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FILTRATIONS OF G-MODULES

BY OLIVIER MATHIEU

Introduction

Let k be an algebraically closed field, let G be a connected semi-simple algebraic
group, let B be a Borel subgroup of G, and let X(B)(X+ (B)) be the set of characters
(respectively dominant characters) of B. For each ^eX(B) let J^(X,) be the associated
G-equivariant invertible sheaf on G/B. For any ^ e X4" (B), set F (k) = F (G/B, ^ (- ̂ )).
Recall that F (k) can also be defined as the induced module Ind^ -'k. A filtration of a
G-module M is called good if and only if its subquotients are isomorphic to some F (X)
(see section 1 for forme details, and see subsection 1.14 for more references).

When the characteristic of k is zero, every G-module is semi-simple (WeyPs complete
reducibility Theorem) and the modules F (X) are exactly the simple modules (Borel-Weil
Theorem). Hence M is a direct sum of modules F(^) [with ^eX^" (B)]. For a field k of
characteristic p ^- 0 as we will consider from now on, these results are no longer true. A
substitute for the complete reducibility Theorem is the notion of good filtration, as
shown by the following theorem:

THEOREM. — {Donkin) Suppose that G does not contain any components of type £7, Eg
or that p 7^ 2.

1) For every ^, ^eX'^ (B), the G-module ¥ ( k ) (x) F(^i) has a good filtration.
2) For every semi-simple subgroup G' of G corresponding to a Dynkin subdiagram, and

for every ^eX'^ (B), the G'-module ¥ ( k ) has a good filtration.
The theorem is due to S. Donkin [Dl], but part 1 was previously shown by Wang

Jian-Pian for p large [W] (i. e. for p > C, where the constant C depends on the Dynkin
diagram of G only). It is clear that it suffices to consider the case of a quasi-simple
group G. The proof of Donkin's Theorem is based on the classification of quasi-simple
algebraic groups and on a case by case analysis. His proof requires long and difficult
calculations: e. g. it takes about 45 pages for F4 only (moreover he used deep results such
as Andersen's strong linkage Principle [A3]). S. Donkin also states that the restrictive
hypotheses involving E^ and Eg are likely to be unnecessary. So it is natural to look
for a new approach to the problem, in order to:

a) do without the restrictive hypotheses on E7, Eg;
b) get a general method and avoid a case-by-case analysis;
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626 0. MATHIEU

c) give general results, not only for F (T) (x) F (|LI) but also for "natural" subquotients
of multiple tensor products.

Such an approach is provided in this paper. We would like to state first our result
in its simplest and less technical form:

THEOREM 1. — 1) For every ^i^eX^B), the G-module F(^)®F(a) has a good
filtration.

2) For every semi-simple subgroup G' corresponding to a Dynkin subdiagram, and for
every ^eX^" (B), the G'-module F(X,) has a good filtration.

The result, whose proof does not involve a case-by-case analysis is an answer to points
(a) and (b) of the previous discussion. Moreover Theorem 1 is a particular case of a
more general statement (theorem 2 below). Before stating the general result, we need
to introduce a few definitions.

Let M be a G-module. A stratification of M is a family ^ of G-submodules of M,
with Me^. The elements of ^ are called the strata of ^. A good filtration of M is
called compatible with the stratification ^ if its trace over each Ne^ is good.

Let n be an integer, let ?i=(^i, . . ., ^)eX(B)" and let ^=^(k^ . . ., ^) be the
associated invertible sheaf on (G/B)" associated with ^. Let H be a Cartan subgroup of
B and let W be the Weyl group No(H)/H. For every w=(w^, . . . .n^eW", set
S^BH^BX®. . . X^H^B/B. The varieties S^, called generalized Schubert varieties,
are subvarieties of (G/B)". We call generalized Schubert scheme any union of generalized
Schubert varieties. We will still denote by ^ be the restriction of ^ to any generalized
Schubert scheme.

Let G' be a semi-simple subgroup corresponding to a Dynkin subdiagram, let Q = G'. B
be the corresponding parabolic subgroup, and let S be a Q-invariant generalized Schubert
scheme. Note that ^ is a Q-equivariant invertible line bundle on S. Set M = F (S, ^f).
The G'-module M has two natural stratifications.

1) The Geometrical Stratification: Let S', S" be two Q-invariant generalized Schubert
scheme (we assume that S" can also be the empty set). Suppose that S' =2 S" and S' =? S.
We have the restriction morphisms a'. Y (S', ^f) -> F (S", ^f) and b: F (S', ^) -> F (S, ^f).
The geometrical stratification of M is the set of submodules ^(Kera).

2) The Arithmetical Stratification: The scheme S and the invertible sheaf ^ are actually
defined over 1L. Hence there exists a stratification, called the arithmetical stratification
0 ^ M (0) ^ M, where M (0) is the group of sections which come from J, (some refinements
are also possible).

In this paper, we will be interested only in the geometrical stratification: but it could
also be interesting to work with the arithmetical stratification in order to extend the
results over Z. Also, it is interesting to work with parabolic analogs of generalized
Schubert schemes and related schemes: in this paper we will state our results for a larger
class of schemes, called the class of ^-schemes. In the introduction, we will restrict
ourself to generalized Schubert schemes. Our main result is:

THEOREM 2. — The G'-module F (S, oSf) has a good filtration compatible with the
geometrical stratification.
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FILTRATIONS OF G-MODULES 627

We would like to illustrate Theorem 2 with two examples:

Example 1. — Set S=(G/B)2 and let X, |i be two dominant characters of B. Set
M = F (X) ® F (a) and set ^ = ̂  (- X, - n). By theorem 2 the G-module M has a good
filtration (hence Theorem 2 generalizes Theorem 1). For every G-invariant generalized
Schubert scheme 2: of S, let K(£) be the kernel of F(S, J^)-^r(£, J^). Hence by
Theorem 2, for £ ^= 27 (27 being the empty set or a generalized Schubert scheme), the
quotients K (£)/K (2V) have a good filtration (note that for p large, the result was already
proved by P. Polo [PI]). But the length of a good filtration of K(2:)/K(2V) can be
arbitrary large (when X,, p- are large), so the strata K(£) give very little information
about the good filtrations of M. Fortunately it is possible to get more geometrical
strata because it is possible to embed S in (G/B)n+2 in many ways: indeed for each
w e W"+ 2 in which 1 occurs n times and in which the maximal element CD of W occurs
2 times, the generalized Schubert variety S^ is canonically isomorphic to S. Then, for
G= SL(w), it is easy to prove that some towers of the geometrical stratification are good
filtrations.

