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REDUCED UNSTABLE A-MODULES
AND THE MODULAR REPRESENTATION THEORY

OF THE SYMMETRIC GROUPS

BY V. FRANJOU AND L. SCHWARTZ

ABSTRACT. — One studies the category, ^, of unstable modules over the Steenrod algebra modulo the sub-
category, ^il, of nilpotent modules. One shows that the quotient category ^I^Vil is filtered in such a way
that the n-th sub-quotient is equivalent to the category of modules over F^ [SJ, the group algebra of the
symmetric group S,,. One gives applications.

RESUME. - On etudie la categoric, ^, des modules instables sur 1'algebre de Steenrod modulo la sous-
categorie, J^V, des modules nilpotents. On montre que la categoric quotient ^/^il possede une filtration dont
Ie /z-ieme sous-quotient est equivalent a la categoric des modules sur F^ [SJ, 1'algebre du groupe symetrique 6,,.
On donne des applications.

0. Introduction

Modules over the mod 2 Steenrod algebra have been known for a long time to have a
close relationship with the symmetric groups. The object of this paper is to study one
aspect of this phenomenon. Specifically we study unstable modules over the mod-2
Steenrod algebra denoted by A, modulo nilpotent elements. Let us recall that an A-
module M is unstable if, for any x in M, S q ' x is zero as soon as i is greater than |x|,
the degree of x. The mod-2 cohomology of a space X, H* (X; F^) is an unstable A-
module.

In an unstable A-module M, an element x is said to be nilpotent if
S q 2 " ^ ^ . .Sq^^x)-^^ as soon as n is large enough; in the case where M=H*(X;F2),
this reads x2" = 0 as soon as n is large enough, this justifies the terminology.

Let ^U be the (abelian) category of unstable A-modules, ^Vil the full subcategory whose
objects are the nilpotent unstable A-modules, i.e. unstable A-modules such that any
element in M is nilpotent, c/T// is an abelian category.

The idea is to consider the quotient category ^/^il [Ga], it has the same objects as
^ but morphisms differ; let us just say for the moment that "one inverts" morphisms (p
in ^ such that Kercp and Cokercp are in J^7. Generalities about abelian categories
imply that the forgetful functor r ' . ̂  -> ̂ /^il has a right adjoint s.

Before going on, let us give now three reasons why one is interested in studying ^/J^7.
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594 V. FRANJOU AND L. SCHWARTZ

The first one is Quillen's Theorem [Qui] on the cohomology of a finite group G. It
says that the canonical map q^ from H* (BG; Fp) into the inverse limit lim H* (BV; F^)

^-C(G)
[where C (G) is the category of elementary abelian /^-subgroups V of G, morphisms being
subconjugacies] is an "F-isomorphism". In our terminology, this exactly means that q^
is an isomorphism in ̂ ^il (see also [LSI]).

The second one is Lannes' Theorem [La] computing the set of homotopy classes of
maps from the classifying space BV, of an elementary abelian 7?-group V, into a space X.
Under reasonable assumptions on X, it is shown to be a functor of H* (X; F ) modulo
the radical (the ideal of nilpotent elements).

We insist on the fact that, in H* (X; F^), an element is nilpotent in the ordinary sense
if it is in the sense defined above.

The third reason is the work of Adams and Wilkerson [AW]. For the condition of
"quadratic closure" introduced by these authors, together with the condition that
x -> S q^x) x, M -> M is injective, implies that M is of the form s N for some object N in
^I^Vil. Therefore the study of ^/^il is closely related to the study of these modules.

Let us now describe the main result of the paper. The category ^/^il is filtered by
full subcategories ̂ ;

^ <~ ̂  <~ <— ̂  <- "vr 0 c- ' i <- . . . C- T n <- T n + 1 - - '

defined as follows: an object in ^/^il is in ̂  if and only if the integer supoc(rf) (y.(d) is
the number of 1 in the diadic expansion of d), where d runs through integers such that
(sMY is non zero, is less or equal to n. In this definition, sM could be replaced by any
Ne^ such that

(i) rN is isomorphic to M,
(ii) the operation x -> S ̂  x ! x, N -> N is injective.
An unstable A-module satisfying (ii) is called reduced.
The categories ̂  are abelian.

THEOREM 0.1. — The quotient category i^J^n-i is equivalent to the categoy of (right)
^2 [^r^-modules, £)„ being the symmetric group.

We observe moreover that the smallest abelian subcategory of ^/J^;7, which contains
the Y^ for all n and is stable under direct limits, is ̂ /^il itself.

Theorem 0.1 was first proved by J. Lannes and the second author using a completely
different approach ([HLS], [LS2]) which depends on the fact that H* (B (1/2)^; F^) is
injective in the category ^ ([Ca], [Mi], [LZ2]), on the properties of the functor T of
J. Lannes [La] and on the classification result, for injectives in the category ^, of
[LSI]. The result proved in [LS2] is in fact stronger for it identifies ^/^il with a
certain category of "analytic functors" (see [HLS]) in the sense defined by I. Macdonald
in [Me] and then the type of techniques of [Me] again gives (0.1).

There are two key ingredients in the proof of Theorem 0.1.
The first one, which is proved in Chapter 4 and is Theorem 3.1.4 of the paper, gives

a criteria for an object M in ^/^il to be in ̂  in terms of the action of the Steenrod
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UNSTABLE A-MODULES AND SYMMETRIC GROUPS 595

algebra on sM. In fact we proceed in the reverse order: we give in Chapter 2 the
definition of the filtration Y^ which depends on the action of the Steenrod algebra,
introduce the second characterization in Chapter 3 and prove equivalence in Chapter 4.

The second one, proved in Chapter 3, is that ifMei^^, then (s'M/ for d such that
a (d) = n, is in a natural way a right F^ [Q^-module which does not depend on the choice of
d (among those satisfying a (d) = n). This is essentially Lemma 3.2.4.

A large part of Chapter 2 is concerned with a study of sub-A-modules of
H* (B (Z/2)^; F^), which is needed in Chapter 3 and later.

As a related result to Theorem 0.1, we get in Chapter 3.

THEOREM 0.2. — Let S be a simple object in ^n-^-i, then there exists a uniquely
defined (up to isomorphism) simple right ideal I of F^ [SJ such that S is isomorphic to
r (I. F (1)®"). Conversely, for any simple right ideal J of F^ [SJ, r (J. F (I)0") is a simple
object in V\.

In fact, Theorem 0.2 was proved before Theorem 0.1, along a closely related line.
Here F(l) is the free unstable A-module on one generator of degree 1, F(l) identifies

with the A-span of u in H* (BZ/2; F^F2^] (therefore it has F^-basis u^.n^O). The
group ̂  acts on FQ)0", and if I is a subset of F^SJ, LFQ)^ denotes the A-module
{^eI^eFO)0"}.

In other words, isomorphism classes of simple objects in ^/^il are in bijection with
isomorphism classes of simple F^ [SJ-modules, n>0 [this is implicit in (0.1) and (0.2)
gives the rule].

Before going on, let us make two remarks:
(i) The category ^il is the first step of a filtration on ^, namely there is a decreasing

filtration

J^7_i =^ =) ^ilo=^il =3 J^'/i =3 . . . =3 J\ril^ . .

such that ^T^/J^.+i is equivalent to ^il^^l^U^^ and (^J^il, is trivial (see [Sc]).

(ii) ^ being a category of graded modules over a connected F^-algebra, there is little
hope to get anything interesting by looking at simple objects in W The situation is
much better in ^/^il.

In Chapter 5, we note various easy consequences of Theorems (0.1) and (0.2), among
which it is worth to note that one gets [using injectivity in ̂  of H* (B (Z/2)^ F^)!] a new
proof of the main part of the classification result of [LSI]:

THEOREM 0.3. — An indecomposable unstable A-module which is injective and reduced
is isomorphic to a direct summand ofH* (B WTf', ̂ z)for some d.

Chapters 6 and 7 give applications of the preceding results. The main result of
Chapter 6 is a criteria on a simple object of ^/J^7 telling when it is a subquotient of
H* (B (Z/2/; F^). It is known that (isomorphism classes of) simple objects in ^/^il
are in bijection with (isomorphism classes) of simple F^-representations of 6^0.
Such isomorphisms classes are classified by column 2-regular partitions (^, . . .,^) of
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596 V. FRANJOU AND L. SCHWARTZ

the integer n. (^ ̂  . . . ̂ \ and "regularity" means that ^-^+1 ̂  1). Let us denote S^
a simple object of ^Uj^il associated to X.

THEOREM 0.4. — The simple object S^ occurs in the composition series of
H* (B (Z/2/; F^) ;/ ̂ rf wz/y if^^d.

This theorem implies earlier results of N. Kuhn [K] and is equivalent (modulo ^UI^Vil
technicalities) to earlier results of D. Carlisle and N. Kuhn ([CK], Chapter 2 and 3).

The first part of Chapter 6 is concerned in making explicit the construction of S^.
It is shown in Chapter 5 that isomorphism classes of indecomposable summands of

H* (B (Z/2/; F^), rf^O, are indexed by column 2-regular partitions, as are isomorphism
classes of simple objects of ^U^il. Let us denote E^ a representative in the isomorphism
class associated to \. Let ^/ be the conjugate partition of \.

Except special cases, one has very little information about the E^, one would like to
know for example the Poincare series. But outside the case of the Steinberg module
L (n) ([Mit P]), it is, in general, out of reach. Here is a formula for the connectivity of
the E,.

