]o is the
class of a zero dimensional cycle and [W^(S)]i is a divisor. Let us study Wo and W^
first. We state a lemma which we shall use a plenty of times in this paper:

LEMMA 2.3. — We have, for all integers k, an exact sequence (called the principal parts
exact sequence):

0-^ S'Q^K-. J^K-. J'-1 K-. 0.

Proof. — There are many sources. See for instance Ogawa [15].
Q.E.D.

LEMMA 2.4. — Let S be a surface of general type. If pg^ 1, Wo(S) is the base locus
of the complete canonical system | K |, and the following estimates hold:

deg ([WJo) ̂  K2 + c,, [WJ2 ̂  [WJi. K ̂  K2.

If pg^3, Wi(S) is the locus of points where the first canonical map / j^ i ls not a local
immersion^ and the following estimates hold:

degaWJo^^K^^, [WJ^4[WJi.K^16K2.

Proof. - The assertions about Wo are clear. Let indeed K = F + M where
F is the fixed divisor, and M is the moving part. Clearly [Wo]i=F and
K2 = K. F + K. M ̂  K. F = M. F + F2 ̂  F2. If K has isolated fixed points, they are the
fixed points of the moving part M, and there are M2 of them, counted with
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118 A. CORTI

that VPeS, Tp(S) n S has not a triple point at P. An easy dimension count now shows
that the locus of quintics having Weierstra? points is of codimension one in the P55 of
all quintics.

Q.E.D.

3. Estimates for the dimension one component

Throughout this section, S indicates a minimal surface of general type over the field of
complex numbers, and with a ample canonical sheaf. — We give an upper estimate for

s

the intersection number [Z(a)]i .K, where a is a global section of A FK. We use K-
semistability in the sense of Mumford-Takemoto of the cotangent bundle (theorem 3.2).
An upper estimate for [W^i .K then easily follows (cf. theorem 4.6).

We first recall the following basic definition:

DEFINITION 3.1. — Let S be a projective surface and H an ample divisor on S. Let
^ be a coherent sheaf of ^s-^dules, we define [i ( ̂  ) = c^ ( ̂  ). H/rg (^ ). A torsion-
free coherent sheaf S of (^s-modules is called H-semistable if for all coherent subsheaves
of ^s-modules ^ of ^, we have |Li(^')^|Li(<f). Otherwise we say that ^ is H-unstable.

THEOREM 3.2. — The cotangent bundle Q1 of a surface of general type with ample
canonical sheaf is K-semistable.

Proof. - Yau's theorem (Yau [17]) gives a Hermite-Einstein metric on S. The tangent
bundle endowed with this metric is by definition Kahler-Einstein with respect to the
Kaher class, hence K-semistable by a result ofKobayashi and Liibke (see Kobayashi [11]).

Q.E.D.
We now show how K-semistability can be used in our situation. We remark that jet

bundles are not semistable, since the principal parts exact sequence (lemma 2.3) is
destabilizing, as follows'by| straightforward computations. First of all we state a lemma
which will tie used several times in this papen

I ! ' I ! i ' l
LEMMA 3.3. — An exact sequence of vector bundles:

0 -> E' -. E -^ E" -> 0

determines in a natural way:
r+l

- A filtration E . :0=EoC=. . . cE.+^S'E with Gr(E.)= ® S1-1 E^S'-1-^ E\
i= i

r r + l i - 1 r - i+1

- A filtration E.:0=Eo^. . . cE,+i=A E mrt Gr(.)= ® A E"® A E'.
1=1

Q.E.D.

Proof. — See Hirzebruch [6).
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 119

s

THEOREM 3.4. — Let a be a global section of A V K, and Z (a) its zero scheme.
We then have :

[Z^.K^^K-.

S

Proof. - a defines an injection ^s ^ ^(A FK). By saturating this inclusion we obtain
a devissage:

s

o-^ (Ps -^(ArK)-^-^
1 I I 1

s

0 -> (9 (D)->(P (A J' K)-^-^ 0

where D is an effective divisor, [D]==[Z(<j)]i. It suffices then to show that for any
s

subcoherent sheaf ^ of 0 (A FK) the following inequality holds:

^^^i^K2.
2

Suppose we have a vector bundle E and a filtration O=EQC= . . . cE^E with
^(E^/Ef_i) K-semistable. We claim that for any subcoherent sheaf ^ of ^P(E) the
following inequality holds:

H(jF)^ max H(E,/E,_O.
1 ^ i ̂  m

In fact, taking ^=^'n^(E,), we obtain a filtration 0=^:'oc: • • • ̂ -^^^ with
^i/^i-i ^ ^(Ki/Ki-i)- The claim then follows observing that:

HW= Z ^^^^^(^/^-^^^^^^(^•/^-i)

and using K-semistability of ^P(Ef/E^_i).
We study now jet bundles. The principal parts exact sequence (lemma 2.3) induces

5

a filtration of (9{1\ VK) (lemma 3.3) with quotients isomorphic to:

iQ

A^S^^K^.^AK

where ij are non negative integers s. t. ;o + • • • + ir=s. We recall that by Maruyama [12]
wedge and symmetric powers, and tensor products of semistable bundles are
semistable. By our claim we thus only need to compute (i. We first compute

^
H(A (S^'O1®^). By straightforward computations we have

^(S'O^K^^r+OQ^^K

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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multiplicity. To bound M2, observe first that C being any irreductible curve, K.C^O
unless C is an exceptional -1 curve (here K.C=-1), and there are at most c^ such
curves. So

K^K.F+K.M^K.M-c^F.M+M2--^]^2--^.