Example 2. — Set S==(G/B)3 and let X, a, v be three dominant characters of B. Set
M=F(?i)®F(u)®F(v) and set J^=J^(-X, -|LI, -v). Let 2:7, 2:" ̂  G/B be ordinary
Schubert varieties. Set: 2: = G x B (2:' x 2:"). The variety 2:, which is called double Schu-
bert variety, is naturally embedded in S. A double Schubert scheme is an union of
double Schubert varieties (we define similarly triple Schubert schemes [M2]). For every
double Schubert scheme 2; in S, let K(£) be the kernel of F(S, J^f) -> F(2:, ^). Hence
by theorem 2, the modules K (£) have good filtrations (for p large and for a special
double Schubert scheme 2^ (see 1.8 for the definition), the result was already proved by
a general method: see [M3], theorem 1). There was another approach to theorem 1,
based on conjectures involving B-modules (see A. Joseph [J], [M2, 3], P. Polo [PI, 2, 3],
W. van der Kallen [vdKl]). For example the following conjecture would imply (by
Kempfs theorem [K]) point 1 of theorem 1:

Conjecture (Polo's Conjecture (C2) [PI]): Let \ be an antidominant character ofB, and
let M. be a strong B-module (following the terminology of [M2]). Then the ^-module
M 00 X is strong.

The triple tensor products considered in the example are of special interest because we
proved that the existence of good filtrations on K (£) for special double Schubert schemes
£ implies the Joseph, Polo and van der Kallen conjectures on filtrations of B-modules
(see section 5 and [M2]). Note that we used implicitly that double Schubert schemes
are generalized Schubert schems in S (lemma 5.2). Triple Schubert schemes are no
longer generalized Schubert schemes: this can explain why tensor products of strong
modules are not necessarly strong, as pointed out by W. van der Kallen [vdK2].

Organization of the Proof. — The proof of Theorem 2 requires the notion of Frobenius
splittings (an notion due to V.B. Mehta, S. Ramanan and A. Ramanathan: see [MR1],
[RR], [Rl,2]). By the Mehta, Ramanan and Ramanathan theory, the varieties (G/B)"
have many Frobenius splittings. However, we select a special one which we call the
canonical Frobenius splitting of (G/B)". The new and main result here is the compatibil-
ity of the canonical Frobenius splitting and the good filtrations: the result is indeed

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



628 0. MATHIEU

surprising because the canonical Frobenius splitting is not G-invariant but it is only H-
invariant.

We now briefly describe the organization of the paper. Section 1 is devoted to the
usual background (the Subsection" 1.14 is a short survey on good filtrations). The two
main notions are the canonical Frobenius splitting (Section 2) and the canonical filtrations
(Section 3). The proof of the main result (Theorem 3 in Section 4) is based on three
key lemmas. The first one (Lemma 2.4) states commutation relations satisfied by the
canonical Frobenius splitting. Lemma 3.3 gives a criterion for the existence of good
filtrations for commutative reduced algebras: it uses a simple result on finite
homeomorphisms. The commutation relations imply that the canonical Frobenius split-
ting is compatible with some canonical filtrations (it is the third key Lemma 4.3). As
proved previously in [M2], the main result implies some statements for filtrations of B-
modules. These consequences are stated in Section 5.

The results of the paper were announced in [M4]. We would like to thank S. Donkin,
M. Duflo, J. Humphreys and D. N. Verma for their encouragements and some helpful
discussions.

Remark added at revision time. — Let h be the highest coroot. Say that a dominant
weight n satisfies (*) if and only if n is a sum of fundamental weight co such that
( o) | h ) ^ 3. Note that for a group G of classical type or of type E^, G^ every dominant
weight satisfies (*).

1) In a recent talk Peter Littelmann indicated that he had proved that the modules
K(S) of our example 1 have a good filtration whenever X satisfies (*).

2) In a recent preprint (with the same title as [P3]) P. Polo shows that for any strong
module M and for any dominant weight ^ satisfying (*) the module M (g) — ^ is strong:
the result is a little bit better than it was announced in [P3], and contains many cases of
corollary 1 (moreover P. Polo proved similar statement for classes ̂ , J'f and Jf).

3) In the same preprint, P. Polo announces a different proof of our theorem 1 (point 1)
for E7 over a field characteristic 2.

4) In a recent preprint (Good bases for G-modules) we use our corollary 1 in order
to prove a statement conjectured by I. Gelfand, A. Zeievinsky and K. Baclawski.

5) We would like to thank W. van der Kallen for some nice comments of the preprint,
and P. Littelmann and A. Zeievinsky for recent discussions.

1. Generalities, notations, conventions

This section is devoted to the main definitions and notations. For the general
background on algebraic groups used in the paper, we would like to refer especially
to [J2], [H2].

1.1. Let k be an algebraically closed field of caracteristic p + 0.

1.2. We will assume that all the schemes are separated, reduced and of finite type
over k. We will use the term variety only for those which are irreducible. For a
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FILTRATIONS OF G-MODULES 629

smooth variety X, we will denote by ©x the sheaf of top differential forms on X. For a
codimension 1 subscheme Y, we will denote by cox (Y) the sheaf of top differential forms
with at most simple poles along Y.

1.3. Let K be an arbitrary algebraic group. We will denote by X(K) its character
group. Let ^(K) be the ring of left invariant differential operators on K and let ^(K)
be the category of algebraic K-modules. A K-scheme (respectively a K-algebra) is a
scheme X (respectively an algebra R) endowed with an action of the algebraic group K.

1.4. Let G be a connected simply connected semisimple algebraic group, let B be a
Borel subgroup of G, let U be the unipotent radical of B, let H be a Cartan subgroup
of B, let W be the Weyl group: Nc(H)/H, and let I be the Dynkin diagram of G. Note
that we have an isomorphism X (H) ^ X (B). We will call weights the elements of X (H).
Let X'^ (H) be the set of dominant weights. For any H-module M and any XeX(H),
let M^ be the set of vectors in M of weight ^. With each vertex ;el, one associates a
simple root a^eX(H). For any se^, iel, the vector space ^(U),^ is one
dimensional. Let e^ be a nonzero vector of ^(U),^. It is possible to choose the
elements ef such that e(Q)=\, and 8^= ^ e^.e^ '[where 8 is the comultiplication

s' +s"s

of^(U)].

LEMMA 1.1. — The elements e^ (z'el, se N) generate the algebra ^(U). Hence a vector
subspace N o / a V-module M is a \J-submodule if an only if N is stable by the
elements e^.

Proof. - The algebra ̂  (U) is the reduction modulo p of the Kostant-Chevalley form
{see [B] [Ko]). The lemma follows [B] (Lemma 5, ch. VIII, § 12).

1.5. Let neN and let u=(u^ . . ., u^ be an element of W". The variety
S „ = B M l B x B . . . x B B ̂  B/B is called a generalized Schubert variety. When
M I = . . . =^=(D (where co is the maximal element of W), the variety S^ is naturally
isomorphic to (G/B)". Indeed we will systematically identify (G/B)" with the generalized
Schubert variety G X B . . . X B G / B . Hence all the generalized Schubert varieties
S^MGW") are subvarieties of (G/B)" (see [Ml]). By definition, a generalized Schubert
scheme is a union of Schubert varieties.