THEOREM 0.5. — The first degree where E^ is non zero is
? 4 + 2 ^ + . . . + 2 J ~ 1 ^ + . . . .

This has been proved also (later) by Carlisle and Kuhn.
This result gives also the lowest degree where a simple F^-representation of GL^ F^

occurs as a composition factor of F^ [x^, . . ., xj. Such isomorphism classes are classified
by column 2-regular partitions (^i, . . .,^) such that ^>0. Let F^ be a representative
in the isomorphism class associated to 'k.

THEOREM 0.6. — The representation F^ occurs/or the first time in the composition series
of F^ [xi, . . ., xj in degree ̂  + 2 ^-3 + . . ..

The two preceding results were also proved by D. Carlisle and N. Kuhn [CK]: Their
approach uses less the Steenrod algebra (in fact the Steenrod algebras appears in their
paper through the use of the "hyperalgebra" ^p ) and much more combinatorics.

To finish this introduction we note that most of our results extend to the category of
unstable modules over the mop p Steenrod algebra, p odd. However we do not know a
formula for the connectivity result of chapter 7 in this case; it should be pointed out
that the J^'Z-closure is much more delicate to handle when p is odd.

1. Introduction of ^I^Vil and recollections
about Milnor's coaction

1.1. DEFINITION AND FIRST PROPERTIES OF THE CATEGORY ^I^Vil. — Let A be the mod
2-Steenrod algebra. As usual we denote by ^ the category of unstable A-
modules. Recall that an A-module M is said to be unstable if, for any x inM, Sqix=0
as soon as ; is greater than | x |, the degree of x. Note that this forces M to be trivial in
negative degrees.
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UNSTABLE A-MODULES AND SYMMETRIC GROUPS 597

The category ^ is abelian and contains the mod 2 cohomology of spaces. In the
sequel we will often abbreviate "unstable A-module" by "unstable module".

Let M be an unstable module, and let x be an element in M. One says that x is
nilpotent if:
- S q 2 " ' x ' . . . S ̂  x! x = 0 as soon as n is large enough [LSI].
Recall that if M happens to be the mod 2 cohomology of a space S ̂  x ' x is the cup-

square x2, therefore the condition reads as:
— x2" == 0 as soon as n is large enough.

LEMMA I . I . I . — L e t M be an unstable module. Let Nil(M) be the subset of the
nilpotent elements ofM. Then Nil(M) is a sub A-module ofM.

This is classical [Kr]. It is for example a consequence of relation (1.3.3), we just
recall that the fact that M is unstable is crucial.

An unstable module M is nilpotent if Nil(M)=M. For example the suspension of an
unstable module is nilpotent. If the unstable module M is nilpotent any sub A-module
is nilpotent and any quotient of M is nilpotent.

An unstable module M is reduced if Nil (M) = { 0 }.
For short, in the sequel, we will often say "nilpotent module" (resp. "reduced module")

instead of "nilpotent unstable A-module" (resp. "reduced unstable A-module").
Let us denote by J^il the full subcategory of ^ which has as objects the nilpotent

modules; it is an abelian category. One checks [Sc] that J^il is the smallest Serre class,
in ^<, which is stable under direct limit and which contains all suspensions.

Let us now define the quotient category ^/^il as follows:
— ^I^Vil has the same objects as ^;
- given two objects M, N in ^, by definition

^m^n (M, N) = dir lim Hom^ (M', N/N'),
(M', N')

where the limit is taken on all pairs (M', N7), where M' (resp. N') is a sub-A-module of
M (resp. N) and M/M' (resp. N7) is nilpotent. Note that a map (p in °U is a mono-
morphism (resp. an epimorphism) when considered in ^/J^7 if and only if Ker (p (resp.
Coker (p) is nilpotent (we refer to [Ga] for further details). Let us denote by
r : % -> ̂ I^Vil the forgetful functor, it is exact. As the category ^ has generators (see
1.3) and exact direct limits, it has injective hulls [LSI], hence r has a right adjoint ([Ga],
chap. Ill, § 3), we will denote it by s.

DEFINITION 1.1.2. — An A-module M is '̂/-closed if the unit of adjunction M -> sr M
is an isomorphism.

LEMMA 1.1.3 ([Ga], Chap. Ill, §2). — An unstable A-module M is ^Til-closed if and
only if the following holds:

Ex4 (N, M) = { 0 } for / = 0,1 and any N in J^7.
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598 V. FRANJOU AND L. SCHWARTZ

Remarks 1.1.4. — In other words, M is ^zZ-closed if and only if:
(i) M is reduced,

(ii) M has no quadratic extensions, i. e. if M is a sub-A-module of a reduced unstable
module M' and if x e M is of the form S ̂ y } y, for some y e M\ then y e M.

In fact, in order to check that an unstable A-module M is J '̂Z-closed, it is enough to
verify it is reduced and to verify (ii) for a particular M' which is ^il-closed.

We refer to [LZ2] and [GLZ] for details and recall that these conditions found their
origin in the work of Adams and Wilkerson [AW] and that such modules were called
"A-modules" by Smith and Switzer [SS].

1.2. RECOLLECTIONS ON THE COACTION [Mil], [St]. - The action of the Steenrod algebra
on a module M is most conveniently expressed by using the coaction
\: M -> M (g) A*. We now describe it.

Let us recall that A* is the dual of A; as A is a Hopf algebra A* is also a Hopf
algebra and [Mil], [St]:

— as an algebra, A* is a polynomial algebra on generators .̂, ;^0, such that
l^^-l.i^l;

— the diagonal A : A* -> A* (X) A* is given by

A^)- S ^2k®^.
f+fe==i

The completed tensor product M ® A* is the graded ^ ̂ -vector space which is given
byCM^A*)^ n M^Afc.

l-k=n

The map X,: M -> M (§) A* is of degree zero and completely determined by the following
property:

(1.2.1) foranyOeA, 6x=^(x)/Q.

As usual, if I is a multi-index (;\, . . ., ̂ ), we write ^ for the monomial ̂ . . . ̂ r.
Therefore, for xeM, 'k(x) can be written as a formal sum ^Xi ® i^XieM, the sum

i
being taken over all multi-indices I, the notation "x/' will be used in all the paper.

The definition implies that the A-module Ax generated by x is the span over IF 2 °^
the Xi's.

The following fundamental example is used by Milnor to define the ^^s. Recall that
H* (B Z/2; F^) is a polynomial algebra (over F^) on one generator u of degree 1. Then

(1.2.2) ^(u)=^u21®^
i^O

The definition of 'k implies the following formula:
For any x in an /^-module M, any 9 in A, one has

(1.2.3) ?L(9x)=Sxi(g)A(^)/9.
i
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UNSTABLE A-MODULES AND SYMMETRIC GROUPS 599

Applying (1.2.3) in the case where M == H* (B Z/2; F^), x=u and Q=Sq2n~l. . . S^1,
one gets

(1.2.4) ^(u2")^ ^ M2""1®^2".
1^0

Note finally that the coaction ^ on a tensor product M (x) N is given by the following
formula [Mil]: for any xeM, ^eN, one has

(1.2.5) ^®^)=S I (^®^)®^
I J + K = I

where the sum J + K means the sum index by index. The formula makes sense because
the second summation is finite. We now give an application; let F(l) denotes the A-
span of u in H* (B Z/2; F^), ll has F^-basis u2", n^O (see 1.3 for further details), then:

LEMMA 1.2.6. — Let (^)i^i^n be a family ofpairwise distinct integers, and let v be the
monomial u2111 ® . . . ® u2"" in F (I)0". Then, the inclusion A v <^ F (1)®" is an isomorphism
in ̂ l^il.

Proof. — One computes 'k(v) using (1.2.4) and (1.2.5) to find that z^j is non-zero if
and only if ^ is of the form ^2^. . . ̂ a" for some integers o .̂, 1 ̂ i^n', and in this case
v^=u2al+<^l (x). . . ® M20"^", for the a^s are pairwise distinct.

To prove the result, it is enough to show that every monomial has a power in A v. As
every monomial has a power which writes u2"1 al ® . . .0 u2"" a", we are done.

1.3. THE FREE UNSTABLE MODULES F (n) ([MP]). — Let F (n) be the free unstable module
on one generator, ;„, of degree n. It is characterized by the property that the evaluation
map Hom^ (F (n), M) —> M" given by /i—^/On) is an isomorphism for any unstable
module M.

The unstable module F(l) is easily identified with the one introduced above: the sub
A-module of H* (B Z/2, F^) generated by u.

Let o)^: F (n) -> F (1)®" be the unique non-trivial map, it sends ;„ on u (X). . . ®M. The
symmetric group £>„ acts on the left on F^)0" by permuting the factors: for oeS^, one
has

CT(M201 ® . . . ® M20")^2010-1^ ® . . . ® U200-1^.

The action of S^ commutes with Steenrod operations, therefore co^ takes values in the
invariants (F (I)0")6". In fact,

LEMMA 1.3.1 (SEE [LZ1]).—The map co^ induces an isomorphism from F(^) into
(FQ)0")®".

To illustrate the use of (1.3.1) let us introduce a notation and state a formula.
Let S <7o: M —> M be the map defined, for any unstable module M, by

x-^Sq^^x. Then

(1.3.2) MS^)=ZS^i®^21,
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600 V. FRANJOU AND L. SCHWARTZ

for any x in an unstable module M, where, if I = (?\, . . ., y, 21 = (2 ;\, . . ., 2;',).

