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SMOOTH SINGULAR SOLUTIONS OF HYPERPLANE
FIELDS (I)

BY A. S. DE MEDEIROS (*)

0. Introduction

The search of solutions of the total differential equations in general has been, along
the time, a subject of great interest to many mathematicians. As a matter of fact, the
first evidence of such interest reports to the beginning of the 19th century, with the work
of Pfaff, where special attention to the non-integrable 1-forms was given by the first
time (see [3]).

In the more general context of exterior systems, an extensive analysis of the existence
of analytic solutions passing through a regular point of the system, is presented by
E. Cartan in [2]. On the other hand, although Cartan had considered the singular
solutions, /. e. solutions passing through nonregular points, no general result is established
that ensure their existence. In this paper we establish such kind of results for a single
holomorphic total differential equation on C".

We prove (Theorem B) that given such an equation, say o = 0, and a singularity XQ of
CD, ;'. e. CD (xo) = 0, there exists a holomorphic solution of dimension r passing through XQ,
where 2 r is the rank of dw (xo). In fact, Theorem B is a direct consequence of our main
result (Theorem A) that assures the existence of a holomorphic solution of dimension
[n/2] passing through XQ, if dw (xo) has maximal rank. (Under this hypothesis, when n is
even, the number [n/2] is an upper bound for the dimensions of the solutions of co = 0.)

We point out that, when XQ is a regular point, Theorem A is a mere consequence of
the canonical forms established in [6]. Unfortunately, as it is explicitly stated in [4], such
canonical forms, around the singular points, are not anymore available. Thus, considering
that establishing canonical forms is a much deeper result than the one we are interested
on, we were urged to try the direct geometric methods, developed here, to treat the
problem.

The development of the subject is carried out into three paragraphs, according as
described below.

* The author was partially supported by CNPq.
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658 A. S. DE MEDEIROS

In paragraph 1 we settle the basic facts and definitions we make use of throughout
the paper. Some results established in this paragraph, such as Corollary 1.3.2 and all the
references to the real field, are actually not used in the sequel. However, they play an
important role in the analysis of the real case. (Not included here to avoid an extremely
long paper.)

Paragraph 2 consists essentially of the proof of Theorem A, besides some considerations
about a variant of it (Theorem B).

Finally, in paragraph 3, we discuss informally some results we have already established
in the real case.

The definitions are given along the various sections and are printed in a different
character to make them more easily accessible.

1. Preliminaries

1.1. General elementary results

We shall denote by A1 (K") (resp. ^(K")) the set of germs of analytic differential
1-forms (resp. analytic vector fields) on K" vanishing at the origin, where K=R, C.

Given coeA^K") we shall use indistinctly the expressions: a singular solution of the
total differential equation co = 0, a singular integral manifold of co, and a singular solution
of the hyperplane field defined by CD, to mean a germ of differentiable submanifold, at the
origin of K", such that G) pulls back to zero on it.

If co is linear and E is a linear subspace of K", which is itself a singular solution of
co==0, we say that E is an isotropic subspace o/co. This terminology, borrowed from the
multilinear algebra, seems to be, conceptually, very appropriate. In fact, the linear
subspace E is a singular integral manifold of the linear form co if, and only if, it is an
isotropic subspace of the bilinear form w(x).y.

It is easy to see that, if M is a singular integral manifold of coeA^K") then, the
tangent space, To M, to M at 0 is an isotropic subspace of the first jet, Jo (co) of co at 0.
(More generally To M is a singular integral manifold of the first non-zero jet of co at 0.)

We shall denote by b^(x, y) and g^(x) the bilinear form J^(co)(x).^ and the quadratic
form Jo (co) (x). x respectively.

Thus, To M beeing an isotropic subspace of b^ (and consequently of gj is a necessary
condition for M to be a singular solution of co = 0.

A germ of differentiable manifold satisfying this condition is said to be isotropic (at 0,
with respect to co).

Remark I . I . I . - It follows immediatly from the above conclusions that:
(i) For K=R, the set of forms in A^R") having no singular solution has nonempty

n

interior. As a matter of fact, C0o = ̂  ̂  dx^ is an interior point of this set, for g^ turns out
i
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to be definite positive for all co sufficiently close to coo- Hence, no isotropic manifold can
exist. In the complex case it follows from Theorem A and Proposition 2.2.1, that this
set is nonempty and has empty interior. These facts illustrate the great difference between
the real and complex cases.