1.6. Let W be the free monoid generated by formal symbols s^ iel. When the n-
tuple u of W" is a product of simple reflexions, it can be identified with an element of
W (still denoted by u). Then the associated Schubert variety is denoted by D (u), and it
is a Demazure variety [D].

1.7. Let u= (Mi, . . ., u^) be an element ofW" and let v^ . . . . ̂  be a reduced decompo-
sition of MI, . . ., u^. Set v=v^. . .z^ (the product is calculated in W). There exists a
natural morphism n: D (v) -> S^, which is proper and birational [Ml]. Since the Dema-
zure variety is smooth, the morphism n is called the Demazure desingularization (although
7i is not a strict desingularization). For ordinary Schubert varieties, the morphism n
was introduced by M. Demazure in [D].

1.8. Let u=(u^ . . . . ^) be an element of W". Set 2=S^ x . . . x S^. The variety
iy=GxB2: is called a multiple Schubert variety. The variety Z can be "identified with
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630 0. MATHIEU

the subvariety B/B x £ in (G/B)"^, and 1' can be identified with the G-orbit of I in
(G/B)n+l. By definition, a multiple Schubert scheme is an union of multiple Schubert
varieties in (G/B)"4'1. For n==2, 3, multiple Schubert schemes are called double, triple
Schubert schemes. The schemes G x B (S x S7) are called special double Schubert schemes
whenever S is a Schubert variety and S' is a Schubert scheme.

1.9. Let X be a B-scheme, let Ji be a coherent B-equivariant sheaf over X and let
?ieX(B). We denote by J^W the sheaf M where the B-action is shifted
by "k. Accordingly when M is a B-module, we set M [^] = M (x) 'k.

1.10. Let S =? S' be generalized Schubert schemes, let X be a B-scheme and let n: S -> X
be a morphism of B-schemes. Suppose that: 71*^5 =^x- Then the scheme Ti(S') is
called a ^-scheme. Let Z =? S' be two other generalized Schubert schems, let T : S -» Y
be a morphism of B-schemes with TI* ̂ s = ̂ y Suppose S g S, S' ^ 2V. Let /: X -> Y
be a morphism of B-schemes which is compatible with the inclusion S ̂  S. Then the
induced morphism g : n (S7) -> T (S') is called a morphism of ^-schemes. Let Q be a
standard parabolic subgroup of G and let G' be its Levi component. When S, S' and X
are actually Q-schemes and when the morphism n is a morphism of Q-schemes, we say
that n (S) is a G'-^-scheme (or we say that it is a Q-^-scheme).

1.11. Let V be a vector space. A stratification of V is a family ^ on subspaces of V,
such that VeJ^. A filtration of V is a family ^ of totally ordered (for the inclusion
relation) subspaces of V. In particular a tower (i. e. a maximal totaly ordered family) of
a stratification ^ is a filtration. Let K be an algebraic group. Usually we will consider
V being a K-module: in that case a stratification or a filtration will contain K submodules
only. For technical reasons, we will consider only filtrations (^\V) indexed by real
numbers X(=R (i.e. we have: ^V g ^yV for x ^ y). In that case, we set
^^V= U ^ and ^V=^V/^^V. In this paper, we will consider only finite

y < x

filtrations. Hence the non-zero vector spaces among the family vector spaces
^V(xetR) are the ordinary subquotients of the filtration ^ ' .

1.12. For every ^eX(B), we will denote by ^f(^) the associated invertible sheaf on
G/B. We recall that F(G/B, ^(?i)) is non zero if and only if X is antidominant (Borel-
Weil Theorem). For a dominant ?i, set F (k) = F (G/B, ^ (- ̂ )).

1.13. Let V be a finite dimensional G-module and let ̂ V be a filtration of V. The
filtration is called a ^-filtration (respectively: good filtration) if its subquotients are direct
sum of modules F(^) [where XeX'^ (H)] [respectively: are isomorphic to some F(^), for
various ^eX'^ (H)]. Hence every ^-filtration has a good refinement. However it will
be more convenient to work with ^-filtrations, because ^-filtrations have functorial
properties (see [D2], [F]).

Let Z be a G-scheme, let ^ be a G-equivariant coherent sheaf on Z and let (Zy) be a
family of G-invariant subschemes of Z. Set M = F (Z, J / ) and for every index a let
K(a) be the kernel of the restriction map F(Z, M} -> F(Z^ ^). A good filtration ^
of the G-module M is called compatible with the family (Z^) if the trace of ^ on each
submodule K (a) is a good filtration.
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FILTRATIONS OF G-MODULES 631

1.14. Let ^eX(H) be a dominant weight. The dual L(k) of F(D is called a Weyl
module, because it satisfies Weyl character formula. Let V(^)=^(G) ®^(B)^ be the
Verma module of highest weight X. The module L (^) can be described as the maximal
quotient of V (k) which carries a structure of G-module. A filtration of a G-module M
whose subquotients are Weyl modules is called a Weyl filtration (so Weyl filtrations are
duals of good filtrations). Some of the following remarks are borrowed from the survey
paper [D3]. For the best of our knowledge. Point 1 of Theorem 1 was first conjectured
in an unpublished paper of J. Humphreys [HI]. The paper of Upadhyaya [U] was the
first published paper devoted to Weyl filtrations. The basic properties of Weyl filtrations
appear in Jantzen's paper [Jl]. As we saw in introduction, the works of Wang Jian-
Pian [W] and S. Donkin [Dl] were a motivation for further studies of good filtrations:
actually S. Donkin strongly conjectured that his theorem should be true without the
restrictive hypotheses (see remarks after Theorem 3 in [D3]). Thus E. Friedlander [F]
and S. Donkin [D2] pointed out that good filtrations can be realized in a functorial
way. Actually, the filtrations defined in section 3 differ a little bit (note also Donkin's
papers [D4], [D5] where some G-algebras are studied). D. N. Verma pointed out that
the module L (k) (x) V (u) has a filtration whose subquotients are Verma modules, and he
suggested that the filtration should induce a Weyl filtration on L(k) (X) L(a). The idea
of using the algebra A in section 4 is adapted from Verma's suggestion.