Proo/. - It is enough to show it for M=¥(n) and x=i^. But using (1.3.1) one is
reduced to the case M = F (I)071 and x = u 00 . . . ® u. One concludes with (1.2.4) and
(1.2.5). Obviously this can also be shown directly using the Adem relations and the
instability property.

To conclude let us observe that, by their very definition, the F (^)'s are generators for
the category °U^il as they are for (3U. However there is, outside F (0), no projective in
^I^Vil. The following will be proved elsewhere.

PROPOSITION.—Let P be a projective object in ^/^il, then P^F^)®" for some
cardinal a. Therefore, ̂ /^il has not enough projectiles.

2. The weight of an unstable module

2.1. DEFINITION OF THE WEIGHT. — Let us recall that, if n is an integer, a (n) denotes
the number of 1 in the diadic expansion of n. We extend this definition to a multi-
index I=0'i, . . .,0 by declaring that a(I)=a(;\)+ . . . +aQ',).

DEFINITION 2.1.1. —Let x be an element in an A-module M. The weight of x,
denoted by n (x), is the upper bound, may be infinite, of the a (I)'s over the set of those
multi-indices I such that x, is non-zero.

Examples 2.1.2. - If M = H* (B Z/2; F^) and x= u, one gets, from (1.2.2), n (u) == 1;
- if IV^FQ)®" and x==u®. . . (x) u, one gets, from (1.2.5), n(u®. . . (Su)=n;

therefore K (;„) == n [recall that ^ is the generator of F (^n];
- if (p: M -> N is a A-linear, it is clear that n ((p (x)) ̂  n (x) for any x e M.
Therefore, one easily gets.

LEMMA 2.1.3. — For any unstable module M and any x in M, n (x) is finite.
This lemma does not hold if M is not supposed unstable.

PROPOSITION 2.1.4. — Let M be an ^.-module. The elements of weight less or equal
to an integer n form a sub-A-module ofM.

Proof. - Let x be in M. We prove that any element in Ax has weight less or equal
to 7c(x). Recall that for any 9eA, X (9 x) == ̂  x^ ® A (^)/9. One observes using the

formula for the diagonal A and arguing by induction on a (I), that A (^) can be written
as a sum of elements ^L (x) ^R such that a (L) ̂  a (I) and a (R) ̂  a (I).

The lemma 2.1.3 and the proposition 2 .1 .4 show that an unstable module M is the
direct limit, as n runs through ^J, of its sub A-modules consisting of elements of weight
less than n.

DEFINITION 2.1.5. — The weight of an A-module M, denoted by 7i(M), is the upper
bound, may be infinite, of the weights of its elements.
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UNSTABLE A-MODULES AND SYMMETRIC GROUPS 601

It is now time to define the weight for an object in ^/^il.

DEFINITION 2.1.6. — Let M be an object in ^/^il, the weight of M, denoted O)(M),
is defined to be n(sM).

We have immediately

PROPOSITION 2.1.7. — Let M be an object in ^/J^7, then co(M) is equal to:
(i) the minimum of the integers n (M') where M' runs over all unstable module M' such

that r M' is isomorphic to M;
(ii) the weight 7r(N) of any reduced unstable module N such that rN is isomorphic to M.
The proof, which is a consequence from (1.3.2) and the proof of Proposition 2.1.4,

is left to the reader. Statement (ii) tells us that for reduced unstable modules at least,
the weight is the same in ^ and ^/J^7. As we will be concerned only with reduced
unstable modules our terminology will cause no ambiguities.

We denote by ̂  the full subcategory of ^/^il of objects of weight less or equal
to n. The remark before Definition 2 .1 .5 implies that the smallest abelian subcategory
of ^lj\ril which contains the V^,, for all ̂ 0, and is stable under direct limits is ^/^il
itself. We are now able to state, in a weak form, the main theorem of the next chapter.

THEOREM. — The quotient category ^J^n-i^ ^L is equivalent to the category of
modules over the group ring F^ [^J-

2.2. THE WEIGHT IN H* (B (Z/2)"; F^). - For later use we now compute the weight in
the mod 2 cohomology of the group (Z/2)". Recall that the cohomology H* (B (Z/2)"; F^)
is a polynomial algebra over F^, on n generators jq, . . .,x^ of degree 1.

We want to determine the weight of an element in F ^ I X ^ , • • -^J- We first consider
the case of a monomial x\1. . .x^". If I is the ^-tuple (;\, . . .,;„), we denote by X1 the
preceding monomial.

LEMMA 2.2.1. — The weight ofx1 is equal to a (I).
More generally

PROPOSITION 2.2.2. — The weight of a homogeneous element x in F^jxi , • • -^J ls me

supremum of the a(I)^, where I runs through the n-tuples I such that, in the monomial
basis, x has a non-zero component on x1.

In the rest of the paper when considering a vector space with a given basis, we will
say that a basis element w appears in an element x, if the expression of x in the given
basis has a non-zero coefficient on w. We will be mainly concerned with the case of a
polynomial algebra with a given monomial basis.

Proof of (2.2.1). - The inequality ^(x^a^) follows from (1.2.5) and
(1.3.2). For the reverse, let us write x1 in the following way

f = a ( I )

^= n x20'A 11 -^mi ->mi ?
1 = 1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPER1EURE



602 V. FRANJOU AND L. SCHWARTZ

where, for every /, a^a^^ and w;<Wj+i i f ^ = ^ + ^ .
Note that the sequence of integers (y1)^^^^ is uniquely defined, being the family of

powers of 2 appearing in the diadic expansion of the i^s.
Then, one proves that for the multi-index J=(2 f ll, . . .^"w),^:1^ is non-zero. One

first note that
a (I)

(A=zn<'-^^^(O5

1

where cr runs over those permutations of (S^ fixing the sequence (^)i^a(i)- T^his
formula follows from (1.2.5) and (1.3.2). As the (^+/)'s are pairwise distinct, one

a (I)

checks now, by routine argument, that ]~[ x^1 has non-zero coefficient in (jc^j which is
i

therefore non-zero.

PROOF OF PROPOSITION 2.2.2. - The weight of x is clearly less or equal to the
supremum of the weight of the monomials appearing in it.

Conversely, let x1 a monomial appearing in x such that a (I) is maximal. We claim,
keeping the notations of the proof of (2.2.1), that Xj is non-zero.

It is enough to prove that among the monomials whose sum is x, x1 is the only one to
a (I)

let appear in Xj the term ]~] x^1.
i

Let x1' be another monomial appearing in x, and let suppose that (x1'̂  is non-
zero. Write x1 as we did for x1

a (I')

~T r2^x-'=n1 A^ '
1

with &^^+i and ^<^+i i f ^=Z? j+ i .
As (x^j is non-zero, one concludes first that a(I')^a(J)=a (I), as a (I) is maximal,

one gets a(F)=a(I). Secondly, one observes that the sequence (^)i^^a(i) has to be
equal to the sequence (^)i^^cx(i)' Therefore, (x^j writes as

< X ( I )(^zrK'-^
CT 1

again over those permutations a fixing (^)i^^(i). The exponents (^+0i^^a(i) are
a (I)

pairwise distinct, so that the sum contains the term fl-^?^ ^ an^ ^Y ^ ^ere is a
i

permutation T such that q^-i ^=w^ for every /. Hence
a (I) a (I) a (I)

I' _ T-f ih _ T-[ 1^ _ ]-[ 2°f
x ~11^ "ll^n-il^m^^qi LL^m^i) l l ^ m j -

1 1 1

4eSERIE - TOME 23 - 1990 - ?4



UNSTABLE A-MODULES AND SYMMETRIC GROUPS 603

the last equality resulting from the fact that T fixes (a). Therefore x1=x1 and we are
done.

We note as a corollary

COROLLARY 2.2.3. — Let M be a non-zero, sub A-module of FQ)®". Then, M has
weight n and M is non-zero in a degree d such that ^(d)=n.

Proof. — The unstable module F(l) is contained in F^ [x] as the F^-span of the classes
x2 ,/?^0. In the same way, F^)®" is contained in F ^ I X ^ , . . .,xJ as the F^-span of the
monomials xf1. . . x^\ a^ ̂  0, . . ., ̂  ̂  0. It is enough then to apply Proposition 2 .2 .2
to compute the weight of a sub A-module. For the remaining part, one observes that
the element Xj described in the proof of Proposition 2 .2 .2 has the required property.

3. The structure of the category ^/^il

3.1. STATEMENTS. - We introduced in Chapter 2 a filtration on the category ^/^il
by subcategories Y\. Let us recall the main statement about this filtration.

THEOREM 3 .1 .1 .—The quotient category I^J^n-i ls equivalent to the category
Mod^ [®J of right modules over the group ring F^ [^5J.

This result was first proved by Jean Lannes and the second author using a completely
different approach [LS2]. A related result to the theorem is the classification of simple
objects in ^j^il (which is also found in [LS2]).

Let us note that an unstable module M is simple as an object of ^/J^7, if and only
if, for any non trivial sub-A-module M' of M, M/M' e j^il.

Let us introduce a few notations. Let I be a right ideal of F^ [^J, the group ($„ acts
on the left on F(l)0"; let I .FQ)®" the sub-A-module of FQ)®" spanned over F^ by the
elements sw for set and o)eF(l)®".

Let us note first an easy and technical point.

PROPOSITION 3.1.2. — For any right ideal I of F^ 6^, the unstable ^-module I .FQ)®"
is ^Vil-closed.