(ii) From the generic point of view the maximal expected dimension of a singular
integral manifold on K" is [n/2]. In fact, gy, is generically nondegenerated and, it is well
known that, in this case, [n/2] is an upper bound for the index of Witt of ^, which is,
by definition, the maximal dimension of the isotropic subspaces of gy^.

1.2. Generic necessary conditions in even dimension

Considering (ii) above, it is natural to ask whether singular integral manifolds of
dimension [n/2] do generically exist or not. In order to answer this question, we shall
now restrict ourselves to the open and dense subset A1 (K") of A1 (K"), consisting of
those forms whose exterior differentials at 0 have maximal rank, i.e. coeA^K") if, and
only if, r (^co (0)) = n or n — 1 accordingly to n is even or odd respectively.

Our purpose is to establish some fundamental results about the forms in this set.

Henceforth, in this section, n is supposed to be even. Some properties inherent to the
1-forms on even dimensional spaces allow us to better analyse them. Furthermore, as
far as our purpose is concerned, the results we establish in these particular dimensions
give enough information about all dimensions in general.

Let coeA^K"), with n=2m. Since ^co(O) has maximal rank, there exists a unique
Xe^(K") such that (O=;'(X)AO (the interior product of X and ^co). We shall write
X = X (co) if an explict reference to the form co turns out to be relevant.

We notice that co is invariant by the Lie derivative with respect to X, i.e. Lx co = co or,
equivalently, X* CD = e1 co.

PROPOSITION 1.2.1. — An m-dimensional singular integral manifold o/coeA1 (K2^ is an
isotropic ̂ .-invariant manifold.

Proof. — We conclude easily that:
(i) The equation X* co = e1 CD implies that the iterated X^ (N) of any integral manifold

N of co, not necessarily singular, is again an integral manifold.

(ii) Since the rank of d^ (0) is maximal, any integral manifold of co, in a neighborhood
of 0, is at most w-dimensional.

Now, let M satisfy the hypothesis of the proposition. If X is not tangent to M we use
the flow of X, and (i) above, to construct an integral manifold of dimension m +1 in a
neighborhood of a nontangency point, which is a contradiction in virtue of (ii).

The fact that M is isotropic was previously established in section 1.1. •
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660 A. S. DE MEDEIROS

1.3. Some sufficient conditions and a linearization result

In order to establish the main result of this section (Proposition 1.3.2) we make use
of an important relation connecting the eigenvalues of the L^ operators with those of A.

More precisely, let n be arbitrary (even or odd) and let A be a linear vector field on
K". Denote by Af (K") the set of homogeneous differential /?-forms of degree k on K".
For each p and k fixed, L^: A{^ (K") p is clearly a linear operator. We claim that

PROPOSITION 1.3.1. — If Spect(A)={Xi, . . . ,^} then, Spect(L^) is the set of all
complex numbers [i of the form

n p

a= ̂  w^+ ̂  ̂ .
1=1 j ^ i

n

where m^ ij e N, ^ m^=k and 1 ̂  ;\ < . . . < ip ^ n.

Proof. — Routine. •

Remark 1.3.1. — In the case we are interested on, p=l, and [i is given by the
following simpler formula

n n

U= ^ m^, w,eN, ^m,=k+\.
1=1 i= i

We shall now derive some useful results that are direct consequences of the above
proposition.

COROLLARY 1.3.1. — Let 0) be a linear differential 1-form on K" such that L^o)=co/or
some linear vector field A on K". Let E be an ^.-invariant linear subspace of K" such that
^+v 7^ 1 for all ^, veSpect(A E). Then, E is an isotropic subspace ofw.