We now prove that / j^ i is a local immersion at xeS if and only if v1 is surjective
atx. Let U be a neighborhood of x and 7:U-^C^ a local lifting o f / j ^ i . The
differential df\^\ is injective at x if and only if (ff \s injective at x and 7 00 ̂ V? where
7(^)+V is the tangent space to7(U) at x. This means exactly that v1 is surjective
at x. Now, remember that we have the principal parts exact sequence (lemma 2.3):

0 -> Q^K -. J1 K -^ K -> 0,
3

which implies that A J1 K=4K.
Now Wi is the zero scheme of a global section a=(<7i, . . ., o^) of (410)^ for

some m. If a vanishes on a divisor C, C+E^4K for some effective divisor E. Note
that C contains all the exeptional curves of S. Since 4K is numerically connected,
C.E^Oand

16K 2 =4K(C+E)=4K.C+4K.E^4K.C=C 2 +C.E^C 2 .

To bound deg([WJo). we proceed as follows. Let D, be the divisor of zeros of a,, then
assume D^ = F + D[, D^ = F + D^, with D^, D^ tranverse. Then clearly

deg([WJo)^.D,+degZ(a3|F, . . ., a, ̂ D[.D^4K.¥^4c,

^D / l .D2+F.D2+4K.F+4c2=4K.D2+4K.F+4c2=16K 2 +4c2 .
Q.E.D.

Let us say something about another extreme situation:

LEMMA 2.5. — The map v^: (9^ -> JPg K is infective.

Proof. - It follows easily from the theory of Wronskians. See litaka [9](1).
Q.E.D.

The aim of the next two sections is to give estimates for the fundamental classes of
Weier strap schemes. - In section 3 we give an upper bound for [W^(S)]i.K, and in
section 4 for deg[W^(S)]o. We wish now to observe that, despite litaka's conjecture
(cf. litaka [9]), surfaces with trivial Weierstra? schemes do exist, and it seems likely that
the generic surface has trivial Weierstrap schemes. In fact we have the following very
elementary:

EXAMPLE 2.7. - A generic quintic surface in P3 has trivial Weierstrap schemes.

Proof. - To prove the assertion, it suffices to show that for S generic and smooth the
natural v 4 ' : (9^-> J2 (K) is everywhere injective. It is easy to show that this means exactly

(1) At a first glance, litaka's definitions look different from ours, but what he actually defines is our W\
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120 A. CORTI

p /rg(E)-l\
and, since c^ ( E) = \ c^ (E) we obtain:

\ p-\ )

^ (S-O^K))^^1-01 r! (^(^K^^^t2)^
(r+1)! (;-l)!(r+l-0! 2 2

Finally, since [i(E'W')=[i(E')-}-[i(E"):

ir io s(r+2)H( (S'Q^K)®...® K)^-"——'K2.
2

Q.E.D.

4. Estimate for the dimension zero component

Notations are as in section 3. In particular, S is a surface of general type over C and
s

"with ample canonical sheaf. Let a be a global section of VK, and let Z(a) be
the zero-scheme of a. We assume that a is not identically zero and we put
[Z((j)]=[Z(a)]o+[Z(a)]i in A^(S), where [Z(<j)]o is the Ao-component, and [Z(a)]i the
A^-component. We give in this section an upper bound for deg[Z(a)]o, in term of the
invariants of S and the integers r, s (theorem 4.4). This will lead to an estimate for the
degree of the Ao-component of [W^(S)], which will be stated in theorem 4.6. The idea

s

is to take a filtration O=E()<= . . . cE^ .TK, with E^./E,_i line bundles, and then put
deg([Z(a)]o)^max{E^/E(._i .EyE^._i}. To obtain such a filtration we begin with a

i, J

filtration of01.

LEMMA 4.1 .—There exists a global section TeH^Q^lOK) with zero schemed
smooth of pure dimension zero, giving thus a filtration:

(4.1) 0 -> (9 (- 10 K) -» (9 (Q1) -> (9 (11 K)(x)J^ -^ O

where J^ is the ideal of Z and deg (Z) = 110 K2 + c^

Proof. — Just note that since Opn(2) is generated by global sections, and the
complete linear system |5K| embeds S in projective space, we then have that Q^IOK
is generated by global sections and we may apply Kleiman [10], to obtain a global
section T whose zero scheme Z is smooth of pure dimension zero. T gives an injection
^ c, ^(O^OO^OOK), which tensored by - 10 K gives (9(- 10 K) q: ^(Q1). We have
that the cokernel is isomorphic to ^f®^z? an<^ ^^^(11K) by properties of the
determinant. It is clear that deg (Z) = ̂  (Q1010 K) = 110 K2 + c^.

Q.E.D.

We need the following slight refinement of lemma 3.3.

LEMMA 4 . 2 . — L e t E', E be vector bundles on S. Suppose we are given an exact
sequence:

0 -> (9 (E') -> (9 (E) -> ^ -> 0,

4eSERIE - TOME 24 - 1991 - ?1
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where ^ is a torsion-free, rank one, coherent sheaf. We are then naturally given:
— An exact sequence:

0 -> (9 (E'^S'-1 E) -^ (9 (S' E) -. Q -̂  0

and an inclusion Q ̂  Q**^^**
— ^4/2 exact sequence:

r r

0 -^ ^ (A E') -> (9 (A E) -> Q -^ 0

r-l

a^ ̂  inclusion Q q: Q**^ A E'®^**.

Proof. — For the first assertion we have (Hirzebruch [6]) an exact sequence on
S'=S-sing(^):

i
0 -^ ^ (E' Is/^S'-1 E |s,) -^ ^ (S' E |s,) ̂  r^ |s, -^ 0.

Now, E and E' are locally free sheaves, and by Hartogs theorem ;' extends to an
inclusion ;:

T. (9(E'(S)Sr~lE)^([)(SrE).

The quotient Q is a torsion-free coherent sheaf, and therefore injects in its bidual
Q**. On S', Q** |s,^r^'** |s,. Since we are on a non singular surface, Q** and ^**
are both locally free, and by Hartogs theorem the isomorphism extends to an isomorphism
on all of S.

For the proof of the second assertion, proceed the same way.
Q.E.D.