We have now

THEOREM 3.1.3. — Let 1 be a simple right ideal of F^ [6J, then, as an object of^/^il,
LFQ)®" is simple. Let M be a simple object of^/^il of weight n, there exists a unique
(up to isomorphism) simple right ideal J o/F^SJ such that M is isomorphic to J.F(l)0"
(considered as an object of^/^il).

Let us remark that (2.2.3) tells us that if J is non trivial, the weight of J. F (1)®" is n;
The proof of Theorems 3 .1 .1 and 3 .1 .3 depends on two more technical results which

follow.
The first, which is the most important, gives a "computation" of the weight which

depends only on the structure of s M as an F^-graded vector space.
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THEOREM 3.1.4. — Let M be an object in ^l^il. The weight, co (M), of M is the
largest integer a (d) when d runs over those integers such that (s MY is non trivial.

One checks easily that this is equivalent to the following statement: The weight, n (N),
of a reduced unstable A-module N is the largest integer a (d) when d runs over those
integers d such that N^ is non-zero. In particular in (3.1.4), one could replace sM by
any reduced unstable module isomorphic to M in ^jj^il.

Note also that Corollary 2.2.3 implies that Theorem 3.1.4 holds for sub-A-modules
ofFQ)0".

The second result is a consequence of the preceding one and is as follows

PROPOSITION 3.1.5. — The unstable A-module F(l)0" is projective in the category Y\.

THEOREM 3.1.4. — Will be proved in Chapter 4, the proof splits naturally in two
parts:
- first, one shows that the weight as defined in chapter 2 is greater than the integer

defined in theorem 3.1.4, it is easy;
— second, one proves the reverse inequality, it is much harder.
The proof of Proposition 3.1.5 is given in section 3.2.
Now we show how they imply Theorems 3.1.1 and 3.1.3. The proof of Proposition

3.1.2, which is classical, will be given at the end of the chapter.

3.2. PROOF OF THEOREM 3.1.1. - Let us define a functor /?„: ̂ /^il -> Modp r^ by
the following formula: ^(M)==Hom^/^(F(l)<8)n,M), the (right) action of (£„ on ^"(M)
being induced by the (left) action of S^ on FQ)®"; let us also denote by /?„ the restriction
of this functor to ̂ . The Proposition 3.1.5 tells us that p^ is exact on ̂ .

Now, let us give an example

(3-2.1) ^(FO^F^].

This is a consequence of (1.2.6), one keeps the notations of this lemma. One has
p^ (F (1)®") ̂  Hom^ (A v, F (1)®") by Lemma 1.2.6 and Proposition 3.1.2. In a degree
d such that oc(rf) is equal to n, FQ)0", as left F^ [SJ-module, is isomorphic to ^[SJ;
therefore for any (peHom^(A^,F(l)0"), (p(z;) writes as s^v for some uniquely defined
^^[^n]' A routine checking shows that (p -> s^ determines an isomorphism between
^(F(l)®") and F2[(3J• w^ Just check it is equivariant. Let o be in (5^ and (p be in
/^(FO)0"). We need to identify s^. By Lemma 1.2.6, there exists 9eA such that
6v = S q^ a v for some k ̂  0. Therefore

S^((po(z0)=(p(9z0=9(^z0

=s^a(Sqkov).

As Sqo is injective, we get ̂ =^a.
More generally
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LEMMA 3.2.2. — Let M be an object in Y'„, d an integer such that a (d) = n. Then, as
an F^-vector space, /?„ (M) is naturally isomorphic to (s M)^.

Note that the lemma implies that (sMY "does not depend" on d for those d such that
a (d) = n and is in a natural way an F^ [^J-module. In fact, inspection of the proof
shows that S q^'. (s M/ -> (s M)2 d is an isomorphism compatible with the action of
S^. We will give the proof of this lemma at the end of the paragraph.

Proof of (3.1.5). - We claim that Lemma 3 .2 .2 implies Proposition 3.1.5. It is
enough to show that if M -> N is an epimorphism in V^ then, in degrees d such that
a(//)=A2, (sMY -> (s^Y is surjective. Here are two ways to proceed.

The morphism M -> N being an epimorphism in v^, it is one also in ^I^Vil. Therefore,
for any x in (^N)^, there exists h such that Sq^x is in the image of OM)^ in ON)^.
But as S q^: (s MY -> (s MY211 is an isomorphism (3.2.2 and comments), one is done.

One can also do it as follows. One assumes first that N is noetherian (as an object
of ^/^il). It follows that (^N)^2^ does not depend on h as h is large enough and is
finite dimensional. This is easily proved by observing that the hypothesis on N implies
there is a map L -» ^-N from a reduced finitely generated unstable A-module which is an
isomorphism in ^/^il. Therefore, in this case, one gets that (s MY^-> (s N)^ is
surjective for h large enough. Therefore by (3.2.2), (^M^-^^N/ is surjective. The
general case follows using either the fact that N is the direct limit of its noetherian
subobjects and the fact that s commutes with direct limits [Ga], either that F^)®" is
finitely generated as an A-module which follows from an easy generalisation of (1.2.6).

LEMMA 3.2.3. — The functor p^ is trivial on i^n-i'

Proof. - Let M be an object in ^-i, one has by Lemma 1.2.6 an isomorphism
pn (M) ̂  Hom^ (A v, s M) (keeping one more time the notations of (1.2.6)). But sM is
trivial in degrees d such that a (d) = n by the easy part of Theorem 3.1.4, as a (| v |) = n
we are done.

The functor p^ is exact on v^ by Theorem 3.1.5, therefore it induces a functor
Pn-'^n/^n-l^Mod^^.

THEOREM 3.2.4. — The functor p^ is an equivalence.

Proof. - Let us define a functor m^: Modp^ ̂  -> i^^ by the following formula

m^(R)=R ® FQ)0",
F2 [®J

where R is a (right) F^ [SJ-module. We are going to show that:
(i) m^ is a section of p^(i. e. ̂ °^(R)^R);

(ii) for any M in ̂ , ̂ (M)=0 implies that co(M)<^.
Direct computation along the same line as (3.2.1) shows that p^°m^(R)^R. One

proceeds as follows. One first observe that

(3.2.5) p, o m, (R) ̂  Hom^ (A v, m, (R))
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[keeping the notations of (1.2.6)]. This is not immediate for we do not know that
m^ (R) is J^zY-closed. But one checks that the localization map m^ (R) -> sr (m^ (R)) is
an isomorphism in degrees d such that ai(d)=n (this follows from the fact that, in
such a degree, m^ (R) identifies with R and S q^: m^ (R/ -> m^ (R)2 d identifies with the
identity). Therefore the cokernel of the localization is trivial in these degrees and
there are no non-trivial map of Av into it (a(|^|)=/2). It follows that
Hom^ (A v, m^ (R)) ̂  Hom^ (A v, sr (m^ (R))) and (3.2.5) follows. Note that we have not
used (3.1.4).

For a given (p e Hom^ (A v, m^ (R)), there is a unique s^ e F^ [6J such that (p (v) = s^ (x) v
(recall that m^ (R)'v ! ̂  R). We claim that the map (p -> s^ induces an isomorphism from
p^ ° m^ (R) into R. Then, the proof goes as in Example 3.2.1.

Next, we are going to prove a bit more than (ii), namely one shows that the "evalu-
ation" map

ev'. m^ ° p^ (M) —> s M

is an isomorphism in degree d such that ai(d)=n, therefore an isomorphism in I^J^n-i
by the hard part of Theorem 3.1.4. It clearly proves (ii). We first explain what we
mean by "evaluation" map

m^(M)^Hom^,(F(l)^,M) (x) F(l)®"
F2 E®n]

^Hom^FO^M) (x) FQ)0".
F2 t®n]

Therefore there is a well defined evaluation from m^°pn(M) into sM. In a degree d
such that a (d) = n, both sides are isomorphic to (s MY by 3 .2 .2 and the evaluation map
is an isomorphism (see the proof of 3.2.2). This concludes the proof of 3.2.4.

PROOF OF LEMMA 3.2.2. — Consider an integer d such that a (d) = n and an element x
in (sMY, write d as 2 f l l + . . . + 2 f l n . As in Lemma 1.2.6, let us denote by v the
monomial M201 (X). . . 00 M20". Let us recall the isomorphism p^ (M) ̂  Hom^ (A v, s M).

We claim now that the assignement v\—>x extends to an A-linear map (which is a
priori unique). This proves Lemma 3.2.2.

There is an A-linear map extending the assignement v \—> x if and only if the map
which sends v^ to Xi for any multi-index I extends to a (unique) F^-linear map. In the
proof of Lemma 1.2.6, the non-zero v^ are described, they form an F^-basis for Av;
therefore it is enough to show that x, is zero as soon as v^ is zero.

Let us now introduce a notation which will be useful also later. Given a multi-index
J=(/i, . . . ,7^), denote by c(J) the sum j\ + . . . +7,.. If L is an unstable module and y
an element of degree k of L, one has

(3.2.6) y^o=>c(l)^k.
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This is proved by considering the "universal" case: the generator F (k^. If I is a multi-
index such that y^ is non-zero, define I' to be the multi-index (A:-c(I), ;\, . . ., f^), then

(3.2.7) ^r=S^i.

This is one more time checked on the universal case.
Now assume that we have a multi-index I for which x, is non-zero, one has to prove

that ^i is non-zero. The relation 3 .2 .7 shows that x? is non-zero (sM is reduced),
therefore the hard part of Theorem 3.1.4 implies

a(r)^7i(x)^,

we insist on the fact that this is really the place where the use of Theorem 3.1 .4 is
crucial. On the other hand

a(r)^a(c(r))=a(J)=^,

so a(T)=^. Therefore, the power of 2 appearing in the diadic expansion of the indices
contained in I' are exactly 2^, . . ., 2°". In the proof of Lemma 1.2.6, it is noted that,
in this case, v^ is non-zero, so is v^ by (3.2.7).