Proof. — If the restriction o | E is not identically zero, the equality LACO=(O says that
1 e Spect (L^ i g) (considered as an operator on A^ (E)). By Proposition 1.3.1, we must
have 1=^1+^2 ^or some ^i, 'k^eSpect(A \ E), contradicting the hypothesis of the
corollary. •

We shall say that Xe^K") is riot u-ressonant (at 0) if there exists no relation of the
type

n n

^ m^ = 1 with m^ e N and ^ m^ > 2
i= i i = i

among the eigenvalues ^ of J^(X). If such a relation exists we say that X has a
n

y j i X"'u-ressonance of order 1= ̂  m^.
1=1
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The expression M-ressonance was chosen to emphasize the similarity between the
relations defining the usual concept of ressonance and the unitary linear combinations
that appear in Proposition 1.3.2.

COROLLARY 1.3.2. - Let (oeA^K71) and Xe^(K") be such that Lx0)=o. Suppose
that X is locally analytically linearizable in a neighborhood of 0. Then, if X is not
u-ressonant, the diffeomorphism linearizing X so does linearize co.

Proof. - Let A=J^(X) and let/eDif^K", 0) be such that/*X=A.
The equation LA/*CO==/*CO, and the linearity of A, imply the LA-invariance of the

^-homogeneous parts (/*G))fc of/*o) at 0 i.e. L^(/*o))fe=(/* 0))^ for all positive integer
k. Since X is not M-ressonant we must have (/* (0)^=0 for k > 1. Hence, /*© is linear
as promissed. •

We finish this paragraph with

PROPOSITION 1.3.2. - Let oeA^K") andXe^^K") be such that Lx0)=co. IfX is not
u-ressonant, every X-invariant isotropic manifold M ofo is a singular solution o/co===0.

Proof. - Let G)==O) | M, X==X | M and A=J^(X | M). Suppose that © ^ 0, and let
Jo (co) be the first non-zero jet of © at 0.

We claim that LA(J^((D))=JS((O). In fact, 1^(^(0))) is, clearly, the ^-jet of Lxco at 0,
which is, in virtue of Lx®=©, equal to J^(©).

On the other hand, since M isotropic means J^(co)=0, we must have k> 1. These
facts contradict the hypothesis that X is not M-ressonant. Thus, G)=O and M is a singular
solution of co = 0. •

2. The existence theorem in the complex field

2.1. Some technical preparation

Let A1 (K2 m) be as defined in section 1.2, and let coeA1 (K2 w).
By Darboux's theorem, Ao is locally analytically equivalent to the canonical symplectic

form, 9o=^^ A dyi, of K2^!^®!^. In virtue of this, we shall suppose from now
i

on that, dw=Qo.
Let /(I) Go denote the interior product of the radial vector field I(x)=x on K2"1 with

the symplectic form 9o. Since ^i(I)9o=29o, there exists a unique analytic function H,

vanishing at 0, such that co=6?H+ -;(I)9o. Hence, the vector field X=X(co) may be

written in the form X=XH+ -I. Where XH is the Hamiltonian vector field induced by

the function H in the symplectic space (K2 m, Go).
We define the spectrum ofco, denoted by Spect(co), to be the set Spect(J^(X (©))).
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The above decomposition of X leads to the relation

Spect (o^^ Spect (J;(Xn))

and, since XH is a Hamiltonian vector field, Spect(o)) turns out to be symmetric with
respect to 1/2 in the complex plane.

2.2. The main result

The theorem of Poincare-Dulac and the well known result on Dynamical Systems,
stated below as Theorem ^, are the fundamental tools we make use of in the proof of
Theorem A. Besides, of course, the results we have established in the foregoing sections.

For reference purpose, we remark that Theorem ^ follows from [5], and is, as well,
discussed in [7].

If A is a linear vector field on K" and if a <= Spect (A), we shall denote by E (a) the
A-invariant subspace obtained by taking the direct sum of all root spaces associated
with the eigenvalues of A that lie in a.

THEOREM ^. - Let X be a (J-vector field on K", vanishing at 0 (re^ U {^}U {co}).
Given aeR+, let a^={^e Spect (J^(X)) | RgX, ^ a]. Then, there exists a unique C7
X-invariant submanifold M (called the strong unstable manifold correspondent to a) such
that ToM is the invariant subspace E(a^) ofJ^(X).

Remark 2.2.1. - In the complex case, the real axis, in Theorem ^, may be chosen to
be any straight line through the origin. In fact, for any 9eR, X=eiQX and X, have
both the same invariant submanifolds, while Spect (Jo (X)) is a rotation of Spect (Jo (X))
by the angle 9.

