CLAUDE DANTHONY

ARNALDO NOGUEIRA
Measured foliations on nonorientable surfaces

Annales scientifiques de | "E.N.S. 4¢ série, tome 23, n°3 (1990), p. 469-494
<http://www.numdam.org/item?id=ASENS_1990_4 23 3_469 0>

© Gauthier-Villars (Editions scientifiques et médicales Elsevier), 1990, tous droits réservés.

L’accés aux archives de la revue « Annales scientifiques de 'E.N.S. » (http//www.
elsevier.com/locate/ansens) implique 1’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASENS_1990_4_23_3_469_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. scient. Ec. Norm. Sup.,
4° série, t. 23, 1990, p. 469 a 494.

MEASURED FOLIATIONS
ON NONORIENTABLE SURFACES

By CLaAuDE DANTHONY AND ArRNaLDO NOGUEIRA (*)

ABSTRACT. — In this paper, we show that, for a nonorientable surface M, almost all measured foliations in
MF (M) have a compact leaf which is a one-sided curve. In order to do this, we introduce and study a
generalization of interval exchange transformations.

REsUME. — Nous montrons que presque tout feuilletage mesuré d’une surface non orientable posséde une
feuille compacte. Pour cela, nous utilisons les involutions linéaires, qui généralisent les échanges d’intervalles.

Key words: Measured foliation, Nonorientable surface, Interval exchange.
AMS numbers: 57 R30-58 F 18.

0. Introduction

Let M be a closed surface of negative Euler characteristics y (M). The set of equiva-
lence classes of measured foliations on M is denoted by .#% (M). Recall ([T1], [T 2],
FLP]) that #% (M) is a PL manifold which is homeomorphic to
R™3™N\ {0}. Therefore #% has a Lebesgue measure class.

In the case where M is orientable, we have the following theorem by H. Masur [M]:

THEOREM (Masur). — If M is orientable, then almost all elements of MF are uniquely
ergodic. (The methods we shall introduce allow us to give a new proof of this result.)

When M is nonorientable, it is easy to see that the set of foliations having a compact
leaf which is a one-sided curve is open and dense in #%. Therefore the minimal
foliations are not dense (recall that, for measured foliations, unique ergodicity implies
minimality). However, there exist minimal foliations ([AY] or [G]), and even uncounta-
bly many [N 1].

In this paper, we prove the following result:

THEOREM 1. — If M is nonorientable, then almost all measured foliations on M have a
compact leaf which is a one-sided curve.

(*) Supported in part by CNPq grant # 30.1456/80.
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470 C. DANTHONY AND A. NOGUEIRA

The origin of Masur’s theorem is the following:

There is a relation between measured foliations and interval exchange transformations;
more precisely, let # be a measured foliation and ¢ be its orientation covering foliatiqn,
then every first return application on a transversal for % is an interval exchange
transformation. There was a conjecture by M. Keane that almost all interval exchange
transformations which preserve orientation are uniquely ergodic. W. Thurston asked
the natural equivalent question for measured foliations, which is Masur’s theorem.

Keane’s conjecture was proved by H. Masur ((M]) and W. Veech ([V 2)).

The second author proved [N 2] that almost all interval exchanges with flips (i.e. not
orientation preserving) have a periodic point with negative derivative. It was then
natural to conjecture the result of Theorem I.

Trying to deduce Theorem I from this result about interval exchange transformations,
we first proved that, if E is a linear subset of #% containing only orientable foliations,
almost all (for the Lebesgue measure of E) elements of E have a compact leaf. This is
Theorem II. This result is restricted to orientable foliations because only in this case
the first return maps are interval exchanges. Moreover, if we consider the return
transformations for the orientation covering foliations, we loose the surjectivity of the
application which takes foliations to interval exchanges.

TaeorReM II. — If M is nonorientable, and if E is a linear subset of MF (M) given by
a train track which contains only orientable foliations, then almost all elements of E have
a compact leaf.

In other words, there is a strong relation between orientable measured foliations and
interval exchange transformations, but there is no relation between measured foliations
and interval exchanges good enough to obtain Theorem I.

In Section 1, we introduce the linear involutions, a generalization of interval
exchanges. The difference between interval exchanges and linear involutions is the same
as the difference between orientable foliations and foliations. We use them to prove
Theorem 1.

Given a foliation # (even not orientable), and a transverse segment I, we can cut the
surface along I, obtaining a new surface M’, two copies of I, namely I, and I_, and a
foliation #' of M'. By Poincaré’s recurrence, each regular leaf of %' which cuts I, \UI_
is a segment. We can then define the involution of I, \J I_ minus finitely many points,
which assigns to each point x the other endpoint of the leaf of #’ going through x.