In the proof of the main theorem 4.4 of this section, we will need to restrict
filtration (4.1) to a curve, so we now prove:

LEMMA 4.3. — Let C be a reduced irreducible curve on S. Filtration (4.1) induces a
filtration:
(4.2) 0-^ - l O K l c + L - ^ l c - ^ l l K l c - L - ^ O

where C is the normalization ofC and L an effective divisor on C s. t.:

deg(L)^ ^ ap(C)
P e Z nC

where Z is as in lemma 4 .1 and Op (C) is the multiplicity of C at P.

Proof. - Let 0(-10 K) [c ^ ^(Q1) |c be the restriction to C of the inclusion
in (4.1). We saturate this inclusion obtaining an exact sequence of vector bundles
on G:

0^ - lOKlc+L-^lc^L^O

with L an effective line bundle on C and L' a line bundle on C. L^K|c—L by
2 2

functoriality of the determinant bundle: since K c=(A Q1) c= A (Q1 c), we have
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122 A. CORTI

K |c ̂  - 10 K |c + L +1/ giving L' ̂  11 K |c - L. The estimate on deg (L) comes from the
following local computation. Remember that S is locally factorial. This implies that
locally in P e Z the inclusion (9 (- 10 K) q: (9 (Q1) is given by:

0 ̂  (9s (U) ̂  ^s (U)2 ̂  (/ g) ̂  (U) ̂  0

where ;(!)=(/, ^); n (e^) = -g,n (e^) =f and /, g e (9^ (U) are coprime. Let Q be a point
of C over P, / a uniformizing parameter at Q. Then ; |c: ̂  (— 10 K |c) c^ (9 (Q1 |c) writes
locally at Q:

o --, ̂  (v) -^ ^c (V)2. ^ (i) = y(Q), ^2 (Q))

where v, (Q)==ordQ(/|c)=(F.RQ)p and v^ (Q) = ordo (g |c) = (G. R^ with F ={/=()},
G=[g==Q] and RQ the place of C corresponding to Q. Since (F.G)p= 1 (recall that Z
is smooth!), we have v (Q) = min { v^ (Q), v^ (Q)} ̂  Op (Rp) (c/. Fulton [5]). To conclude
observe that ^ Op(Rg)=ap(C) and that L corresponds to the divisor ^ v(Q)Q

Q - ^ P Q - ^ Z
on C.

Q.E.D.

We can now prove:
s

THEOREM 4.4. — Let a be a not identically zero global section of A V K. Then:

deg [Z (a)]o = 0 C?3 r3 K2 + s2 r2 K2 c^).

Proof. - We first need to isolate the cycle [Z(a)]o from [Z(a)]i. If D=[Z(a)]i,
s

a factors through T : (9^ -> A J' K (- D), and [Z (o)]o = [Z (r)]. Now lemma 4.1
and 4.2, together with the principal parts exact sequence, give us a filtration

s

(9 (A Y K) (- D) = ̂  (Efe) :̂  . . . => ̂  (Eo) = 0, such that each quotient (9 (E,)/^ (E,_ i) injects
in a sheaf of the form:
(4.3) ^ ( ^ K - l O r i K + l l ^ K - D )

with r^, r^ non negative integers, r^r^^sr. Note that "moving" the filtration (4.1),
we may assume that ^(E.) is non degenerate on [Z(a)]o. Now let k' be the smallest
integer such that re^(E^). Reducing modulo ^(E^_i) we get a non zero section in
H°(5'K— 10 r^ K+ 11 r^K—D), some r^, r^- Let C=^^.Q be the decomposition in
irreducible components of its divisor of zeros. Then clearly:

(4.4) deg ([Z (a)]o) ̂  S n, deg [Z (r c,)].

So now we bound deg[Z(T|^)] and sum up. This can be done with the aid of
lemma 4.3. Coupled with the principal parts exact sequence it gives a filtration

s

0 = Fo c . . . c Ffe = A Y K (- D) |c,, with (9 (F,/F,_ i) a sheaf of the form:

^K|c,+ri(-10K|c;+L)+r2(llK|c,-L)-D)
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with r^, r^ non negative integers, r^-^-r^^sr. Note that lemma 4.3 gives also
a bound on the degree of L. Obviously for any non zero section / of F^,
deg[Z(0]^max{deg(F^/Ff_i)}. We apply this remark to t=^\^ Summing up we
get:

deg[Z(a)]o^K.C+^^(llK.C,+ ^ ^ip(C,))-D.C
i P e Cf n Z

^^( l l r+ l )K .C+^^^ ^ ^ip(Q)
i P e Cf n Z

(note that D+C is a pluricanonical divisor, hence numerically connected, implying
D.C^O). We easily conclude using the following lemma (use also the Bogomolov-
Miyaoka-Yau inequality c2 ̂  3 c^).

Q.E.D.

LEMMA 4.5. —Notations being as in the proof of theorem 4.4, and Z being as in
lemma 4.1, the following bound holds:

Z^ E MC^^rK^+^K2)
i P e Cf n Z

Proof. — We write the sum as:

E". Z i+Z", S (np-D-
P e Cf n Z P e Cf n Z

We bound the first summand as follows:

^n, E l^deg(Z)^^deg(Z)C.K.
P 6 Cf n Z

Recall now that C.K^( l l r+l )K 2 , and lemma 4.1 where deg (Z) is computed. The
second summand is certainly at most:

^ E (^-^^E^^C^S^/l+^C^+C.K^C.K+^^^C?^
PeCf \ 2 / 2

Now ^(C^+Cf.IQ^max^^+C.K}, and since for some effective divisor D,
c'^c

C + D e | m K |, with w^(l lr+l) , everything follows.
Q.E.D.

The following is an easy consequence of theorems 3.4 and 4.4, and of definition 2.2:

THEOREM 4.6. — Let u be an integer, 0 ̂  M ̂  ( ], and m = min [u, p g ] . The fol-

lowing inequalities then hold:
rw"l T^^^2)^[ W J i . K S — — _ — — K ,

deg ([W^o) = 0 (w3 A:3 K2 + w2 k2 K2 c^).
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124 A. CORTI

Proof. — The second estimation needs perhaps some words of explanation. Now
s

[W^]o is the zero cycle of a section (oi, . . ., c^) of (A rK^-D))^ For this section,
the proof of theorem 4.4 works word by word.