In [Ml], we proved a conjecture on the representation of compact groups (the conjec-
ture, generally attributed to Parthasaraty, Ranga-Rao and Varadarajan was independen-
tely proved by S. Kumar [Ku]; for the group S\J(n), the result is due to P. Polo [PI];
later some special cases were reproved by M. McGovern [MG] and P. Littelmann). As
by-product of our proof, we showed that some modules F(Q appear as natural sub-
quotients in F (k) 00 F (u). These subquotients are called PVR components. The result
supported the idea that Donkin theorem should be true for E7, Eg as well. Let
'k, HeX^ (H), let J§f=J^(-^, -u) be the corresponding sheaf over (G/B)2 and let £ be
the closure of a G-orbit on (G/B)2. Set M(£)=r(S, J^f) and let K(£) be the kernel of
the restriction map F (k) 00 F (a) -> M (L). Using some vanishing results of [Ml], [MR2]
and a case-by-case analysis, P. Polo showed that for large p the modules K(Z) and
M(S) have good filtrations [PI]. Later P. Littelmann pointed out that, for a classical
group G, Polo's result can be deduced from his work [L] using the monomial standard
theory (V. Lakshmibai, C. S. Seshadri [LS]). The relationship between good filtrations
and PVR components is simple: the PVR component appears as the first term of some
good filtrations of M (Z) (see the proof of Theorem 3 in [M2]).

2. Frobenius splittings

In this section we have put the results involving Frobenius splittings. Recall that
the notion of Frobenius splittings was introduced by V. B. Mehta, S. Ramanan and
A. Ramanathan in order to prove, among other things, the Demazure character formula
[D] (see [MR1, 2], [RR], [Rl, 2], see also [A2], [LS]). Note also that a closely related
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632 0. MATHIEU

idea appeared previously in the nice proof by H. H. Andersen [Al] and W. Haboush [H]
of Kempf Theorem [Ke]. The only new result of the section is Lemma 2.4.

Let X be a scheme, let Y be a subscheme defined by the ideal J^, and let R be a not
necessary unitary commutative A:-algebra. A Frobenius morphism of X (respectively
of R) is a morphism of sheaves (p: ^x -> ̂ x (respectively (p: R -> R) such that
(p (^p b) = a (p (ft) for every sections a, b of ^x (respectively for every a, b e R). Moreover
when it satisfies (p (a^ = a for every section a of ^x (respectively for every a e R), the
Frobenius morphism (p is called a Frobenius splitting. When (p satisfies: (p (.f) 1= ^ one
says that the Frobenius morphism (p of X is compatible with Y (such a Frobenius
morphism induces a Frobenius morphism of Y).

LEMMA 2.1. - (Ramanathan lemma [Rl]) Let R be a k-algebra (respectively: let X be a
scheme). IfR (respectively X) admits a Frobenius splitting, then the algebra R (respectively
the scheme X) is reduced.

Proof. - If R (respectively X) admits a Frobenius splitting, then the map a\->aP is
injective (see [Rl], section 2.1).

Remark. - Let X be a scheme, let Y^ be a family of subchemes, and let a be a
Frobenius splitting of X compatible with all the subschemes Y^. Since CT induces a
Frobenius splitting of the scheme-theoric intersections Y^ H Yp, these intersections are
reduced. In the paper, we will work mostly with Frobenius splittable schemes and
compatibly splittable subschemes. Also there will be no differences between set-theoreti-
cal intersections and scheme-theoretical intersections. That explains our convention of
assuming that every scheme is reduced.

Let X be a scheme and Y be a subscheme of X. We will denote by SF(X, Y) the
group of Frobenius morphisms of X which are compatible with Y, and let y^ (^, ^)
be the corresponding sheaf.

LEMMA 2.2. - (Mehta-Ramanathan theorem)
1) We assume that X is smooth and that Y is purely of codimension 1 in X. Then

there is a canonical isomorphism of scheaves: <9^(.T, ^) ̂  ^(Y)® l-p. In particular
y^ (^, ^) is an (9^-invertible sheaf [for the right action defined as follows: if a, (p are
sections of (9^ ^ ^ ' (°K, ^), then a.(p is the Frobenius morphism b\-^^(ab)].

2) Let N be a closed point in X, and let (pe^^'(^', ^). We assume that in a
neighbourhood of N, Y is a divisor with normal crossings such that the intersection of its
irreducible components is reduced to N, and that (p generates ^^ (^, ^). Set
^=(p(l). Then we have X,(N)^0. In particular, if X is projective, (p is a nonzero
constant and ^-1 (p is a Frobenius splitting.

Proof. - The proof of the lemma can be found in [MR1] as follows: the formula
y ^ ' (3C, 0) ̂  ©^ l - p is stated in Proposition 5. The formula with Y not necessarily
empty follows the proof of the Proposition 6. Let m be the dimension of X. The
hypotheses of point 2 imply the existence of a local system of parameters z^, . . ., z^ in
a neighbourhood of N such that Y is locally defined by the equation z ^ . . .z^=0. So
the lemma results from Proposition 7, 8 of [MR1].
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FILTRATIONS OF G-MODULES 633

Let X be a scheme, let Y be a subscheme of X defined by the ideal ^, let a be a
Frobenius splitting ofX compatible with Y, and let ^ be an invertible sheaf on X. Then
a induces a Frobenius splitting of the (P^-Silgebra ^= © ^f0"®^. The splitting (still

n > 0

denoted a) is defined by the following two rules:
RI: For every m not divisible by p, a (J^f® m (X) ^) = 0.
R^: Let m > 0 be an integer, let y be a section of J^0 w of degree m, and let ^ be a

section of ^ ' . Then we have: a (y® p (x) a) =y 00 a (a).
Note that the rules R^ and R^ are actually a good definition of a Frobenius splitting

of s/\ by localization, it suffices to check it when the invertible sheaf ^ is trivial. In
particular a induces a Frobenius splitting of the not necessary unitary commutative
algebra F(X, 0.

Let n be an integer. Set X=(G/B)". Let ©: X-^G/B be the projection on the last
factor. When X is identified with GxB. _ x^G/B as in Section 1.5, the following
formula holds: ©(fei, . . ., ^)modB")==^. . .^modB. Set J^=(©*J^(p))[-p],
j^==j^® I-P (^ 19^ i i2), where p is the half sum of positive roots. So J^, ^ ' are B-
equivariant invertible sheaves on X, but they are not G-equivariant. Let M be a reduced
decomposition of co (where CD is the maximal element of W). Set v=o)n. So v is an
element of W of length ^./(o). Let n: D (v) -> X be the Demazure desingularization
(see 1.7). We will still denote by ^ ' , ^ the pullbacks of J^f, ^ to D (u). Recall that n
is proper and birational. Moreover, by smoothness ofX, we have: ^(^DW^^G/B- Let
Z (respectively Z (v)) be the union of all codimension 1 generalized Schubert subvarieties
in X (respectively: of all codimension 1 Demazure subvarieties in D(zQ), and let J
(respectively \̂) be the corresponding ideal. Recall that n (Z (v)) = Z. Set N be the
point corresponding to the zero-dimensional Demazure subvariety D(l).

Note that the equality TC* (9^ ̂  = (9^ and n (Z (v)) = Z implies that n induces a morphism
n: SF (D (v), Z (z;)) -> SF (X, Z).

LEMMA 2.3:
1) We have ̂ =^'®^ and^^=^'®j^.