3.3. PROOF OF THEOREM 3.1.3. - To prove Theorem 3.1.3, we will proceed in two
steps. We first show that for a simple object M in ^/^T;7, which is of weight n, /?„ (M)
is a simple, non-zero, right IF^ [^J-module J. Then one shows that M is isomorphic to
J. F (I)0", J being identified with a simple right ideal of F^ [SJ. The fact that /?„ (M) is
non-zero is a consequence of Theorem 3.1.4. The simplicity of p^ (M) is easy and left
to the reader. We observe that if J is a simple right ideal of (F^ [^nL t^n J. F(l)0" is a
simple object in v^. This is proved as follows; let S c: J.FO)®", we know that S has
weight n if it is non-zero (Corollary 2.2.3). Therefore /?„ (S) is equal to J if it is non-
zero and we are done.

Let us identify /?„ (M) with a simple right ideal J of F^ [^n] 2in(^ consider the diagram:

J ® FO^/^M) ® FO^^M
1F2 [Sn] F2 [<5>n]

r
J.F(l)®"

where n is the projection which sends s 00 co to s co. In the degrees d such that a (d) is
equal to n, K is an isomorphism. Therefore, Ker n has weight at most n — 1 by the
difficult part of Theorem 3.1.4. Hence ev (Ker 71) is zero as s M contains no non-trivial
subobjects of weight less or equal to n- 1. Therefore, n factors through ev and there is
a non-zero map (p: J. F (1)®" -> s M. The result follows, s M and J. F (1)®" being simple.

3.4. PROOF OF PROPOSITION 3.1.2. - We first note that F(l)®" is '̂/-closed. This
is a consequence of paragraph 8 of [LZ2], this follows also easily from 1.3.2. Now if

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



608 V. FRANJOU AND L. SCHWARTZ

I is a right ideal of FJSJ, I.FQ)®" is obviously reduced and quadratically closed in
FQ)0", therefore (see 1.1), it is '̂/-closed.

4. Proof of Theorem 3.1.4

Recall that we want to prove the following

THEOREM. — Let M be an object in ^/J^z7. The weight of M is the largest integer
a (d) for those d such that (s MY is non-zero.

We first show the easy part of the theorem: the inequality (D (M) ̂  sup a (d), d running
over those integers such that (sM)d^{ 0}. This is a consequence of the fact that sM is
reduced. If x is a non-zero element of sM of degree d, one has SqoX=x^ [{d) denotes
here a multi-index]; therefore, as Sq^x is non-zero, 7i(x)^a((J))=a(fif).

Let us now introduce a few notations. Let x be an element of degree d. If I is a
multi-index such that x, is non-zero, c(T)^d, so we can define 51 to be the multi-
index (^-c(I),/i, . . .,/,) [where I=0\, . . .,/,)]. This was denoted I' in the proof of
3.2.2. Recall that (3.2.7).

^8i=S^o^r

In the course of this paragraph, we shall say that a multi-index I carries the weight
ofx if Xi is non-zero and a (I) is equal to n (x). Remark that when x is an element of a
reduced unstable module, if I carries the weight of x then (because of 3.2.7) c (I) is
equal to the degree of x.

Note also that the operator 8 respects the reverse lexicographical order on multi-
indices

I^J=>8I^8J.

Let us denote by E^ the set of multi-indices I such that I carries the weight of x and
Xi is of degree u (| ̂  | = u — \ x |).

LEMMA 4.1. — If h is large enough, the operator 6 induces a bijection from E^y into
E^h+i^.

Proof. - If I carries the weight of x so does 81, therefore 8 sends E^ into E^+i«
for any h. But 8 is injective, therefore it is enough to show that the cardianal of E^
is bounded independantly of h. The cardinal of E^ is certainly not greater than the
number of multi-indices I such that Xj is non-zero and is of degree 2h u. To get a bound
it is enough to look at the universal case when M=¥(d) and x=i^ In this case the
problem reduces in majoring the number of non decreasing sequences of d powers of 2
adding up to 2hd (to prove that use, for example, 1.3.1). Let us call this number
<?d(/0. We claim that e^(h) is constant as soon as h is greater or equal to d- 1. Indeed
e^(h+ 1) is greater than e^(h) only if there is a sequence of d powers of 2 adding up to
2 / l+l d and starting with 1. But such a sequence has at least (/?+2) terms.
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We are now ready to prove the difficult part of the theorem.
To show the reverse inequality, we need to find for any x in s M an element y in A x

such that y is non-zero and a(|^|)=7r(x). We look among the x^s to get such an
element.

Let us choose a multi-index I carrying the weight of x. It is possible to suppose that
I is the largest element in E|^(. Recall that the order on E|^( is the reverse lexico-
graphical one, and that x, is non-zero as I carries the weight of x by hypothesis.

Let us denote n (x) by h and write

^rK2:'
with the convention that, for all i's, n^n^^ and ^>^+i i f^=^-+i .

This is uniquely defined, the convention on the a^'s is not as essential in the sequel as
the one on the n^'s. Note that these are not the conventions of Chapter 2.

Next consider the elements
i=h

£R_ TTT &2°i
'-> ~ 11 S f t+ l - i

i=h
&L_ -rr ^2ai+h+l-i
-> 1 1 ̂ ni-h-l+i-

i = l

If necessary replace I by some 8r I to secure that ^ — h — 1 +;' is greater than 1 for all /,
Lemma 4.1 allows us to do it for one can suppose that, for all r ̂  0, yi is the largest
element in E^r^. Let us note now that if i<j, then ^ — / z — l + / < ^ . — / ? — l + y . We
now consider A^, it is given by the formula

i=h /Vf="iA^=n s ^v:-®^:'.
i= l \V t=0 /

We claim that ^R®^ appears in A^ with a non-zero coefficient. Suppose that a
sequence (v^^,, creates this term, it must agree with the sequence (A, . . . . 1) up to a
permutation a. So the sequence (ni~vi)l<.i<h ls °f ^e form
(n^ - a (/?), n^ - a (A - 1 ) , . . . , n^ - a (1)). On the other side, we know it has to agree, up
to a permutation, with the sequence {n^-h.n^-h-1, . . .,^-1) because the
(rii — h — 1 + O's air pairwise distinct.

As n^—\ is strictly greater than n^—j as soon as 7>1, an equality of the form
n^ - \=n,-a (h-\-\-i) implies the following equalities: n^=n^ and
l==a(/!+l-0. Suppose i<h, in this case we know that ^ = ^ + 1 = . . . = ^ and
^•>^+i > • • • >ah' But the term ̂ \ which creates ^L\1 on the left hand side of A^,
creates ^fll on the right hand side, and it is the only one which can create a power of
^i. But this is impossible because ^ appears in ^R to the power 2^ and
a^<a^ Therefore, i==h and a(l)= 1; an induction completes the proof.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



610 V. FRANJOU AND L. SCHWARTZ

LEMMA 4.2. — Let K be a multi-index such that x^ is non-zero. If, in the decomposition
of A^ in the monomial basis, the monomial ^L (x) ^R has a non-zero coefficient, then the
multi-index K is equal to I.

Proof. — First, a(K) is equal to 71 (x) because a(K)^a(R)=7c(x). Thus K carries
the weight of x and is in E| ̂  \ where it precedes the maximal element I. Write now

i=h^=n^'1 = 1

with n[+1 ̂  n'i and ^i+1 < ̂  if n'i+1 == ̂ /.
The hypothesis tells us there is a sequence (v^)i^^ such that

^=rKvT-
and

i=/i
£L=-nr^;+^
s 11 s^i-vi •

i= i

One first observes that, up to permutation, the sequence (v^) is equal to (h, . . ., 1) and
that, up to permutation, the sequence (n'i—Vi) is equal to (n^—h, . . . ,^—1). As K
precedes I, n'^n^, let us suppose that n'^<n^ one has for any 7, 1 ̂ j^h,

n'j-v^n'j- 1 ̂ -1 <n^- 1.

And ^— 1 cannot be equal to any n'j—Vp a contradiction. Therefore n'^ is equal to n^.
Suppose now that v^>l , the preceding argument implies that, in this case, there exists
k < h such that n^ = n^ in order to create the factor ^^ ^ on the left, but that implies the
apparition (on the right) of a factor ^2ak; as a[ > a^, this is impossible. Therefore v^ is
equal to 1 and a^ is equal to a^. One completes the proof by induction and one gets

l^i^h, ^==^, V f = = / ? + l — ; , ^fi=^i'

END OF THE PROOF OF THE THEOREM. — Given a multi-index I, denote by S q1 the element
of A dual to ^ with respect to the monomial basis of A*.

The Lemma 4.2 implies that SqLSqRx is equal to Xj, this is shown as follows

SqLSqRx=K(x)/SqL.SqR=^x^(S(^K,SqLxSqR>),
K

where the sum is over all multi-indices, with the convention that ( A ^K, S ̂ L x S q^) is
zero if the two sides have not the same degree. The arguments above show that the
only multi-index K, such that ^L x ^R appears non-trivially in A (^K), is I.
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We claim now that a(| S^x|) is equal to n(x\ The multi-index L carries the weight
of XR = S q^ x because a (L) = n (x) ̂  n (x^). Therefore c (L) is equal to | x^ |, but

a(|xR|)=a(c(L))=a(L)=a(I)=7i(x)

and we are done.