A linear involution is a transformation of the form o°T’, where T’ is a continuous
involution of I, \JI_ minus finitely many points, which preserves Lebesgue measure,
and o is the involution which exchanges I, and I_. The space of linear involutions is
the disjoint union of open subsets of linear spaces. Then we prove:

THeEOREM III. — Almost all linear involutions with flip have a periodic point with negative
derivative.
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MEASURED FOLIATIONS ON NONORIENTABLE SURFACES 471

With exactly the same methods, we establish a generalization of the theorem of Veech
([V 2]) to linear involutions:

THeOREM IV. — Almost all linear involutions without flip are uniquely ergodic.

The proofs of Theorems III and IV are combinatorial. They use an induction process
similar to the one introduced by R. Rauzy in [R]. In order to study a linear involution,
we look at linear involutions induced on smaller intervals, and construct a sequence of
nonnegative matrices which describe how the induced involution depends on the original
one. Then we characterize the properties of a linear involution by the properties of the
sequence associated to it.

Section 2 is devoted to prove that linear involutions correspond well to measured
foliations. First, we recall some definitions about measured foliations and train
tracks. Train tracks give the PL structure of #%. We relate this structure with the
linear structure of the space of linear involutions. We study carefully the existence, for
foliations carried by a given train track, of unstable connections. Then we establish
that the applications which take foliations to linear involutions have good properties:
they are, for x in a full measure set, linear and onto in a neighborhood of x.

In Section 3, we use the result obtained in Section 2 to deduce Theorem I from
Theorem III and Masur’s theorem from Theorem IV. In order to illustrate that interval
exchanges correspond well to orientable measured foliations, we deduce Theorem II from
a result of Nogueira [N 2] on interval exchanges.

In the end of Section 3, we answer some questions, and complete the results by some
examples.

These results were announced in [DN].
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1. Linear involutions

1.1. DEFINITIONS, STATEMENT OF THE RESULTS. — Let I be an interval. We denote by
I,=Ix{+1}, I_=Ix{-1}, and o the involution of I,\UI_ given by
o ((x, €))=(x, —¢&).

DEerFINITION. — We call linear involution an application T of the form o°T’, where T’
is an involution of I, \UI_ without fixed point, continuous except in finitely many

points, and which preserves the Lebesgue measure. We denote by A the set of linear
involutions.
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472 C. DANTHONY AND A. NOGUEIRA

Remarks. — * Let E be an interval exchange transformation on I. We can consider
E as a linear involution, setting T=Eon I, and T=E ! onI_.

* The set A is not a group: the composition of two linear involutions is not a linear
involution. But the power of a linear involution is a linear involution: we can iterate
the elements of A.

A linear involution is characterized by: —the number of intervals exchanged by T,
—the way they are exchanged (a permutation), —the derivative (1) of T on each
interval exchanged, —the lengths of the intervals exchanged. More precisely:

Let T=0-°T' be a linear involution. We denote by J, the maximum open intervals
where T’ is continuous. We denote by p (respectively ¢g) the number of intervals J,
which are contained in I, (respectively I_). The intervals J, included in I, (respectively
1_) are enumerated from 1 to p (respectively, from p+1 to p+g¢).

We denote by ¢ the involution (without fixed point) of {1, ..., p+gq} such that
T J)=J,u  Let A, be the length of the interval J,. Then (A4, ..., A,,,) belongs to
the following set:

Apao={ s s My de@EPT N =hg g and A+ .. +A, =+ TRy, )

In some cases, the last equation is a consequence of the others. This happens exactly
when we are considering interval exchanges.

We define s,())=1 if J; and T'(J;) are both on I, or both on I_, and s,())=—1
otherwise (s,()=1 if (p+(1/2)—)(p+(1/2)— 9 ())>0, and s5,())= —1 otherwise). Let
F be the subset of {1, ..., p+q} consisting of i such that the derivative of T' on J; is
equal to s, (2).

We draw some examples in Figure 1. Notice that i belongs to F if, and only if we
cannot draw a flow on a band, which stays in the plane of the picture, and which induces
T’ on J; as a first return map.