THEOREM A. - Let coeA1 (C") be such that ^©(0) has maximal rank. Then, there exists
a holomorphic singular solution o/co=0 of dimension [nil}.

Proof. - (i) n even. Let X=X(co) and a = ̂  e Spect (co) | R^ ^ - ^. By Theorem ^

there exists an X-invariant submanifold N such that To N is the invariant subspace E (a)
ofJo(X).

We set ©= co | N and X=X | N, so we have (D=f(X)Ao. Once Spect (J^(X))=a, we
are in the domain of Poincare and then, by Poincare-Dulac's theorem, X is locally
biholomorphically equivalent to a polynomial vector field.

Since there can exist no ressonance relation of the form

?i=Ew,^ with R^==-, £w^2, m^eN
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the resulting polynomial vector field turns out to have the following particular normal
form

^O)
where Q is polynomial, the linear part J^(X) is in its Jordan canonical form and the
coordinates refer to the decomposition

ToN^aieE^-c/) with cr^^ea | R^=^}.

We shall write, for short, E=E(c/) and F=E(a—a / ) .
It follows from this particular normal form that, for each invariant subspace G c E

of Jo (X) there corresponds an X-invariant submanifold M such that To M = G © F. In
fact, G © F is itself an invariant subspace for the polynomial normal form. Furthermore,
X | M is not M-ressonant for this is already true for X | N.

In view of this, our purpose is attained if we exhibit an invariant subspace G c= E
such that G @ F has the required dimension [n/2] and fulfils the remaining hypothesis of
Proposition 1.3.2. For, according to this proposition and our previous conclusions, the
manifold M, referred above, such that T() M == G @ F, will be the sought singular solution.

In order to get the subspace G we consider linear Hamiltonian vector fields A^, having
no zero eigenvalues, obtained by solely modifying A = Jo (X^ (co)) in its invariant subspace
E ({0}). The viability of making such pertubations follows, at once, from the canonical
forms, the quadratic Hamiltonian can be reduced to (see [1] and [8]).

Now, let

<7fc=^e(Spect((Dfe)-Spect((D)) | R^ >- ^U^ea ' | I m X > 0 }

and G^=E(c^), where co^=i(Afc)9o+-< (I) 9o. We notice that co^-»J^(o)) and that, pass-

ing to a subsequence if necessary, Gj, converges to a subspace G which is necessarily
contained in E.

By Corollary 1.3.1, G^©F is an invariant isotropic subspace of co^ and, since it has
dimension [n/2], it follows, by an obvious taking limits argument, that G has the desired
properties.

(ii) n odd. Since rfco(O) has maximal rank, there exists an (n— l)-dimensional subspace
V of C" such that <Ao(0) | V still has maximal rank. Hence, part (i) just proved,
applies to co = co | V, and since every integral of co is yet an integral of co, the proof is
completed. •

REMARK 2.2.2. — Theorem A assures the generic existence of singular solutions
having the uniform maximal dimension [n/2]. In fact, let (^=Al(Cn) if n is even, and
^= {coeA1 (C1) g^ is nondegenerated} if n is odd.
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664 A. S. DE MEDEIROS

Then, by Theorem A, the forms lying in the open and dense subset ^ of A1 (C") justify
the above statement.

An immediate consequence of Theorem A is the following generalized version of it

THEOREM B. — Let coeA^C"). If r (fifoo (0)) = 2 r there exists an r-dimensional holo-
morphic singular solution of co = 0.

In order to complete this paragraph we give, in Proposition 2.2.1, examples that
suggest that, as far as the rank of dw (0) is concerned, Theorem B is as sharp as possible.

PROPOSITION 2,2.1. — For every integer n^2 there exists coeA1 (C") with r(^co(0))=0
(resp. r (rfco (0)) = 2), possessing no \-dimensional (resp. 2-dimensional) holomorphic singular
integral manifold.

Proof. - In the case r (Ao (0)) = 0 we simply define CD = dg, where g : C" -> C is any
holomorphic function, vanishing at 0, such that g"1 (0) contains no regular curve through
the origin.