2) H^ have y^ (̂ , ̂ ) = ̂  and ̂ ^ (D (i;), Z (̂ )) = J .̂

3) The ^-modules SF(X, Z) and S¥(D(v),Z(v)) are equal and isomorphic to
F((/?-l)p)[(p-l)p]. In particular every integer m such that for some ;'el, wa, is a
weight of SF(X, Z) satisfies: O^m^p-1. Moreover the weight 0 has multiplicity 1 in
SF(X,Z).

4) Z^ (peSF(X, Z) a?^ fe^ (po ^ the weight zero component of (p. Then we have
(p(l) ̂  0 if and only ;/(po 7^ 0.

Proo/. - The formula for (OD^ is due to Ramanathan ([Rl] Proposition 2; here we
added the shift - p to get the B-equi variance). The formula for (Ox is similar, and can be
proved by an easy induction (e. g. using [M2] Lemma 8). Then Point 2 is an immediate
corollary of Lemma 2.2 (Point 1). Point 3 is a consequence of Point 2. Note that Z (v)
is a divisor with normal crossings intersecting at N. We have ©(7c(N))=B/B. Let
(p e SF (X, Z), and let D ((p) be the divisor of the corresponding section of
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F(G/B, J^((l-/?)p))). It is clear that N^D((p) if and only if (po ^ 0. Hence when
cpo 1=- 0, the Frobenius morphism (p satisfies the hypotheses of Point 2 of Lemma 2.2,
and we have (p (1) + 0. Q.B.D.

For every (peSF(X,Z), we have (p(l)er(X, ^x)» hence (p(l) is a constant. Let
R: SF (X, Z)->kbe the linear form defined by R ((p) = (p (1). Let F be the subspace of
H-invariant vectors in SF(X, Z). By Points 3 and 4 of previous lemma, F has dimen-
sion 1 and R (F) + 0. So there exists a unique H-invariant Frobenius splitting
aeSF(X, Z): this element is called the canonical Frobenius splitting of X. Let y be
the set of generalized Schubert subschemes in X. It is easy to prove that y is the
smallest set of subschemes of X which contains Z and which is stable under the following
operations: union, intersections decomposition into irreducible components. Hence a is
compatible with all the generalized Schubert subschemes.

Let £ be a e^-scheme. There exist generalized Schubert schemes S, S' (with S ̂  S')
and a B-equivariant morphism of scheme n: S -> Y (with TI* ̂ s^v) sucrl ^at S is
isomorphic to n (S'). Hence a induces a Frobenius splitting of S. This Frobenius
splitting is still denoted a and it is called the canonical Frobenius splitting of S. Actually
this Frobenius splitting depends on the choices of S, S', Y, 71. However for usual y-
schemes, i.e. for generalized Schubert schemes or parabolic analogs, the Frobenius
splitting a does not depend on natural possible choices. A typical example is the
following: for every m ̂  n and every sequence w e W" in which 1 occurs m — n times and
co occurs n times, the generalized Schubert variety S^ is naturally isomorphic to X. Hence
there are many ways to realize X as a generalized Schubert variety in G/B^. It is easy
to prove that the canonical Frobenius splitting does not depend on w. Note also that
the canonical Frobenius splitting of a e^-scheme E is compatible with all c^-subschemes
of S (more precisely with all the ^-subschemes obtained by the same construction as a).

KEY LEMMA 2.4. - (commutation relations for a) Let S be a y-scheme, let ^ be a
invertible sheaf on S. Set J^= © ^0n.

n > 0

1) Let ^eX(H), let yer(L, M) be a section of weight 'k. Then ifk^pX(H), we have
(j(j)=0. 7/^G/?X(H), then a(j) is a weight vector with weight t^lp.

2) Let z be any section of Ji^ let ;el and let s be a positive integer. Then we have
a(e<ips)z)=e(is)a(z).

Proof. — Assertion 1 comes easily from the H-invariance of a. In order to prove
Assertion 2, we will prove it first for the following case: S=X, ^=(9^. We will
argue by induction on s. Note that for 5=0, the assertion is obvious. Let a' be the
endomorphism of ^x defined by the formula: c/ (a) = e^ a (a) - a (e^ a) for every section
a of ^x- We claim that a' is a Frobenius morphism. Recall that:

^r) ̂ p == o for every integer r ̂ p N,

e\pr)ap=(e<f)a)p.
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We have:

c/ (aP b) = e^ CT (aP b) - a (^ps) (^ &))

=6^ a (A))- ^ aa^W5'̂ ))
s'+s"y

= ^ (e^ a) (e^ a (^)) - (e^ a) a (^") b)).
s' +s"s:

By the induction hypothesis we have: ey}a(b)=a(e^s)b) whenever s" < s. So we
have:

a' (a^ b) = ae^ a (b) - a a (e^ b)
=a<j'(b).

Note that we have a' (^) 1= ^. Hence we have a' e SF (X, Z). But a" is a vector of
weight psaii. (We should note that the action of H on the image is shifted by the
absolute Frobenius F.) As the multiplicity of the weight ps o^ in SF (X, Z) is zero
(Lemma 2.3, Point 3), we get a'=0. This proves the assertion (2) when ^ is the
structural sheaf on X. The general case follows easily by application of rules R^ and
R2.

Remark. — Note as a corallary of the previous lemma that CT maps B-modules on
B-modules (see the proof of Lemma 4.3).

3. Filtration of B-algebras

Conventions: We will fix a linear form E: X (H) —> 1R such that E (a) > 0 for every
positive root a. For simplicity^ we will assume that E is infective (it is easy to show that
there exists such a form E).

Definition of the filtration: Let Me^(B) and let xeR. Let ^M (respectively
^^ M) be the largest B-submodule of M, all of whose weights ^ satisfies E ( k ) ^ x
(respectively E(^) < x).

Hence Mi—^^M, M\—>^'^ M are functors defined on the category ^(B). Set
^M==^M/^M (the notations agree with 1.11). For every XeX(B), set
I(?i)==Ind^.

LEMMA 3.1. - Let M, N e ̂  (B) and let x, y e R.
1) For every one-to-one morphism M ->N, the associated morphism J^M ->J^N is

one-to-one.
2) We have (^M) (X) (^%N) g ^+^(M 00 N). This induces a functorial morphism

(^f,M) ® (Jf,N) ̂  JT^(M ® N).
3) 7/'M ^ a G-module, then ̂ M, ̂  M and ̂ M ̂  G-modules.
4)IfE~l(x)=0, then ^,=0. T/'E-1^)^, ^2 E-1^) cwzto^ ^ac^ w^

element 'k, and the socle of the ^-module Ĵ \ M is isotypical of type "k.
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5) If M is an infective B-module, then the ^-modules e^M, ^^ M and J^M ^r<?
w/^c?n^.