5 {x J, 1= J {x J, {x
y {7 |y |y

Toiy {T'(x) Toiy {T') ) |Joi T'(x) |Jo

o) o) |~ Y. o) . 0G)
1T(y) F T'(x) T'(x) | T(y) _

Iy 1. I, 1. I, I. I, 1.
S(p(l )=1 S‘p(l )=1 s(p(z )=-1 S(p(l )=-1
ieF ieF ieF ieF
Fig. 1

DerFINITION. — Let T be a linear involution, and a=(p, ¢, @, F) be as above. We say
that T is of type a. We denote by A, the set of linear involutions of type o.
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MEASURED FOLIATIONS ON NONORIENTABLE SURFACES 473

Conversely, let p and g be two positive integers, ¢ be an involution without fixed
point of { 1, ..., p+q}, and F be a subset of {1, ..., p+q} which is invariant by o,
and a=(p, ¢, ¢, F). The application which assigns to each linear involution the vector
(A, - .., A,y p) is a bijection from A, onto A We give to these sets the Lebesgue
measure of the second one.

P, 4, 9°

DerINiTION. — We say that T is a linear involution with flip if it is of type
a=(p, q, ¢, F), with F# ¢ and F#{i:s,()=1}. This condition is necessary for the
existence of a periodic point with negative derivative for T.

In the first section of this paper, we prove the following theorem, which is a generali-
zation of a theorem of Nogueira [N 2].

THeorReM 111. — Almost all linear involutions with flip have a flipped periodic point, i.e.
there exist xoel, and ke N, such that T* (x,)=x, and the derivative of T in x, is equal
to —1.

Remark. — Moreover, it is clear that this property is open in the set of linear
involutions.

Using the same methods, one can prove a generalization of a theorem of Masur [M]
and Veech [V] and use it to give a proof of Masur’s theorem:

THeoreM IV. — If a=(p, q, ¢, F), F= and if o is such that the minimal foliations
are dense in A,, then almost all linear involutions of A, are uniquely ergodic.

1.2. THE INDUCING PROCESS. — Let T be a linear involution of type a=(p, g, 0, F),
and (A, ..., A,,,) be the lengths of the intervals exchanged by T. There can be three
cases:

@) A=A

() Ay <Apigp we set I'=[0, A+ ... +2, ], U((x, €))=T((x, &) if T((x, ¢)) is in
I'x{—1,1}, and U((x, €))=T?((x, &)) otherwise.

(i) A,>Np0

In cases (ii) and (iii), we say that U is the induced of T, and we write: U=ind (T). In
case (i), we cannot induce. This type of induction was first introduced by Rauzy [R].

p+e

we exchange I, and I_ and induce on [0, A, + ... +A,, 4]

LEMMA 1.1. — U is a linear involution which exchanges the same number of intervals
as T, and which type depends only on o and if we are in case (ii) or (iii).

* or ¢ (p)=¢ (p+gq), then all linear involutions of type o are in case (i), and ind (T)
can not be defined.

* or ¢(p)#¢(p+g), and the equality A, =2, holds only in a hyperplane in A,. ind
sends A, N {A, <A, 4.} to A, (' a type), and sends A, N {A,>X,,,} to A, (o a type).

Choosing a u;=\;=A, ; for each pair (i, ¢ (i), we have an isomorphism:

A~ RN NS, where N=(1/2)(p+q)— 1, and S, is the space of solutions of the
equation in p; associated to Ay + .. A=A, .. F AL

Remark. — If we make an induction, from A, to A,., this isomorphism determines an
isomorphism A, ~(R¥*)N*1NS,.
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474 C. DANTHONY AND A. NOGUEIRA

LEMMA 1.2. — Suppose that ind sends A, N {\,<A,.,} to A,. The inverse of ind,
considered from S,. to S,, is the restriction of a linear transformation of Ay given by an
elementary (N+ 1) X (N + 1) matrix E, i. e. one obtains the lengths of the intervals exchanged
by T multiplying by E the lengths of the intervals exchanged by U.

Lemmas 1.1 and 1.2 are not difficult. We omit their proofs.

Let T be in A,, and suppose that the lengths of the intervals exchanged by T do not
satisfy any rational relation which is not in the definition of A, , ,. As we are concerned
with measure properties, we shall now consider only such T.

s

We have a sequence ind* (T), which are in A,,. For each k we have an elementary
matrix E,, which gives the inverse of ind on A,. We denote by A, the product
E,...E,. The matrix A, is a nonnegative matrix which gives the inverse of ind* on

A

Gk’
DeFiNiTION. — The sequence of matrices A, (or equivalentely the product E, .E,. . .)
is called the expansion of T.

As we want to compute measures, it is sometimes easier to use sets of finite
measure. For this reason, we projectivize the set of linear involutions. We consider

only linear involutions on intervals of total length 1. The projectivized version of a set
denoted by A will be denoted by A:

Apao={0s o s e €REPFEN =D o, Ayt oo AA, =y o Ay, =1)

P ptq

A, is the set of linear involutions such that the lengths of the intervals are in A, , .