Examples of such functions are given by
n

(i) g(x^ . . ., x^^a.x^ ^eC* and the ^eN satisfy
i

{^) k ^ < . . . <k^ and 2k^> k^.

n

(ii) h(x^ . . ., ^)==x^+^^xf1; ^eC* and the;?, are odd numbers satisfying (^).
2

Now suppose r(Ao(0))=2. The cases n=2, 3 are immediate, for they correspond to
the maximal rank situation.

Given n ̂  4 we consider e^C'eC2 (s=n-2^2) and define, g - . C ' - ^ C and
a e A1 (C2) by:

5 x^1

g(x,, . . ., x,)=^ ——— k, satisfying (^)
i k^\

a = u dv - v du, where u, v denote the coordinates in C2.

We claim that co = dg © a fulfils the requirements of the proposition.
In fact, suppose that S is a 2-dimensional singular solution of co=0. If/==/s©/2 is a

parametrization of S we must have f^ (0) = 0, otherwise u = 0 or v = 0 would define a
1-dimensional singular solution of dg=0, which is impossible. In particular, we may
suppose that the parameters in / are a couple Xp Xj of the x^s and that i < j is the
smallest pair of indices such that (x^ Xj) parametrizes S. These assumptions imply that
the (A:.-l)-jet of f^dg depends only on x, and dx^. Using this fact, and computing
successively the jets of/2*oc, taking on account the equality ff a = -f^dg, we arrive in
a contradiction: the ^-jet off^ at 0, must vanish for x,.=0. Clearly, this finishes the
proof. •
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Remark 2.2.3. - For n=4, 5 the above proof would be much more simplified if,
instead of a general g, we had taken g (x) = x\ + xj for ^ = 4, and g (x) == x^ + xj + xj, like
in (ii) above, if n= 5. As a matter of fact, a direct computation of the first non-zero jets
°! /s* dg and /2* a shows that their degrees do not fit. The latter is of degree greater
than two, while the former is not.

As a consequence of Proposition 2.2.1 we obtain the following dual result.

COROLLARY 2.2.1. - For every n = 2 (r + 1) or 2 (r + 1) + 1 (r ^ 0) there exists co e A1 (C")
with r (Ao (0)) = 2 r possessing no (r + ̂ -dimensional holomorphic singular integral manifold.

Proof. - By entirely analogous arguments to those used in the proof of Proposition
2.2.1, and induction on r, we show that

r

co==^g© E (Uid-Ui-VidUi)

has the desired properties. Where g is either one of the functions defined in Remark 2.2.3,
accordingly t 0 7 2 = 2 ( r + l ) o r ^ = 2 ( r + l ) + l respectively. •

3. Some remarks on the real case

As it was pointed out in Remark I.I .I , there is a great difference between this case
and the complex one. The generic existence of singular solutions having a uniform
maximal dimension fails to be true. Also, the singular solutions of maximal dimension
are in general not invariant by the vector field X(co).

We remark, however, that Theorem A is still valid ifJ^ (XH (©)) has no purely imaginary
eigenvalues.

The adequate generic approach to the real case seems to be the following:
To exhibit a generic set ^ c= A1 (R"), and to describe precisely what are the maximal

dimensions of the singular integral manifolds of any co in ^.
We comment briefly some partial results we have established in this direction, for even

dimensions.
There is a residual subsset ^cA^R2^ such that, for any coe^, there exists an

analytic singular integral manifold of dimension w-v-hr. Where 2v is the number of
blocks of odd order, corresponding to purely imaginary eigenvalues, in the Jordan
canonical form of J^ (XH (co)), and r ^ v is related to the following.

PROPOSITION. - Denote by (x^, . . ., x^ y^ . . ., y^) the coordinates in R2'' and let
QCi ^ . . . ^ o^ be real numbers. Then, the linear differential \-form

1
®= E a,(^rfx,+j^)+_i(I)9o

i=l 2

has an r-dimensional isotropic subspace if, and only if, the following inequalities hold

^-k+i-^^v-r+k ^ ° and (Xfe+a^+ i^O
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666 A. S. DE MEDEIROS

for all f e= l , . . ., r.
Finally, we remark that all the results announced here generalize, straightforwardly to

C00 1-forms, and even to C1 1-forms, if / is sufficiently large and if some loss of
differentiability in the results is allowed.
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