Q.E.D.

5. Weierstrap points along a foliation

We describe in this section a situation in which Weierstrap points exist and are easily
computed. In section 6 we show that on any surface of general type it is possible to
find an invariant divisor or an invariant foliation (see the proof of theorem 6.5). The
technique of Weierstrap points along a foliation gives, once we have an invariant
foliation, an invariant divisor. Therefore, the results in this section are of important
use for us.

In this section S indicates a minimal surface of general type over C with geometric genus
pg ̂  1 and ample canonical sheaf. We give the definition of a foliation.

DEFINITION 5.1. — Let S be a surface. A foliation on S is an inclusion of vector
bundles:

Lc^O 1

where L is a line bundle. [In particular the corresponding inclusion (9 (L) ^ (9 (Q1) is
everywhere of constant rank 1].

Let L be a foliation and Q be the quotient bundle Q^L. Note that taking the
determinants we get Q^K-L. Applying lemma 3.3, together with the principal parts

Pg
exact sequence, we get a filtration A J^K=E^ . . . ^Eo=0, such that each quotient
E^/E^_i is isomorphic to a bundle of the form:

^K+^L+^(K-L)

with r^, r^ non negative integers, r^ + r^ ̂ pj. We have a natural map
Pg Pg
A ^^s-^(Aj^K),

which is injective (lemma 2.5), and therefore corresponds to a non zero global
Pg

section a of A J^K. Let k' be the smallest integer s.t. <J£^(E^). Since CT is
non zero, k'>0. Reducing modulo E^_i, a gives a non zero section [a]eH°(E^/E^_i).
Therefore, it is well defined a couple r^, r^ such that a gives a divisor:

WL(K)ePH°(^K+^L+^(K-L)).

DEFINITION 5.2. — We call the divisor W^ (K) of the argument above, the canonical
Weierstrap divisor along L.
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We now show that it never may happen that WL (K) is the zero divisor:

THEOREM 5.3. — WL(K) is not the zero divisor.

Proof. — Suppose by contradiction we have r^, r^ such that:

^K+^L+r,(K-L)=(^+r,)K+(r,-r ,)L=0.

First of all we have r^—r^^O (remember that in our hypothesis pg^ 1). In particular
L2>0. But then c^L^K-I^L.K-L^L.K, which is absurd since by Miya-
oka [14] we always have L.K^c^ for all L s.t. ^(L) <^ Q1.

Q.E.D.
To conclude, we make two rather trivial remarks:

REMARK 5.4. - Let L be an invariant foliation, in the sense that the natural lifted
action of the automorphism group Aut(S) of S on the total space Q1 restricts to an
action on L. Then the divisor WL (K) is an invariant divisor.

REMARK 5.5. - We have WL (K). K ̂ pg K2 +^ max { L . K, (K - L). K }. But since
Q1 is K-semistable (theorem 3.2), L. K ̂  1/2 K2. We therefore have:

WL (K). K ̂  (^ + 1) K2 -p} L. K.

6. Discriminants and discriminantal divisors

As we already pointed out in section 2, surfaces without Weierstrap points do
exist. However, to reach our main goal, which is to prove a polynomial bound in c^
on the order of the automorphism group of a surface of general type, we need non
trivial invariant loci. In this section we introduce discriminantal divisors. Despite
the lack of a clear geometric interpretation, discriminantal divisors exist and are comput-
able. The idea is to generalize the notion of the "parabolic curve", which for a quin-
tic surface S in P3 is the intersection of S with its hessian surface H(S), and is a
divisor linearly equivalent to 12K.

We begin with a preliminar argument, leading to Lemma-Definition 6.1. First of all,
let us fix the notation. In this section S indicates a minimal surface of general type
over the field of complex numbers. We make the additional assumption that the canonical
bundle is ample and base point free. We have, as in Definition 2.1, natural maps
^: (9^9 -> J^ K. The kernel of z^ is a 2-syzygy coherent sheaf, and it is therefore the
sheaf of sections of a vector bundle E^+i (see Kobayashi [I], Chap. V, Cor. 5.11), so
that for all integers k, Q^k^pg, we have an exact sequence of sheaves:

0-^ (E,,+1) ̂  ̂  ̂  (J'K).

The principal parts exact sequence (lemma 2.3) induces then natural inclusions:

O-^-^S^O1®!^)
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126 A. CORTI

where ^\^(Efc)/^(Efe+i). Note that ̂  is a subbundle in S^O^K, for all k, if
and only if ^ is of constant rank for all k, that is to say that S has trivial Weierstra?
schemes. Note also that ^'o^K, since K is base point free. We also remember that
v^ is injective (lemma 2.5). We may therefore state the following:

LEMMA-DEFINITION 6.1. - We have a natural filtration

^=^(Eo)^...=^(E^)=0

and natural inclusions:
^=^(E,)/^(E^) c, ^(SWOK)

We call (9 (E.) the fundamental filtration and J^ the k-th fundamental subsheaf.
The following is well known [remember our conventions about P(E)]:

LEMMA 6 .2 .—Let E be a rank two vector bundle over S, P=P(E) the associated
projective bundle, p:¥->S the natural projection, ^Pp(l) the dual of the tautological
subbundle. An effective divisor A in P corresponds to a non zero global section of a line
bundle of the form (9p(k)(S)p*(L) (L is a line bundle on S) or, equivalently, to an inclusion
of sheaves:

^(/cdet(E)-L)c,^(SfcE).

The next lemma is central in what follows.

LEMMA 6.3. — Let k be an integer, O^k^pg, let ̂  be the k-th fundamental subsheaf,
r^ its rank, suppose moreover that r^^O. There is a natural inclusion:

(6.1) (9 fdet ^\(x) - r fc ( r fe+l ) K\ c, ̂ (S^-^W)

which corresponds to an invariant divisor \ of relative degree r^—^+l) in P(01).
Afc is the zero divisor if and only ^y.^^S^Q1®^.