5. Complements on the structure of ^/^Vil

The object of this chapter is to obtain further informations on the structure of ^/^T;7,
using the results of Chapter 3.

PROPOSITION 5 .1 .— Every noetherian object of^/^il is artinian (i.e. any descending
sequence of sub-objects stabilizes).

Proof. - We first notice that a noetherian object has finite weight. This allows us to
proceed by induction on the weight. Let us assume that any noetherian object of weight
less than (n - 1) is artinian. (The case n == 0 is left to the reader.) Let M be a noetherian
object of ^IJ\ru of weight n. Let N^ ^ N3 ^ . . . a descending chain of sub-
objects. With the notations of Chapter 3, one gets a descending sequence of noetherian
^2 [SJ-modules

^n(Ni) ^A,(N^) =3. . . ̂ (N^ . . ..

Noetherian objects are artinian in Mod^^, therefore this sequence stabilizes at a
certain step, say at ̂  (N^). Lemma 3.2.4 implies that N^/N^ (l^k) is of weight at most
(n-\). A limit argument shows that N^/H N^ has weight at most (n- 1). It is also

l^k

noetherian being a quotient of N^. By induction it is artinian. Therefore the descending
sequence NynN^A:) stabilizes, this implies that N^i=N, as soon as j is large

enough.
As a corollary, we note that this implies that ^/J^7 is locally finite, in the terminology

of Gabriel.
Let us recall that, in an abelian category, an injective hull for an object M is an

essential morphism /: M-> E^ where E^ is injective (An essential morphism ;: M -^ E is
by definition a morphism such that any/: E -> N is a monomorphism if and only if/° i
is a monomorphism.) An injective hull, when it exists, is unique up to isomorphism.

The category % has injective hulls [LSI], therefore ([Ga], chap. 3), ^/^il has also
injective hulls (any object has an injective hull).

Let us recall also that the socle of an object M is the largest semi-simple (direct sum
of simple objects) sub-objet of M. The socle of an object exists in the category ^/^il
(see [Bo2]). An indecomposable injective in an abelian category has a socle which is
either trivial, either simple ([Ga], [Bol], [LSI]).
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COROLLARY 5.2. — The map taking a simple object of^/^il to its infective hull induces
a bijection between the isomorphism classes of simple objects and the isomorphism classes
of indecomposable injectives of^j^il.

The proof is classical. One gets a map in the other direction by considering the socle
of an indecomposable injective. One has to check that the socle of an indecomposable
injective is non trivial, but any object M of ^I^Vil contains non trivial noetherian sub-
objects by Proposition 5.1, therefore it contains non trivial semi-simple objects, hence
the socle of M, soc(M), is non trivial. The rest is routine (see [Bol], [LSI]).

Let us note also that the functor r determines a bijection between isomorphism classes
of indecomposable injective objects of ^j^Vil and isomorphism classes of '̂/-closed
indecomposable injective objects in ^t ([Ga], Chap. III).

An indecomposable injective E is the injective hull of its socle soc(E). As E is
indecomposable, soc(E) is simple, and isomorphic to I.FQ)0" for a certain simple right
ideal I of F^SJ, for a certain n. But I .F(l)®" embeds in H* (B (Z/2)"; F^) as F(l)®"
does. The theorem of Carlsson, Miller, Lannes and Zarati ([Ca], [Mi], [LZ2]) tells us
that H* (B (Z/2)"; F^) is injective in ^. The injective hull E of I .FQ)®" is therefore a
direct factor inside H* (B (Z/2)"; F^). Therefore

THEOREM 5.3. — A reduced indecomposable injective in the category ^ is isomorphic to
a direct factor ofH* (B (Z/2)"; F^/or some n.

This was first proved by Jean Lannes and the second author ([LSI]).

6. Simple subquotients of H* (B WTf; F^)

It is natural to ask, given a simple object in ^j^Vil, whether or not it appears as a
subquotient of H* (B (Z/2)"; F^). Before stating the result and giving applications of it,
we need to introduce some terminology about representations of the group S^.

6.1. DESCRIBING THE SIMPLE OBJECTS OF ^/J^'/. — We recall here some facts for the
modular representation theory of the symmetric groups. This material is covered in
[JK], [Jal], [Ja2] to which we refer for further details.

We shall denote ^ a partition of an integer n, this is a decreasing sequence of integers
(^, . . ., ̂ ,) whose sum is n. The conjugate partition X/ of K is defined by

?i;.=Card{;/?i,^/},Vye^.

We call ̂  the length of 'k.
A partition X is column 2-regular if, for any ;', ^ — ̂  + ^ ̂  1; it is equivalent to say that

^/ is strictly decreasing.
Associated to X,, there is a Young diagram with n nodes: it is a diagram made with oc^

nodes on the ;-th row and o^- nodes on the y-th column. More formally, it is defined in
[Me] to be the set of points (ij)e N2 such that 1 ̂ /^^; i and j are the coordinates of the
node. The most usual convention in drawing this diagram is to let increase the first

4° SERIE - TOME 23 - 1990 - N° 4



UNSTABLE A-MODULES AND SYMMETRIC GROUPS 613

coordinate ; (the row index) downwards and the second one (the column index) from
left to right. Let R^ (resp. C\) be the group of permutations of the nodes stabilizing
the rows (resp. the columns).

Example. — The Young diagram associated to the partition (2.2.1) is as follows

• •

(where the nodes are replaced by "•").
In this case, the group of permutations of the Young diagram is isomorphic to £5,

^(2, 2, 1) to ®2 x ®2 anc! C(2, 2, 1) to ®3 x ®2-

In general, R^ is isomorphic to S^ x . . . x (5^(^=^) and C^ is isomorphic to
^x . . .xS^(^=^i ) .

A ^--tableau m is a map from the Young diagram associated to X, into ^J.
Let us introduce two ^-tableaux,
— Let ^ be the tableau which assigns to any node of the ;-th row the integer 'k\ — i,
— Let ^ be the tableau obtained from ^ by "reversing the order on the columns",

i.e. it associates the integer ^—^.+ ;— 1 to the node which is in the ;'-th row and the 7-
th column.

Example. — In what follows, we use the standard notations for ^-tableaux, i.e. we
write down the integer which is the image of node (ij) at its place. If ^-==(3,2,2,1),
then

3 3 3 0 1 3
2 2 _ 1 2

t. = and ^ ==
^ 1 1 ^ 2 3

0 3

The group of permutations 2^ (of the nodes) of the Young diagram associated to X, acts,
by composition, on the right, on ^-tableaux. Let R^ (resp. C^) the sum in F^ [®J °ftne

elements of R^ (resp. of C^).
Let T^ be the F^-vector space with basis the set of X-tableaux.

PROPOSITION 6.1.1. — Let \be a column 2-regular partition, then
(i) ^R,C,=^C,.

(ii) the element ^ R^ C\ R^ of T^ is non zero;
This is proved in (JK] (Chapter 8, exercise 8.3) for (i); (ii) follows easily from (i), in

fact one checks that all ^-tableaux ^ a, for a e R^, are pairwise distinct and appear with
coefficient 1 in t^C^ R^.

This proposition can be transposed in our setting by associating a monomial of FQ)0"
with every ^-tableau t (k is a partition of n); let us denote by ^ j the integer associated
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to the node which is on the ;-th row and the j-th column, and consider the following
element of FQ)®"

j=^i ^
® (g)^1'7,

7=1 t = l

denoted ^.

Example. — For ^-=(3,2,2,1), one has

V^= U (X) U2 00 U4 00 U8 00 U2 00 M4 ® M8 00 M8.

Let us identify the Young diagram, as set, with { 1 , . . .,n} by sending the node (ij)
to 'k[ + . . . + ̂ ._ i + / (;'. ̂ . one reads each columns downwards and the columns, successi-
vely, from left to right).

Example. — If ^-=(3,2,1), the numbering is read as follows

1 4 6
2 5
3

This bijection identifies 2^ with ©„ and in particular C^ is identified with

^d,...,)/^ ®a(l+l , . . . ,M+^2) x • • • x ®^i+. • • +^-i+i,. . . ,^i+...+^')

and R. with

^(l^l+l,3l2+l,. . .)x ( 5(2,^1+2,..^^^ • • • ^a'l).

where (a?i, . . .,^) being a subset of(l , . . .,^), ^(ai,...^^) is the group of permutations of
this subset.

With this convention, the assignement t -> ̂  is anti-equivariant:

^a=^~1^

The following is proved in [JK] (Chapter 7, exercise 7.2 in particular), ^^ also [Jal] and
[Ja2].

THEOREM 6.1.2 ([JK], [Jal], [Ja2]). — The ideals R^R^^[Q^ form a complete set
of inequivalent simple right ideals of F^ [SJ when "k runs through the set of column 2-
regular partitions ofn.

Let us denote by e^ the element R^ C\ R^; then

COROLLARY 6.1.3. — Let S^ be the unstable ^.-module ^F^)0". As n runs through
all integers and ^ through all column 1-regular partitions of n, the objects r S^ form a
complete set of non isomorphic simple objects in ^j^Vil.
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Moreover, (6.1.1) tells us that the element e^v^ in S^ is non zero; in fact, it contains
the monomial v^ with a non zero coefficient. We will denote this element s^ in the
sequel, note that this is not the class of lowest degree of S,,. The class of lowest degree
of S^ is described in the same way but using the tableau which associates 0 to any node
of the first row, 1 to any node of the second row....