Proof. — Point 1 of the lemma comes from the following equalities:
J^NnM=^M, ^NOM=^M. Point 2 is obvious. Let M be a G-
module. Note that the G-module M7 generated by ^\ M is equal to ^(U~ ̂ M (by
Poincare-Birkhoff-Witt Theorem). Hence for every weight a' of M', there exists a weight
H of ^\ M such that a — u7 is a linear combination with positive coefficients of positive
roots. Hence we have E (a7) ^ E (a) ^ x, and M's^M. That proves
Point 3. Point 4 is clear, because we have: ^'^^M=0. Note that the functors
^~, ̂  and ^f^ are additive. So it suffices to prove Point 5 for injective indecomposa-
ble modules I (a). We have:

j^i(a)=i(a) ;yE(a) ^ x w ^i0i)=o ;y^,
j^- IOi)==I(a) ^E(a) < x and ^- 1(^=0 ̂ ^,

^I(^i)=I(u) ifE([i)=x and ^I(^)=0 ̂ ^.

Q.E.D.

Let xeR. Suppose that E'^x) contains a (unique) weight ^. We will denote by
^(B, x) the category of B-modules whose socle is isotypical of type ^. When E~1 (x) is
empty, then we will denote by ^(B, x) the category containing only {0}. Let Alg(B, x)
be the category of not necessarily unitary graded B-algebras ^ = © ^\ such that for

n ^ 0

every n e ̂ , we have <. e ̂  (B, ^c). Set ^ (G, x) = ̂  (B, x) U ̂  (G),
Alg(G,x)==Alg(B,x)n^(G).

LEMMA 3.2. — 1) L^ Ve^(B, x). T/z^ B-module V /?a^ a unique injective envelop
C, V (̂  V i-^ C, V is a functor). We have C, V e ̂  (B, x).

2) L^r Ve^(G, x) a^^/ fe^ E be an injective envelop of the G-module V. Then the
module C^V=^E does not depend on a choice for E (so Vi—^C^V is a functor). We
haveC^e^(G,x).

3) Let Ve^(G,x). TT^r^ ^x;^ a unique morphism C^Vi—^C^V wA;'c/z factors
Vi->C^V (^o w^ ^^ a morphism of functors Cy->C^). Moreover the morphism is one-
to-one.

4) Let yeR, let Ve^(B, x\ let V'e^B,^). We then have a natural isomorphism
^^y (C^V (g) Cy\') = C^+y ̂ +y (V ® V). M or e ov er if V, T ^r^ G-modules we have:
^/C.V^CyV^C^^/V®^).

Proof. — 1) Let F be an injective envelop of V. The set of injective envelop of V is
classified by the group F of automorphisms of F which act trivially on V. It is clear
that F and V have the same socle. In particular Fe^(B, x). Let yeF, and let
F'==(l -y)F. We have F' ^ ̂  F, hence we have F'=0 and F= 1. So the injective
envelop is unique.

For Point 2, the proof is similar: we have to prove that every isomorphism y of E
which acts trivially on V acts also trivially on ^\ E. Point 3 is obvious.
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By Lemma 3.1 (Point 2), there exists a functorial morphism

^^(V^V^^^C.V®^).

We can suppose that there exist ^, peX(B) such that E(^)=JC, E([i)=y. Note that the
natural morphism I(^) ® I(u) -^I(^+u) is onto. So Jf^+y(C^V® CyV) is a injective
B-module. Hence there exists a natural map

K: C^^^V^V^^^C.V®^).

It is clear that the restriction to socles of n is an isomorphism. But n maps an injective
module on another injective module. Hence n is an isomorphism. The same proof
holds for G-modules, because the morphism F (^) (g) F (a) ->- F (k + u,) is onto (see [RR]
Theorem 1; for a classical group G, the result is also consequence of the standard
monomial theory [LS]).

LEMMA 3.3. — Let xetR.
1) Let AeAlg(B, x). Set N^A= © C^A^. 77^2 there exists a unique structure of

n ̂  o
B-algebra on N^; A, extending the algebra structure of A (so A \—> N^; A defines a functor
N,:Alg(B,x)-^Alg(B,x)).

2) Z^ AeAlg(G, x). Set N^A= © C^A^. TTz^z ^r^ exists a unique structure of
n^o

G-algebra on N^A, extending the algebra structure of A (so Ai—^N^A is a functor
N^: Alg(G, x) -^Alg(G, x)). The natural morphism N^A-^N^A is a morphism of
algebras.

3) Let AeAlg(B, x). If A is commutative (respectively commutative and reduced) then
N^A is commutative (respectively commutative and reduced).

Proof. — Let n, m be two integers. Note that A^®A^=^'^4.^^(A^®A^).
So ^(n+m)x0\i 8)^) ls actually a quotient of A,,®A^. The morphisms
C^A^ (X) C^A^ -^ €(„+„) ̂ A^+^ are defined by the composition of the following natural
morphisms (cf. lemma 3.1, 3.2)

C^A^ ® C,,A, -^ ̂ ^),(C^A^ ® C,,AJ

^(n^).(C^A^ g) C,,AJ ̂  C(^,),^^),(A^ (g) AJ

^(n + w) x vc(n +m)x (^n ® ^w) —^ ^(n + w) x ̂ n + w

The construction for G-modules is exactly the same. We now prove that the map
N^A -> N^A is a morphism of algebras. Denote by n, n be the multiplications of these
algebras and let n, m be two integers. Set (p: N^ A^ ® N^ A^ -> N^ A^+m be the morphism
(p=j i—a. Note that (p factorizes by Jf^+^^(N^A^®N^A^) and that (p vanishes on
the socle of ̂  + ̂  (N^ A^ ® N^ AJ. Hence Im (p g e^ + „) ^ N^ A^ + ̂  and so we have
(p=0, n=u.

The proof of Point 3 is similar.
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KEY LEMMA 3.4. — (criterion for good filtrations) Let A be a commutative and reduced
algebra in Alg (G, x). Suppose that the morphism A -> N^ A is not an isomorphism. Then
there exists an integer m > 0, and MeN^A^ such that u^A and upeA.

Proof. — We first state a particular case of Lemma 13 of [Ml]:
Let ja^i =? ^2 be finitely generated unitary graded commutative algebras over

k. Suppose that the morphism Spec ̂  i -> Spec ja^ ^ a finite homeomorphism, but that
^\ -^ j^2- Then there exists an homogeneous element u with ue^\, u^s^\ and upe^^
(set: f t=R=S=^2 and §=^3 in Lemma 13 of [Ml]).