Proof. — Let us begin with a few remarks. The universal exact sequence:

0-^p(-1)-./?*Q1-. Q-. 0

induces a filtration p* S^ 01 = E^+ ^ => . . . =) E() = 0 with

E^^/E^;Q®^pO'-^)^^p(2;-fc)®/?*0'K)

(cf. Lemma 3.3). E. induces a filtration
'•k

^*AS f c01=F,^...^Fo=0
with

F,^/F,^^p(r,(fc-r,+l))(x)/?*(r,(2^-r,+l)/2)K
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(see again Lemma 3.3). We now claim that /?*det(^\®(-K)), which injects in
^

p* A S^^ injects in F^+i/F^, giving an inclusion:

^(det ^\®-r,K) q. (9 fs^-^^Q1® rfc(rfc" 1) K\
\ 2 ;

This comes trivially from the relativization of the following argument in P".

Let V be a two dimensional vector space over the field of complex numbers, P=P(V).

Let us call V the trivial bundle V x p. We have the universal exact sequence:

0 -> (9^ (- 1) -> V -> ^p (1) -. 0

which gives (lemma 3.3) a filtration:

(6.2) S^V^S^V®^-!)^. . .=D^p(-^)^0.

The projective space P(SfcV) may be canonically identified with the complete linear
system of divisors of degree k on the projective line. For any point xeP, (6.2) gives a
flag P(S f cV)=Ffc(x)=^. . . =>Fo(x) in projective ^-space. This flag can be geometrically
interpreted as follows. F^_ ^ (x) is the linear system of divisors passing through x. More
generally, F^_^ is the linear system of divisors passing ; times through x. In particular,
Fo(x) is just the divisor kx. Note that the locus {kx, xeP} is the rational normal
curve C in P^, From this point of view, F^(x) is the (k - Q-dimensional tangent space
to C at x. Now, let W be a rank r subspace of S^V. PW is a (r— l)-dimensional
linear space in P S^ V and, since C is not contained in any hyperplane, we have that for
xeP generic the (A:—r)-tangent space to C at x does not intersect PW (otherwise,
projecting from PW we get a curve all of whose points are inflectional). This can be
rephrased saying that F^(.x)nPW is of codimension i in PW, for all ;', i^r-1, or,
equivalently, that being W the trivial bundle W x p, (f) (detW) injects in

^((S^/S^V®^-!))®. . .

(S(Sk-r+ly®^(-r^\)/Sk~r\®(Pp(-r)))^([)p(r(k-r+\)).

Note that this implies that W induces canonically a divisor A of degree r(k-r^r\) on
the projective line PV. It is easy to see that A has the following amusing geometric
interpretation. Let us identify the projective line P with C by means of the morphism
which sends x to kx. Let us project C from PW. Then A is just the (classical)
Weierstrap divisor associated to the linear system on C cut by P(W). Note that A=0
if and only if W == S^ V.
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128 A. CORTI

Relativizing the above argument we get immediately our claim and our divisor A^ in
P(Q1). It is trivial that A^ is an invariant divisor, in the sense that the natural lifted
action ofAut(S) on P(Q1) restricts to an action on A^.

Q.E.D.
As a corollary we get:

COROLLARY 6.4. — There is an Aut (^-invariant invertible subsheaf' (9 (L) c> S^^ with
1 ̂  k ̂ p1^ -p^ K2 < L. K < 0, or an invariant divisor D on S, such that D. K = 0 (p^ K2).

Proof. - Of course, L is going to be one of the det ^00((-^(^+ 1)/2)K) of
lemma 6.3. Recall that ̂  = (9 (E^+ i)/W (E^), where ^ (E.) is the fundamental filtration
of (P^ (lemma-definition 6.1), which implies, being c^(^o)=Y^ (K ls c)ase point free),

Pg
that ^ Ci (^)= —K. So at least one of the ̂ 's, say ^^ is negative. On the other

f c = i
hand, by the K-semistability of the cotangent bundle, none of them can be too positive,
and since their sum is given, none of them can be too negative either. It is easy to
show that - Ci (^). K = 0 (p] K2) and in fact for all k:

(6.3) ^(^.K^-^^'^K2.

Now if ̂  is negative and not generically of maximal rank,

L^det^Q-^^^K

will do. If ^^ has generically rank k' -\-1, the inclusion:

/ (v 4- \\ (y -1-9^ \
(9 (det ̂ ,) ̂  (9 (det (S'' Q1 ®K)) = (9[ v A / K

is given by a non zero global section cr of

/(^+ 1)^+2)
K-det^

\ 2 -/

whose zero divisor D is a non zero invariant divisor. Moreover, equation (6.3) implies:

D.K=0(^K2).
Q.E.D.

We are now ready to prove the main theorem is this section:

THEOREM 6.5. — Let S be a surface of general type over the field of complex numbers,
with base point free canonical sheaf. There is on S an invariant divisor D with:

D.K=(9(^K2),
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or an invariant finite set Z of points with:

|Z|=0(c,+^K2).

Proof. — Let L and k be as in Corollary 6.4. For reasons that will be clear in the
sequel, we first of all need to "improve" this L. The inclusion (9 (L) c^ S^O1 corresponds
to a divisor A of relative degreed in P=P(Q1) (lemma 6.2). Let A=^/?^A^ be the
decomposition in irreducible reduced components. It is easy to see that L=^/^L^.
Each individual A^ is not necessarily invariant, but A^^^A^. is. This is a divisor of
relative degree k'=^k^ in P and corresponds to an inclusion ^(L^c^S^Q 1 , with
L^^L^.. I claim that:

(6.4) -2p2gK2<Lf.K<k-K2.

We note that on the right it is very important to have < and not ^ (see Case 1
below).

- By semistability L'.K^^^QK2, but by the same reason also L,. K ̂  (^,/2) K2 so
if Lf.K=(kf/2)K2, that means L,.K=(^/2)K2 for all i ' s . This contradicts L.K<0
(Corollary 6.4).