6.2. SIMPLE SUB-QUOTIENTS OF H* (B (Z/2)^; F^). — Here is the main result of this
paragraph.

THEOREM 6.2.1. — Let "kbe a column 2-regular partition ofn. Then, S^ is a subquotient
o/H* (B (Z/2)^; F^) in the category ^/^il if and only ifk^d.

This result is in fact equivalent to one of D. Carlisle and N. Kuhn as we noted in the
introduction. In the proof, we will identify H* (B (Z/2)^; F^) with F^ [x^ ' • ^ x^'

PROOF OF SUFFICIENCY. — The primitive filtration (which coincides with the weight
filtration) of H*(BZ/2;F2) ^s subquotients A"F(1), n^O. The product filtration on
H* (B WTf\ F^) has as subquotients the A"! F (1) ® . . . ® A"" F (1) with u ̂  d. But S^ is
a quotient of A^ F (1) (x). . . 00 A^' F (1) (t' = ̂ ) by construction.

PROOF OF NECESSITY. — Suppose there is a sub A-module M of H* (B (Z/2/; F^) and a
non zero map (p: M -> S^. For k large enough, the element S q^ s^ (which is non zero)
is in the image of cp: (p (x) = S q^ s^ for some x e M.

Consider now the multi-index I consisting of the powers of 2 appearing as exponents
in the element S q^ ̂ , these powers being disposed in increasing order, it is

^k ^ k + i - 1 ^k+i-1 ^fc+34-1 ^fe+^-1z , . . . , z , . . . , z - , . . . , ^ - , . . . , z -

^ t - i + 1 times Xi times

(as usual t='k[\ This is (essentially) the same multi-index as the one used for the proof
of lemma 2.2.1.

The same computation as for lemma 2 .2 .1 shows that (S^^)i is non zero.
Therefore, among the monomials adding up to x, there is at least one (let us denote

it z) such that z, is non zero. We are going to give an upper bound of z | in term of n,
then a lower bound in term of ^.

a

Write z as ^=^;c^l wlt^ ^ convention that a^a^^ and that m^<m^^ if
i

^=^•+1. Inspection on \(z) shows that ifzi is non zero, then every index of I is a sum
of 2°^. As c(I) is equal to |z|, then each 201 must figure in one of those sums. Thus,
some index of I is at least the greatest of the 2^'s, that is: for all ;, 2^~ l + f c^2^. The
maj oration now follows

^hI^-'-E E i".̂  ^ 2a=rf(2s+l-l)
i= l j = 1 Wi = j j = 1 a ̂  sup a{
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where s denotes sup^., 1 ̂ ;^a. Therefore

Iz^^i^

We now get a minoration

^i ^i
|^ |=|S^^|=Z^2^- l +^^(^-z+l)2xl- l + k

i i

' /xl \
=2^^-^ ^/.21-1 =2^^-^ ((^-1)2^1+1).

\ i /

Therefore

(^-l)2xl+2)Ll-^<^2)ll,

so

?4^ Q.E.D.

Special cases of these results were obtained by N. Kuhn in [K]; he proved here that if
L(n) is the "Steinberg module" of S. Mitchell and S. Priddy [MitP], then
Hom^ (L (m), L (n)) is trivial as soon as m < n. It is possible to show that L (n\ considered
as an object of ^/J^7, is the injective hull of ^(n,n-i,...,i) (usmg [Mit] for example). As
L(m) is a direct summand of H* (B (Z/2;r; F^) the existence of a non trivial map from
L(m) into L(n) would imply that S^^_i ^ is a sub-quotient of H* (B (1/2)^ F^),
which is impossible as m<n.

More generally let us denote by E,, the injective hull of S^ in ^/^r;7; by abuse of
notations, denote also sE^ by E^. The E^'s form a set of representatives of non-
equivalent reduced indecomposable injective in ̂  (^/^il). We will show in Chapter 7.

PROPOSITION 6.2.2. — The unstable A^-module E^ embeds in (and is a direct factor of)
H* (B (1/2)^ F^) as soon as d^ 'k[.

And we have

COROLLARY 6.2.3. — The unstable A-module E^ does not admit S^ as sub-quotient (in
the category ^/^il) as soon as ^[ <Ui.

In the category ^ that means that E^ has not ^S^ as subquotient, for any k^O, as
soon as ̂  <Ui. Here <I> is the "double" or Frobenius functor of [MP] (see also [LZ2]).

7. Connectivity of the indecomposable
summands of B (Z/2)"

7.1. This chapter computes the connectivity of the indecomposable reduced injectives
in the category (!U. Let us recall from chapter 5 that isomorphism classes of indecompos-
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able reduced injectives in the category ̂  are in bijection (via the socle) with isomorphism
classes of simple objects in the category ^I^Vil. These isomorphism classes are indexed
by column 2-regular partitions ^ (let us recall that E^ denotes the injective hull of S^).

Let us now state the main result of this chapter.

THEOREM 7.1.1. — The unstable A-module E^ is trivial in degrees strictly less than
'k[ +2^+ • • • +2r '-l X,^ and it is of dimension 1 in this degree.

As usual, t ' is equal to X,i in this result.
In order to prove the theorem we need to construct an embedding of S^ in

H*(B(Z/2)^i; F^), allowing us to consider E^ as a direct factor in it; this will be done in
sections 7.2 and 7.3. Let us recall that the indecomposable injective E^ embeds in (and
is a direct summand of) H* (B (Z/2)^ F^) if and only if its socle S^ does, and the following
result holds whose proof will be given elsewhere [LS2].

PROPOSITION. — The unstable ^-module S^ embeds in H* (B (Z/2/; F^) ;/ and only if
V^d.

We proceed as follows. In the second section (7.2), we explain the combinatorics we
need to define the embedding of S^ into H*(B(Z/2)^i; F^). In the third section (7.3),
we prove it is an embedding. In the fourth section (7.4), we prove Theorem 7.1 .1 and
give an application.

7.2. PRELIMINARIES ON COMBINATORICS. — Consider a column 2-regular partition 'k,
and construct a ^-tableau m^ as follows. Let us denote, as usual, by m^j the integer
associated to the node on the ;-th row and the j-th column. Start at the bottom row
and associates zero to the only node, in other words m^ ^ is zero. Then one goes up
row by row and, as X- is column 2-regular, m^ j is defined by reverse induction on ;,
1 ̂ i^'k[, by the two rules:

(i) i f ^ = ^ + i + 1, then m^ ,^.=0 and fory<^ then .̂ j = w ^ + i ^.+ 1;
(ii) if^.=^+i, then m^j=m^^^-^-1 i f ^ + i j < ^ + i — 1 and m^ j=0 i f w ^ i j = ^ + i — 1.
The definition makes sense because one checks by induction that m^^ ̂ •^'k^^— 1 for

ally.
Example. — For ^=(3,3,2,2,1), with the usual conventions

2 0 1
1 2 0

m,= 0 1
1 0
0

An easy induction shows that m^ is the only ^-tableau such that
— The set of values of the tableau m^ on the i-th row is {0, . . ., ^.— 1 };
— Each column of m^ is divided in "bands of nodes" carrying consecutive integers in

increasing order upwards and starting with zero; in our example there are 2 bands of
length 3, 2 of length 2 and 1 of length 1.
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Let us be more precise. We define subsets of the Young diagram associated to ^ as
follows: two nodes are in the same subset if and only if they are in the same column
and m^j-mi^=i-l((ij) and (/J) being the coordinates of the nodes).

By induction over 'k[, one checks this defines a partition of the Young diagram and:
- there are exactly 'k[ subsets in this partition;
- among which, (k[ - ̂ ) are of cardinality 1, . . ., (^ - ̂ +1) are of cardinality / ? , . . . ;
- the set of values taken by the tableau on any subset of cardinality h is

{0, . . . ,h- 1}, the values being "read" in increasing order from the bottom.
Let us call these subsets M^, . . ., M^ assuming that card M^ card M .̂ as soon as i^j.
Let us recall that we identify the Young diagram with the set { 1 , . . . , / ? } via the

bijection which sends the nodes with coordinates (ij) to ^+ . . . + ^ _ i + L In other
words they are ordered (increasingly) from top to bottom on columns, and the columns
are ordered from left to right. Therefore the M,'s are identified with subsets of
{ 1 , . . . , ^ } .

Let co be the map from { 1 , . . .,n} into { 1 , . . .,^ } defined by w(i)=k if and only if
zeMfc.

We define a map (p^FO)®" --^H^BCZ^i; F^) as follows: we identify
H* (B (Z/2)"i, (F^) with ^ hq, . . ., x^] and

i=n »=^i(p,^201 ® . . . ® u2an)= n €w= n ̂ eM^.1 = 1 i=i
Example. - Take 'k = (3,2,2,1), then

1 2 0
0 1

m^ =x 1 0
0

The partition of the Young diagram is therefore given, identifying the diagram with
{ 1 , . . .,8}, by Mi ={5,6 ,7} , M ^ = { 1,2}, M 3 = { 3 , 4 } and M ^ = { 8}. Then

<P,(M201®. . .®M2 a 8)==xf5 + 2 f l 6 + 2 f l 7x^+ 2 a 2xf3 + 2 f l 4xf8 .

We apply immediately the preceding combinatorics and we introduce a class in F(l)®":
i=n

co,,=R,® M261,
1=1

where ^=/- 1 if ^ + . . . +?i;._^ <i^[ + . . . +^.. In other words, one considers the
class associated to the ^-tableau ^ taking the value j- 1 on the j-ih column and one
applies R^ to it.