We can suppose that Ao=k and Ai ^ C^A^. Let ^eX(H) be the weight such that
E(^)=x. There exists a G-submodule X g= C^A^ such that X is isomorphic to F(T)
and X is not contained in A^. Let Y be the socle of the G-module X. Let j^i
(respectively ^3) be the subalgebra generated by X (respectively by Y). Set
ja^ = ja^i 0 A. By construction, we have ^ ^ 3 ja^ ^ ^3-

It is clear that ja^i is isomorphic to the Cartan algebra © F(wX). Let S be the
M ^ 0

orbit in X* of the highest weight line, and let L be the kernel of n: X* -»Y*. Set
£'=71(1). We have L H ^ = O and S, S/ are cones. Hence the induced morphism
^:S->2y is finite. Moreover ^ ls an homeomorphism. Note that Spec^i=£,
SpecJ^3=£/. Since Specja^i -> Spec ̂ 3 is a finite homeomorphism, the morphism
Spec ̂  i -> Spec j^^ ls a fi1111'6 homeomorphism. Hence by the previous assertion, we
get an integer m > 0, and MGN^A^ such that M ^ A and i^eA.

Remark. - Let M be a finite dimensional G-module. Note that for all but finite
many x e R, we have e^ M = 0. Hence the finite family ̂  M is a filtration of M whose
successive quotients are Jf^M. Hence M has a god filtration whenever
C^^f^M=J^M. The converse (not used in what follows), is also true, and we can
see that the previous lemma give a criterion for good filtrations for the homogeneous
components of graded G-algebras.

4. Proof of the theorem

Let G' be a semisimple subgroup of G corresponding to a Dynkin subdiagram, let
Q = G' B be the corresponding parabolic group (so G' is the Levi component of Q), let
B' = G' 0 B be the standard Borel subgroup of G\ let S =? S' be two Q-invariant
e^-schemes, and let ^ be a Q-equivariant invertible sheaf over S. Let ^ be the ideal
defining S' in S. In this section we will prove the following result:

THEOREM 3. - The G-module M = F (5', ^ 00 JQ has a good filtration.

Remarks. — 1) Let 0 -^M' -> M -> M" ->0 be an exact sequence of G'-
modules. Recall that if M' and M have good filtrations, then M" has a good filtration
(Wang [W] Proposition 3.3). Let Z be a G'-invariant ^-subscheme of S. By Wang's
Lemma, the G'-module image of F (S, ^ (x) JQ -> F (Z, ^ ® JQ has a good
filtration. Hence Theorem 3 implies Theorem 2 stated in the introduction.
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2) It is possible to show a similar result for the sections of J^(x)j^ over any
Q-invariant open subset of X.

Let co7 be the maximal element of the Weyl group of G', let 0 = B o/ B be the big cell
of Q and let IT = B' 0 Ad (0 (B') be the Cartan group of G\ In order to prove the
theorem, we will first reduce to a simpler case:

LEMMA 4.1. - We can assume that there exist y-schemes S ̂  SV such that S = Q x B S,
S^Qx^.

Proo/. - Let Z be an arbitrary B-scheme and let j be the canonical morphism
j: Z -^ Q x B Z. The inverse image functor 7* induces an equivalence of categories
between the category of B-equivariant quasicoherent sheaves on Z and the category of
Q-equivariant quasicoherent sheaves on Q x B Z. Let 2' be its inverse functor and let
D' be the induction factor from B to Q. Note that X = Q x B S and X' = Q x B S' are y-
schemes, note that ^ ' = Q)' ^ is the ideal defining X' in X and note that J^' == ̂ ^ is an
invertible sheaf of X. We have D' F (S, ^ (x) ^) = F (X, ^ ' (x) ^ ' ) . Since M is already
a Q-module, we have M=D'M. Using X, X' instead of S, S', we reduce the proof of
the theorem to the case stated in the lemma.

Hence the lemma is proved and we will suppose from now on that the assumption of
lemma 4.1 holds. Set V = Q x B Z. For every integer m > 0, set A^ = F (V, ^ (x) ̂  m)
and set A^=F(S, J^®^®^. Consequently, the groups A = © A^ and A== © A^

m > 0 m > 0

are non unitary algebras.

LEMMA 4.2. — The B'-module A is infective.

Proof. — Let g : Z-^V be the morphism given by the formula g(a)=wtj(G). We
have V ^ B' x H' g (Z). Hence we have A^ = Ind^ F (g (Z), g* (^ (x) ̂  m)). So each B'-
module A^ is injective, and A is an injective B'-module. Q.E.D.

Choose a linear form E': X(ir)->IR, as in section 3. We will apply the notations
and the results of Section 3 to the semi-simple group G' and to its Borel subgroup
B\ LetjceR. Set:

A(x)= © ^A,,
m > 0

A Oc)= ® .̂ A,,,
w > 0

A-Oc)= © y^A^
m > 0

A-(x)= ® .̂ A.
m > 0

By Lemma 3.1 (Point 2), A(x) and A(x) are non unitary subalgebras of A, and A~ (x)
[respectively A" (x)] is an ideal of A(x) [respectively of A(x)]. Set ^ (x) = A (x)/A ~ (x)
and j?(x)=A(x)/A~ (x). The algebras ^(x), S (x) are endowed with a natural
grading. For every integer m > 0, let ^^ (x), S^ (x) be their homogeneous components
of degree m.
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KEY LEMMA 4.3. — (compatibility of the splitting a with the filtration) For every xe R,
we have a (A (x)) ^ A (x) and a (A (x)) ^ A (x).

Proof. — We will prove that a (A (x)) ^= A (x) (the second assertion is proved
similarly). Note that for every integer m not divisible by p, we have a (A^) = 0. Hence
it suffices to prove that CT (^ ̂  Ap^) ^ ̂ ^ A^, for every w > 0. Set
N=^p^Ap^. Let F be the Dynkin subdiagram corresponding to G' and let
LT=(B7, B'). By the key Lemma 2.4, we have:

e^. a (n) = a (e^. n), for every ; e F, s e N, 72 e N.

Hence a(N) is a U'-module (lemma 1.1). Moreover, for every weight ^eX^7),
for every ne^ we have a(^)==0 if 'k^pX(R') and a(/2) has weight ' k / p whenever
'kepX(H'). Hence a(N) is a B'-module, for which every weight n satisfies
E (n) ^ wx. So we have a (A (x)) ^= A (x).

LEMMA 4.4. — Let xeR.

1) TO^ algebra morphism ^ (x) -> j^ (x) ^ one-to-one.
2) T/z^ ^'-module s^ (x) is injective.
3) H^? /z^z;^ j? (x) e Alg (G', x) and ^ (x} e Alg (B^, x).

4) 77^ Frobenius splitting a of A induces a Frobenius splitting of ^ (x) and of its
subalgebra ^S (x).

Proof. — The points 1, 2 arise from Lemma 3.1 (Point 1 and 5 respectively). Point 3
of the lemma results from points 2 and 3 of Lemma 3.1. By the key Lemma 4.3, we
have a (A (x)) ^= A (x) and a(A~ (x)) ̂  A~ (x). Hence the Frobenius splitting a acts
on the quotient algebra ^ (x). The assertion for the algebra sS (x) is similar.