— The divisor Ao=^(/^— 1)A^ has relative degree ^(/^—1)^<A: and therefore by
K-semistability ̂  (^ — 1) L^. K < (k/2) K2. Therefore, using again Corollary 6.4:

L / .K=L.K-^(^-1)L,.K>-^K2-^K2>-2^K2 .

To produce our invariant locus we now distinguish two cases:

Case 1. — A^d has relative degree k ' ^ 2 in P. The idea is now define an invariant
locus studying the ramification of Ared over S. This can be done using the discrimi-
nant. Let V be a two dimensional vector space over the field of complex numbers.
Viewing the points of S" (V) as homogeneous polynomials of degree n in two variables,
the discriminant D is by definition the homogeneous set of polynomials with no more
than n — 1 distinct roots. Let us explain how elimination theory provides a natural

n

equation for D. Let/?= ^ aiXn~iyieSnV, and take the l(n— 1) x 2(72— 1) square result-
1=0

ant matrix of the partial derivatives p^ and py of p:

/O 0 . . . naQ (n-\)a^ . . . a^_^
[ . : • • . - 0

1 0 naQ . . . ^_i :
v(^-i na^ (n-\)a^ . . . ^_i 0 . . . 0
^^ l a, 2^ . . . na, 0 . . . 0

a^ . . . na^ \
: • ' • . 0
6 . . ' . a^ la^ . . . ' na^
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Clearly peD if and only if p^ and py have a common zero. This set can be describ-
ed at least on the open a^^O by the equation det(R(/?))=^(/?)==0 (elimination theory).
But since D is of degree l(n-\) in P(S"V), D is then globally defined by d(p)=Q.
The natural action of GL(V) on S"V restricts to an action on D. This implies that d
is a degree n—\ semi-invariant under the action of GL(V), or d (g (p))= (det gY"1 d(p)
for all ^eGL(V). We may therefore extend the notion of discriminant to the n-ih
symmetric power S"(E) of a rank two vector bundle. Returning to our
^(I/) c^ ^(S^Q1), we have then a discriminant:

d(L') e H° (k' (k' - 1) K - 2 (k' - 1) L').

The zero set of this section describes exactly the set of points in S where A^ restricted
to the fibre o f / ? i n P is not k' distinct points. But since A^ is a reduced divisor, this
section can not be identically zero, while it cannot be a constant by equation (6.4),
second inequality. So it has a non trivial divisor of zeros D, and D.K=0(^K2), by
equation (6.4).

Case 2. - A^ has relative degree k'=\. It then corresponds to an inclusion
i: (9 (I/) q; (9 (Q1). We have three possibilities:

1. If i is not saturated, we get saturating (and using the K-semistability of the cotangent
sheaf) an invariant divisor D such that:

(6.5) D.K=0(^K2).

2. If ;' is saturated, but not of constant rank, let Q be the quotient sheaf
^(Q1)/^!/). We have Q^K-I/)®^, where J^z is the ideal sheal of a sub-
scheme of pure dimension zero. We have c^L'^K—L^+degZ, therefore
deg Z = c^ +1/ 2 — I/. K. By the index theorem, and the K-semistability of the cotangent
bundle (theorem 3.2) and equation (6.4), we finally have:
(6.6) degZ=a(c2+^K2).

3. Let i be of constant rank. We may now apply theorem 5.3 on Weierstrap points
along a foliation, and remarks 5.4, 5.5. We get that WL'(K) is an invariant divisor
such that:
(6.7) W^(K).K=^K2.

Summing up, and using the proof of case 1, equations (6.5), (6.7), (6.6), and
corollary 6.4, we have the theorem.

Q.E.D.

7. Automorphisms of surfaces of general type

In this section, S indicates a surface of general type over the field of complex
numbers. We reach our main goal, which is a polynomial estimate in c^ for the order
of the automorphism group Aut(S). This group is well known to be finite for varieties
of general type of any dimension (see Matsumura [13]), and it is therefore natural to ask
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for a bound on the order. While proving our main theorem (theorem 7.10) we also
give some sharper bounds is special cases (theorems 7.6, 7.8, 7.9). Some results of
this kind are also given in Horstmann [7]. Of particular interest, in our opinion, are
theorem 7.8 about surfaces whose canonical map is composed with a pencil, and
theorem 7.9 about surfaces whose canonical map is not everywhere a local holomorphic
immersion. Moreover, we have a sharper bound for surfaces having non trivial Wei-
erstrap schemes (theorems 7.11 and 7.12). We essentially follow the method of Howard
and Sommese [8]. The idea is simple. We use the invariant subschemes whose existence
was proved in section 6 to find a subgroup of bounded index in Aut (S), fixing a point
peS. Such a group has a faithful representation in GL (Tp (S)) ̂  GL (2, C). A finite
subgroup of GL(2, C) has an abelian subgroup of index at most 12. Finally, it is easy
to deal with abelian groups. We remark that our result is completely effective, though
we do not compute explicitly the constants. Let us collect some simple facts which we
shall use several times, even without explicit mention:

1. The Hurwitz-Schwarz-Klein theorem, which asserts that for a complex curve C of
genus g > 2, | Aut (C) | ̂  84 (g - 1). We also have the period of any y e Aut (C) is at most
4^+2.

2. The counting principle, also called "Lagrange theorem": let the finite group G act
on the set Z, and let p e Z. We then have | G | = | Gp \ \ G (p) |.

3. The finite subgroups of PGL(2, C) are cyclic, dihedral or they are finite of order
12, 24, or 60 (this last three orders corresponding respectively to the automorphism
groups of the tethraedron, the cube and the dodecahedron). This fact follows easily
from the Hurwitz formula: see Du Val [4]. In particular any such group has a cyclic
subgroup of index ^12. By simple group theoretical considerations we can also argue
(see again Du Val [4]) that a finite subgroup of GL (2, C) has an abelian subgroup of
index ^12.

4. Let G be a finite group acting faithfully on S with a fixed point p, then the tangent
representation of G in GL (Tp (S)) is faithful (it follows immediately from the existence
of an invariant metric).