We denote by Xy the standard N-dimensional simplex.

So, we have an application ind which corresponds to ind up to the normalization of
the interval I'.

We denote by #, the transformation from X to itself associated to the nonnegative
matrix A: £, (x)=A (x)/|A(x)|. The transformation %,, gives the inverse of ind* on
A

oy

W. Veech computed in [V 1] the Jacobian of the transformation %, (from Xy to Z)
for A a nonnegative matrix of determinant =+ 1. ’
Ja,)=|Av|"®*D for vin Ay. Letc;=a, ;+...+ay,,,; Then:

N+1

|Av|= .Zl V.

J

We call p(A)= max (¢/c;). Then, for all u, v, J, (w)/J, (v)2p(A)"N*D.

1<i, jEN+1
1.3. SOME PROPOSITIONS.

DEFINITION. — Let ¢ be an involution of {1, ..., p+g¢} without fixed point. We
call ¢ reducible if @ satisfies one of the two conditions below for a positive integer n
smaller than p and gq.

(i) Forall ign, p<o()=<p+n.
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MEASURED FOLIATIONS ON NONORIENTABLE SURFACES 475

(ii) For all p—n<i<p, o ())=p+q—n.

Otherwise we say that @ is irreducible.

When ¢ is reducible, the linear involutions of type (p, ¢, @, F) can be decomposed
into two linear involutions on two distinct intervals.

Let T be a (irrationnal) linear involution of type a=(p, ¢, 9, F). We denote by A,
the expansion of T, and o, = (py, ¢, O F,) the type of ind* (T).

* If the expansion of T is finite, we say T e Afin,

* If the expansion of T is infinite, but from some stage, ¢, is reducible, we write
TeAr, _

* If the expansion of T is infinite, and there exists a subsequence k(n) such that
P (A ) is bounded, we write Te AS™.

The key proposition, as in [N 2] and [Ke], is to show that, up to a vanishing set, these
are the only three possible cases. We leave the proof of this proposition for the
subsection 1.5.

PROPOSITION 1.3. — The measure of the complement of Al® \J Ar*? U A2 is 0.

LemMmA 1.4. — If T has a finite expansion, T has a flipped periodic point.

If the expansion is finite, there exists £ such that ¢, (p,)=0,(P.t4q,). This can be
obtained after an induction only if p, eF,.

PRrROPOSITION 1.5. — Let  be a finite set of types such that, if the type of T is in T,
then the type of ind T belongs to I .

Let X be a subset of A which is invariant by ind.
If, for all . in 7, (X N A) #0, then, for all o in T, p(X N A2 =pn (AE).

Proof. — Let C be the minimum, for « in 4, of the numbers: p(X N A)/n(A,). Let
T be in A2, A, be the expansion of T, and k () be a subsequence such that p (A, ,) <R
for some constant R. We write Vy=2, (A Vy is a convex neighborhood of T
which satisfies:

(@) We know the Jacobian of £,, .. from Zy to Zy. Using that: (i) Z,,, sends
segments to segments, (ii) If AcB<H a hyperplane in R", then the proportion of A in
B is equal to the proportion of the pyramid over A (with vertex v) in the pyramid over
B (same vertex); we deduce that the proportion of X in the set &£, (A, ) is more
than K=C x R™®™*1 which a positive constant.

) A,=ZyNS, So the “exentricity” of the A,’s are bounded. Moreover we have:
P (A, ) =R, therefore the “exentricities” of the Vy are bounded.

(¢) The diameter of Vy goes to 0.

(773 (,,))'

%k (n)

We can apply the Lebesgue density theorem, and we see that almost surely T belongs
toX. O

1.4. Proor oF Tueorem III. — Let a=(p, g, ¢, F) be a type such that: F# (¥,
F#{i:s5,()=1}, and let T be a linear involution of type a.

* If T has a finite expansion, T has a flipped periodic point.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



476 C. DANTHONY AND A. NOGUEIRA

* If Te A, we look at linear involutions which exchange less intervals.

Therefore, in order to prove Theorem III, we must prove that almost all Te A®™ has
a flipped periodic point. We shall do this by the use of Proposition 1.5.

For a given N, we define:

T={a=p,q,¢,F) : ptq=2N+2, F# F#{i:s,()=1}}. 7 is a finite set of
types, which is stable by induction. Let X be the set of linear involutions whose types
are in J, and which have a flipped periodic point. We claim that for all « in , we
have: p(X N A, #0.

We can apply Proposition 1.5 to 4 and X, and we see that X is of full measure in
A, This proves Theorem III. [

Proof of the claim. — If there exists i in F such that s5,()= —1, it is very easy, because
every linear involution in A, such that A;>1/2 has a flipped fixed point.