Proof of the theorem. — To prove the theorem, it suffices to prove that for every xe [R,
we have C^ Jf^ M = ̂  M. Note that Jf^M=^i (x). We also have S (x) e Alg (G7, x)
(lemma 4.4). Hence it suffices to prove the more general assertion: N^^(x)=^(x).

We first prove that there exists a natural immersion N^j^(x) ^ ^ (x). We have
^ (x) e Alg (B', x) (Lemma 4.4) and the B'-module ja^(x) is injective (Lemma 4.4). The
composition of natural morphisms involved in Lemma 3.3: N^ S (x) c^ N^ sS (x) and
N^ S (x) -> N^ ̂  (x) is a morphism A : N^j^(x) ^N^j^(x). By Lemma 3.2 (Point 3)
and Lemma 4.4 (Point 1), the morphism h is one-to-one. The injectivity of the module
j^(x) implies that we have N^ja^(x)=j^(x). So we get the required immersion, and
we have S (x) ^ N^ S (x) ^ ^ (x).

The algebra ^ (x) and its subalgebra S (x) have a Frobenius splitting a (Lemma 4.4,
Point 4). So by Ramanathan's Lemma 2.1, these algebras are reduced. Let M be a
homogeneous element ofN^ja^(x) such that u19 belongs to j^(x). In particular, we have
Mej^(x) and M^e^x). So we get u=a(up)e^/(x). Hence by the key Lemma 3.4,
we have N^ S (x) = S (x).
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5. Filtrations of B-modules

For B-modules, there are four generalizations of the notion of good filtrations. Let
x, ye^W with x ^ y, let ^eX'^ (B) and let S be a Schubert scheme of G/B. Let 8S^ be
the union of codimension 1 Schubert subvarieties in S^. Set:

F^)=F(S,,^(-^))
Fs0)=r(s,^(-?i))

R, W = the kernel of F, (^) ̂  F, ̂  (- X)

K^ y (?i) = the kernel ofP, (k) -> ¥y (k).

We define the category y c= ^ (B) (respectively ^, Jf, Jf) to be the category of
B-modules which have a filtration whose subquotients are some F^(^) (respectively:
R^(^), Fs(^), K^y(?i)). The class y (respectively ̂ , the classes Jf, Jf) was introduced
by A. Joseph [J] (respectively by W. van der Kallen [vdKl], by P. Polo [PI], [P2]). The
modules of the category y, respectively ^, are called strong, respectively weak (in the
literature, strong modules are also called excellent or Joseph modules). Following
[vdKl], we have ̂  c: ^f, jf c= -^r. By induction from B to G, it is easy to show that
any G-module Me^ has a good filtration. Conversely any G-module which has a
good filtration is automatically strong. Hence the categories of B-modules ̂ , ^F, Jf, Jf
are generalizations of the notion of good filtration.

COROLLARY 1. - Lei M e ̂  (B), and l e t ' k e X + (B). If we have:
Me^ [respectively: (2) Me^, (3) Me^f, (4) MejT], then we have:
M[-\]ey (respectively: (2) M [ - X\ e -T-, (3) M[-?i]eJf, (4) M[-?i]eJf).

COROLLARY 2. — Let M. be a weak ^-module and let \ be a dominant and regular
"weight. Then the ^-module M [ — K] is strong.

Remark. — As for Theorem 1, the corollaries were already known for almost all
cases. The point 1 of corollary 1 was first proved for SL(n) by P. Polo
([PI], corollary 4.11), and it was conjectured by him for any group G (the special case:
F(k)[-[i]e<y was already conjectured by A. Joseph [J]). Later, both corollaries were
proved for any group G when p is large (see [M2], Theorem 1, [M3], Theorem 1 and its
remark) and they were announced for any p when G is a group without components of
type F4, E7, Eg [P3]. As pointed out by P. Polo, Corollary 1 is actually a generalization
of Theorem 1, because inducing a strong filtration gives a good filtration.

We will recall two lemmas in order to prove the corollaries.

LEMMA 5.1. — The statement of the corollary 1 is actually equivalent to the following
one: For every ^ [i,veX+ (H), the G-module F(k) ® F(a) ® F(v) has a good filtration
compatible with any special double scheme.

Proof. - By van der Kallen Criteria for strong and for weak B-modules (Theorem 3.1
and 3.5 of [vdKl]), Assertions (1) and (2) of Corollary 1 are equivalent. Similarly, by
Polo Criteria for classes Jf and Jf ([P2], [P3]) Assertions (3) and (4) of Corollary 1 are
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equivalent. Moreover the statement in Lemma 5.1 is equivalent to Assertions (1) and
(3) of the corollary (Proposition 4 of [M4]). Hence the lemma is proved.

LEMMA 5.2. — Any double Schubert scheme £ is a G-invariant generalized Schubert
scheme in (G/B)3.

Proof. — It suffices to prove the lemma when £ is irreducible. Let x, y be the
elements of W such that E = G X ®(S^x Sy). We have a natural isomorphism

— <o, x- i, y
Q.E.D.

Proof of Corollary 1. — By theorem 3, the modules F(^) (x) FQi) ® F(v) have good
filtrations compatible with G-invariant generalized Schubert schemes. Hence
Lemmas 5.1 and 5.2 imply Corollary 1.

Proof of Corollary 2. — The proof is similar, but we need to work more because the
analog of Lemma 5.1 is not stated in [M2]. Let D be the induction functor from B
to G. By van der Kallen Criterion for strong modules (Theorem 3.1 and 3.5 of [vdKl]),
it suffices to prove that for every x, ^eW, ^i, veX^ (B), we have

H^IU^R/vH-^O.

Set N=R^) (x) Ry(v)[-)i]. By [M2] (Lemma 16), we have R1 DN=0. Hence it suffi-
ces to prove that H^G.DN)^. Set S^GX^S^X Sy), set
S^Gx^S^xBS^LKSS^xSy)) and set ^=^(-?L, -^, -v). Moreover, by [M2]
(lemma 16), the G-module DN can be identified with the kernel of the restriction
map r(£, ^f) -^ r(2y, J2f). By Lemma 5.2, the schemes S, 2Y are generalized Schubert
schemes. Hence by Theorem 3, the module DN has a good filtration. Hence we have
H^G.DN)^.

Conclusion

We would like to mention that there are a few statements in the literature which were
proved to be a consequence of Theorem 1 or of Corollary 1. Such statements are for
example van der Kallen Conjectures 3.12 on vanishings of functors 0^ and Long [vdKl]
(see also the last chapter of [Dl] and Propositions 1 and 2 of [M3]). It is now clear
that Theorem 2 of [M3] means some compatibility of good filtrations (and of their
generalizations for B-modules) with some Frobenius splittings. We used Kac-Moody
groups in its proof. Actually it is likely that methods of the present paper can give a
simpler proof.
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