We begin with some technical lemmas:

LEMMA 7.1. — Let S be a surface of general type andf: S —> P1 a holomorphic connected
fibration. Let F^, . . ., Fy be the singular fibres of f and F a general fibre. Then:

3^r^+4(g(F)-l).

Moreover, let f: S -> E be a connected holomorphic fibration, E an elliptic curve. Then,
r being as above:

\^r^c^.

Proof. — Let us prove the first assertion. Suppose by contradiction/have less than two
singular fibres. Removing the singular fibres we get a smooth morphism /': S' -> C*.
Passing to a finite covering n: C* -> C* we may eliminate the monodromy, so that the
pull back family ///: S" = S' x „ C* -> C* is rigidified. Now the universal covering space
of C* is C itself, and using the Torelli theorem and the fact that the Siegel upper half
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space W is biholomorphic to a bounded domain, we get that /// is of constant moduli,
and being rigidified it is isomorphic to C* x F where F is any fibre. But then S is
uniruled, hence ruled, which is absurd. We thus proved 3^r. Now, remember that
for all holomorphic fibrations /: S -> B we have the formula:

r

(7.1) ^ = e (F) e (B) + ^ (e (F,) - e (F)),
1=1

being F a general fibre. Remember also that <? (F,) > 6? (F), V; (see Barth, Peters Van de
Yen [2]). But in our case e (B) = 2, giving r ̂  ̂  + 4 (g (F) - 1).

Let us prove the second assertion. Just note that in this case e (B) = 0 in equation (7.1)
and that c^>0 on a surface of general type.

Q.E.D.

LEMMA 7.2. — There is a universal effective constant c with the following property.
Let S be any surface of general type with ample and base point free canonical sheaf.
Then one of the following is true:

1. There exists a reduced irreducible curve C such that C is not rational and:

[Aut(S):I(C)]^cj,

or C is rational and there is a subgroup G of Aut (S) acting on C and such that:

[Aut(S):G]^cci,

2. There exists a point peS such that:

[Aut(S):G^ccj.

Proof. — According to theorem 6.5, we have two possibilities:
1. There exists an invariant divisor D on S with:

D.K=O^K2)=0(cm

[remember the Nother inequality /^( 1/2)^+2 and the Bogomolov-Miyaoka-Yau
inequality c^3c^\. Let C^, . . . , € „ be the irreducible components ofD. It is clear
that there is an integer IQ such that C^.K^(1/^)D.K. Now let C be Q , with the
reduced induced structure. Since K is numerically effective, ^D.K=0(c^K2) and
Aut(S) has a subgroup G acting on C with [Aut(S):G]^/?. If C is rational, we are
done. If C is elliptic, let C be the normalization. G has a subgroup G' of index at
most 6, acting on C by translations. G'/I (C) acts faithfully on C, and also acts on the
project! ve space P = P H° (K |c). Since G'/I (C) is abelian, the action on P can be simulta-
neously diagonalized and there exists a fixed divisor on C of degree K. C. We get
| G'/I (C) | ̂  K. C, since a translation with a fixed point acts as the identity. Now,

[Aut (S): I (C)] = [Aut (S): G] [G: G7] [G-: I (C)] = 0 (c\ K2)
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and we are done using the Bogomolov-Miyaoka-Yau inequality. If C has
genus ^2, g(C)= 1 + l^^+C.K), and by the Hurwitz-Schwarz-Klein theorem
[G: I (C)]^ 84(^-1). We get

[Aut(S):I(C)]^84^(^(C)-l)^84^max{C.K,C2}=(9(cj),

by the index theorem, and the Bogomolov-Miyaoka-Yau inequality.
2. There is an invariant finite set of points Z with | Z | = 0 (cj) (use again the Nother

inequality and the Bogomolov-Miyaoka-Yau inequality). Take any peZ.
Q.E.D.

LEMMA 7.3. — There exists a universal constant c with the following property.
Let S be a surface such that one of the Weierstraft schemes Wo (S) or W^ (S) is non trivial.
Then one of the following is true:

1. There exists a reduced irreducible curve C on S such that C is non rational and:

[Aut(S):I(C)]^c2,

or C is rational and there exists a subgroup G o/Aut(S) acting on C and such that:

[Aut(S):G]^cc2.

2. There exists a point p e S such that:

[Aut(S):G^cc,.

Proof. - If [Wo (S)]o or [W\ (S)]o is non trivial, the assertion is obvious by lemma 2.4.
Suppose now that [Wo(S)]i be non trivial. By lemma 2.4, [Wo(S)]i .K^K2. Now

it is clear that there are at most c^ -1 curves on S. On the other hand, on a minimal
surface of general type h19 1^6c^ [reading c^ on the Hodge diamond gives us

h19 l==^-2+4^-2^=C2-45c+2+2^C2-2+2^,

since ^ > 0. Now by the Nother inequality and the Bogomolov-Miyaoka-Yau inequality,
pg ̂  (1/2) c2 + 2 ̂  (3/2) <;2 + 2]. So there are at most 6 ̂  - 1 and - 2 curves. Therefore,
the divisor [Wo(S)]i has at most K2+6c2 irreducible components. Pick one of them,
say C. Now argue exactly as in lemma 7.2, with the difference that now, to bound C2

[and g (C)], we may use lemma 2.4.
If [W\ (S)]i is non trivial, argue the same way.

Q.E.D.

LEMMA 7.4. — Let C be a curve on S. Suppose C is not a - 2 curve. Then:

moi^ooK^+i).
Proof. - Consider the action of I(C) on | 5K|. Since I(C) is cyclic [for all PeC the

tangent representation is fully faithful in GL(2, C) and the determinant gives an injection
of I (C) in C*], the action can be simultaneously diagonalized, with respect to a projective
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frame p^ . . . pp^ in | 5 K |. Let

L={De|5K|^.^,(P)eD,VPeC}.