Following [W], we now use the notion of "weight vector" for monomials in
F^Xi, . . .,xJ. The weight vector of x^. . .x^ is the rf-tuple (a(^), . . .,a(^)). In
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t

particular the weight vector of n^1"1 ls (^r • • •^)- ^>n tne set °^ ^^ght vectors,
i

we consider the partial order given by

(ai,...,oc^(Pi,...,P,)

ifoc^Pi,o^P2,...,a^P,.

t
LEMMA 7 .2 .1 .—The element (p^(co^) is the sum of the monomial n^2 1 with

i
monomials of weight vector strictly less than (^, . . ., ̂ ).

The lemma results from the fact that there is a unique /\eR^ such that the tableau
u^r^1 equals m^ and one checks easily that for all others elements r in R^, the tableau
u^r~1 takes at least twice the same value on at least one subset M,. This translates as

follows for the corresponding element co^/ in F(l)®": among the elements ® u2bj adding
i

up to co^ in F^)®", there is only one that (p^ sends to a monomial of weight vector
(7.1, . . ., ̂ ) all the other elements being sent to monomials of strictly less weight vector.

Example. — Ir ^==(3,3,2,2,1)

2 0 1 0 1 2
1 2 0 0 1 2

m ^ = 0 1 , ^ = 0 1
1 0 0 1
0 0

Mi = { 1 , 2 , 3 }, M^ = { 7 , 8 , 9 }, M3 = {4 ,5} , M4 = {10 ,11} and Ms == { 6 } (here we identify
the Young diagram with {1 ,2 , . . .,11}). Then

^/1,2,3,4,5,6,7,8,9,10,11\
^6,11, 3,9,5,10,2,8,4,1,7/

We keep the notations introduced in 6.1 (especially 6.1.1).
In chapter 6, the simple object S^ has been identified with the unstable module e^ F (I)0"

where ^=R^C^R^, we can consider the restriction of q\ to S^. In the next section we
are going to prove the following lemma using the preceding result.

LEMMA 7.2.2. — The restriction of the map (p^ to S^ is injective.

7.3. PROOF OF LEMMA 7.2.2. — As S^, when considered in ^/J^;'/, is simple and as
H*(B(Z/2)^1; F^) ls reduced, it is enough to show that (p^ is non zero on one element of
S^ We proceed as follows; We introduce a certain sub-A-module W^ of FQ)0". The
socle (in the sense of ^ / ^ i l ) of W^ is S,,; although we do not need this fact here we
prove it for later use. The lemma 7 .2 .1 will tell us that (p^ is non zero on the class of
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minimal degree ofW^/ which is co^. To finish, we give an operation 9 such that 60^eS^
and 6(p^(co^)^0.

The unstable A-module W^ is defined to be RJF(l)0")^ where (FQ)0")^ denotes
the invariants under C^ in F^)®"; S^ is included in W^/, moreover

S^R.^FO^cW,/;

let us call W^ the intermediate unstable module in this sequence of inclusions.

LEMMA 7.3.1. — If the partition ^ is column 2-regular, the socle (in the category
^I^Vil) of the unstable ^-module W^/ is isomorphic to S^.

Remark. — This lemma, with lemma 7.2.2, implies that q\ is injective on the whole
ofW,,.

Proof. — In degrees d such that a (d) = n, W^ and W^ are isomorphic. Therefore the
inclusion W^ c; W^/ is an isomorphism in i^n/^n-r ^s WT anc! ̂ / are sub-A-modules
of F^)0", their socle is a direct sum of simple objects of weight n (2.2.3), hence
soc(W^) is isomorphic to soc(W^).

Let S be a simple subobject of W^, it is of weight n, therefore pn (S) is in the socle of
^ (R, C, F, [SJ. F (I)0") ̂  R, C, F, [SJ.

This latter F^ [SJ-module is considered in [Jl] (p. 17 and 41). It is known to have as
socle the module R^ C^ R^ F^ [6J as soon as ^ is column 2-regular. This proves the
lemma. However this terminology being unusual, we will be a bit more precise. The
usual Specht module associated to K is defined to be isomorphic to C^R^F^tSJ. The
latter is in fact the contragredient to the former (see [JK] Chapter 7 and the exercises). If
^ is column 2-regular, the Specht module associated to ^ has a unique maximal, non
trivial, sub-module. The quotient of the Specht module by its maximal submodule is
isomorphic to R^C^R^F^SJ. The latter is a simple, self-dual module, and dualizing
proves our claim.

It follows that S is isomorphic to S^.
Clearly, there is a unique class of lowest degree in W^/, it is the class co^ introduced in

the preceding section.
We keep the notations introduced in 6.1 (especially 6.1.1).

LEMMA 7.3.2. — There exists an operation 9 in the Steenrod algebra such that
6u^ = C^ t^ in particular 9co^ e S^.

Here, by abuse of notations, u^ and ^ are the monomials in FQ)®" associated to the
^-tableau u^ and ^.

Proof. — One considers the operation Sq1 which is dual, in the monomial basis of
A^,to

Ki_ n &2/-1
^ ~ 11 S^i+l- i - j?

a, j )

where the product is taken over all the nodes of the tableau associated to the partition
^, the nodes being represented by their coordinates (ij). In other words, the product is
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taken over all pairs (ij) such that 1 ̂ ;^^, 1 ̂ /^. The computation is the same as
the one made in Chapter 2 and left to the reader.

In order to complete the proof, it remains to show that S^cp^co^) is non zero.

LEMMA 7.3.3. — If6 is an operation in the Steenrod algebra, for any monomial x in
F^ [Xi, . . . ,xJ, Qx is a sum of monomials of weight vectors smaller than the one of x.

Proof. - Inspect the coaction or look at the action of S q^ on a monomial.
The lemmas 7 .2 .1 and 7.3.3 imply that it is enough to show that

S^fxf1"1 . . .x^~1) (which is the same as (xf1"1. . .x^"1),) contains monomials of
weight vector (k^ . . .,^) (recall that t=K[). This is one more time a computation
similar to those of Chapter 2. The general formula is as follows

/J='1 \/ 2^1-1 2^-1\ _ / T-[ / -. , \2 . / - 1 ^
^i • • -^ ^ - - M l ^ r - •x^) ]

\ j = i /I
J = '1 / , , , \
H I V'1 9^-1-1 '7^1-^, \== I > Y 1 V 1 •;' II L ^a-^l)' • ••^cr-1^) I-
j=l \ae(£^ /

Example. - If 'k= (2,2,2,1), then

^=^?^3

and

(x?x|xJX4)i=(^X,-l(i) . . .^- l(4))(Z^-l( i) . . .^-1(3)).
\®4 / \®3 /

This formula shows in particular that (x^1"1. . .Xy2^"1)! contains monomials of weight
vector^, . . .,^).

7.4. END OF THE PROOF OF THEOREM 7 .1 .2 WITH AN APPLICATION. — We observe that
there does not exist monomials of weight vector greater or equal to (^4, . . .,^) and of
degree smaller than ^+2^+ . . . +y'~1 ̂ . But if x is an element of
E^c= F^Xi, . . .,^'J, the fact that S^ is the socle of E^ implies that AxOS^{0},
therefore, for some GeA, 6x must involve monomials of weight vector
(?4, . . ., \). Therefore, | x \ is at least ̂  + . . . + V ~1 ̂ ..

As S^ is the socle of W^, W^/ embeds in E^; therefore E^ is non zero in the degree of
co^ which is ̂  + . . . d^'"1 ̂ . A similar argument using the weight vectors shows that
E^ is of dimension 1 in this degree.

We give an application of the preceding result. The group GL^ (F^) acts by linear
substitutions on the algebra fl^b^ • • -^J. I61 u^ consider a simple F^-representation of
GL^(F2), say S. One may ask what is the lowest integer k such that S is a composition
factor of the representation of GL^F^) afforded by F^ [x^, . . . ,xJ in degree k.
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The simple F^-representations of GL^ (F^) are indexed, up to isomorphism, by partitions
X,=(^i, . . .,^) (7^>0), which are column 2-regular ([JK], chapter 8).

Example. — There are four isomorphism classes of simple representations of GI.3 F^,
corresponding to:

^=(1,1,1), the representation is the trivial one F^
^=(2,1,1), the representation is the standard one Fj;
^-=(2,2,1), the representation is the second exterior power of the standard one;
^=(3,2,1), the representation is the Steinberg representation.
Let us denote by F^ the simple representation associated to ^.

THEOREM 7.4.1. — Let ^=(X^, . . .,^) be a column 2-regular partition, F^ the corre-
sponding simple representation o/GL^F^). Then, F^ occurs in the composition series of
F^ [^i, . . ., xj in degree n for the first time when n = ̂  + 2 ̂ 3 + . . . .

We will be very short, for this is a consequence of Theorem 7 .1 .2 and [HK]. If s^ is
a primitive idempotent of F^ [GL^ F^] such that F^ [GL^ F^] £^ is a projective cover of F^,
it is shown in [HK] that F ^ I X ^ , . . .,xjs^ is isomorphic to E^©E^ where
^= (T.I — 1, ^,2 — L • • • ? ̂ — 1)- The representation F^ occurs in the composition series of
F^XI, . . .,xJ in a certain degree n if and only if F^DC^, . . .,xje^ is non zero in this
degree [Mit]. Therefore the integer we are looking for is the smallest degree such that
E^ is non zero.
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