L is a linear variety of codimension at least 2. Therefore, at least one line l=pip- avoids L.
/ gives an I (C)-invariant rational fibration (pj:S- ->P1. Since (p^(C)=P1, I(C) acts
trivially on the base. Look at the generic fibre and remember that the period of an
automorphism of a curve of genus ̂ 2 is at most 4^+2.

Q.E.D.
We recall the following theorem of Andreotti:

THEOREM 7.5. — Let S be a surface of general type. Then:

|Aut(S)|^(c2+85K2)^-1,

where p^ is the 5-th plurigenus of S.

Proof. - See Andreotti [1].
Q.E.D.

We now give some polynomial bounds in special cases:

THEOREM 7.6. — There is a universal effective constant c with the following property.
For all S and abelian groups G acting on S, we have:

\G\^cci.

Proof. — see Howard and Sommese [8].
Q.E.D.

REMARK 7.7. — Xiao announced to have proved a linear bound in c^ for abelian
groups.

THEOREM 7.8. — There is a universal effective constant c with the following property.
For all surfaces of general type S, whose canonical map /j ̂  | is composed with a pencil,
the following estimate holds:

|Aut(S)|^cc2.

Proof. - If /(^(S))<21, only a finite number of families occurs, and we get a
universal bound using theorem 7.5.

If 5c(^(S))^21, by Beauville [3], the pencil is base point free and 2 ̂ ^5, g being the
genus of a generic fibre. Remember that is any case the fibres are connected, since the
canonical curves are numerically connected, hence connected. Moreover, by Xiao [16],
we have in any case 0 ̂  b ̂  1, b being the genus of the base curve /j ̂  | (S). In any case
it is clear that the fibration /j K | (S) is Aut (S)-equivariant, meaning that Aut (S) acts on
the base compatibility with the action on S. We discuss two cases:

A. b=0. G being the subgroup of transformations fixing the base pointwise,
Aut(S)/G has an abelian subgroup H of index ^12. H has two fixed points on the
base P1, let us call them 0 and oo. We get that. Aut (S) has a subgroup G' fixing two
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fibres (not necessarily pointwise) and of index ^12. But there are at least three singular
fibres (lemma 7.1), so at least one of them, say F, has image different from 0, oo. G'
interchanges the singular fibres, and since there are at most ^+ 16 of them (lemma 7.1
and Beauville [3]), G' has a subgroup G" of index at most c^ 16 fixing F and therefore
the base pointwise (a group acting on P1 with three fixed points, acts trivially). We get
the result applying the Hurwitz-Schwarz-Klein theorem and Beauville [3] to a generic
fibre.

B. b-=\. By lemma 7.1 there is at least one singular fibre, and no more than c^
singular fibres. Aut(S) has then a subgroup G of index ^6c^ fixing the base
pointwise. Once again, apply the Hurwitz-Schwarz-Klein theorem and Beauville [3] to
a generic fibre.

Q.E.D.
The following result improves theorem 4.6 of Howard and Sommese [8]:

THEOREM 7.9. — There is a universal effective constant c with the following property.
Let S be a surface of general type such that the first canonical map /j^| ls not everywhere
a local immersion. Then:

|Aut(S)|^cc|,

Proof. — If pg = 0, only a finite number of families is allowed, so we may apply
theorem 7.5.

If the canonical map is composed with a pencil, we may use theorem 7.8.
Otherwise we are in the hypothesis of lemma 7.3. Notations being as in lemma 7.3,

if C is non rational, just bound I (C) with lemma 7.4. If C is rational, G/I (C) has an
abelian subgroup of index at most 12, which has therefore a fixed point peC. Aut(S)
has therefore a subgroup G' of index 0 (c^), which fixes p. The tangent representation
of G' at p is faithful in GL(2, C). Therefore, G' has an abelian subgroup of index at
most 12. Use now theorem 7.6. Finally if S has a point p with [Aut (S): Gp] = 0 (c^),
Gp has a faithful representation in GL(2, C) and hence it has an abelian subgroup of
index ^ 12. Now bound | Gp \ using theorem 7.6.

Q.E.D.

THEOREM 7.10. — There is a unisersal effective constant c such that for all surfaces of
general type:

|Aut(S)|^cci°.

Proof. — By theorem 7.9 we may assume K ample and base point free. According
to lemma 7.2, we distinguish two cases:

1. Notations being as in lemma 7.2, if C is rational, G/I(C) has a subgroup
of index at most 12 which is abelian, and has therefore a fixed point peC. Aut(S)
has therefore a subgroup G' of index 0(c|), which fixes a point peS. The tangent
representation of G' at p is faithful. Therefore, G' has an abelian subgroup of
index at most 12. Apply theorem 7.6, and get | Aut (S) | = 0 (c]). If C is not rational,
| Aut (S) | = [Aut (S): I (C)] 11 (C) | = 0 (c\°) (use lemma 7.2 and 7.4).
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2. If S has a point p with [Aut (S): Gp] = 0 (cj), Gp has a faithful representation in
GL(2, C) and hence it has an abelian subgroup of index ^12. Now bound | G | using
theorem 7.6.

Q.E.D.

THEOREM 7.11.—These exists a universal effective constant c with the following
property. For all surfaces of general type S having a Weier strap scheme with non trivial
divisorial component^ the following estimate holds:

|Aut(S)|^,

Proof. — By assumption there is a W^ (S) with non trivial [W^ (S)]i. Using lemma 2.5,
we find that there is a non trivial [W^(S)]i for u, k^pg. It is easy now to prove the
theorem following the proof of theorem 7.10, part 1, using theorem 4.6 instead of
theorem 6.5.

Q.E.D.

THEOREM 7.12.—There exists a universal effective constant c with the following
property. For all surfaces of general type having non trivial Weierstraff schemes, the
following estimate holds:

|Aut(S)|^c^.

Proof. - By assumption there is a non trivial W^(S). Using lemma 2.5, we find that
there is a non trivial W^(S) for some u, k^pg. Argue now as in the proof of
theorem 7.10, using theorem 4.6 instead of theorem 6.5.

Q.E.D.
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