Otherwise, there exists i in F, 1<i<p, with s5,({)=1, and there exists j not in F,
p<jsp+gq, with 5,(j)=1. We have the picture in Figure 2.

A A
P L L B L
+
0 1
I
S — 1
A A
Fig. 2

We can choose both A; and A; arbitrarily near 1/2. We choose T in the open set
{a, b, c,u, v, w<1/100}. Then 1/2—1/50<A;, A;<1/2.

Let J=la, a+A[x{ +1}, we have length (J)>1/2—1/50.

Let K=T(J) N[1—w—A, l-w[x{—1}. We have length (K)>1/2—2/50.

Then T(K) N T~ (K)# .

But T? has derivative —1 on T~ !(K). Therefore T? has a flipped fixed point.

1.5. Proor oF ProposiTioN 1.3. — Similar results are proved in [Ke] (see Corollary
1.8) and [N.2] (see Lemma 3.4). The latter deals with interval exchanges with
flips. We recall that the difference is that linear involutions are not defined by a whole
Euclidean space (or simplex), as interval exchanges do, but a subspace in it. Therefore
we loose the explicit Jacobian, which is computed for an application from a simplex to
itself. Here we follow the reasonning developed in [N 2] to prove Lemma 3.4, whose
proof follows from Propositions 3.5, 3.6 and 3.7.

The Jacobian plays a role in the proof of Proposition 3.5 in [N 2], therefore one needs
to prove a version of this result for linear involutions, that is, in a subspace setting:

LemMA 1.6. — Let A, be the expansion of T. Then at any stage k, where the matrix
A,, is positive, the probability of the sum of a column increasing by a factor of K before
being added to another column is less than N?/(K —1).
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In [N 2], the proof of Proposition 3.6 is a combinatorial one which works the same
in our context. We obtain:

LEMMA 1.7. — Assume that there exist positive integers k and m such that at the k-th
and the (k+m)-th stage of the inducing process for T the induced involutions are of the
same type. Then between the two stages of the expansion, each column has been added to
some other one or has had some other one added to it.

Using Lemmas 1.6 and 1.7, we obtain as in [N 2]:

LEMMA 1.8. — Let A,, the m-th matrix in the expansion of T, be positive. Let C>0
be such that for a collection of columns of A,, vy,...,v, |vl|/|v;|SC, for all
1<i,j<I. Then, with probability n>0, one of the v; will be added to a column outside
the collection before the maximum of the |v;| increase by a factor of K. The probability
W is independent of A,, depending only on C and K.

The proof of Proposition 1.3 follows, as in [N 2] from these 3 Lemmas.

Proof of Lemma 1.6. — Let S=A,=%Zy NS, Let u be is S and A=A, (v) be
positive. Let S’ be the hyperplane in Xy such that u is in £, (S'). Let ¢; be the sum of
the i-th column of A. Let B=A, ,,(u) be the (k,+r)th element of the expansion
of u. We assume that there exists a positive constant K, and that B has been obtained
from A in such a manner that any column was added only to the first column and the
sum of the first column of B equals K c;.

Let S be the hyperplane in X such that #;(S") contains . Let P be the probability
asked in the lemma. We claim that:

P= uN—l(gB(S”))S N2 )
In-1(ZLa(8)  K-1

There exist positive integers m and n, with m+n<N+1, such that, after a suitable
reordering of the coordinates, we can write:

S'={uely:us+ ... tup=thys1+... tu,,,}

For any 2<i<N+1, let R=(1/N)(c;/c;) (K —1), and set S;={ueS :4;2Ku,; }. Then
we have:

N+1 N+1 ’
2,8)= U £,S) and P< Yy Po1(ZaG)

i=2 i=2 uN—l(gA(S’))‘

In order to deal with the rates on the right hand side, we introduce rates of N
dimensional volumes in X which are also images of .#,. This will allow us to use the
computation of the Jacobian in 1.2.

We note that &, X is convex. Now we take v in Xy which is not in S’. Therefore
&4 (v) does not belong to S. Joining &, (v) to each point in £, (S'), we obtain a
pyramid of base S’ and high ¢, which we call P, ¢ (€), contained in ¥, Zy. Moreover

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



478 C. DANTHONY AND A. NOGUEIRA

Py, s (€) is the image by £, of a pyramid of base S’ and high y, namely Py (y), obtained
joining v to each point in §', that is, Py, 5 (€)= £, (Ps (7).

Similarly, we obtain pyramids Pg (y) and P, g (€) such that Py, s (e)=L, (Pg;(Y)),
for any 2<i<N+1. We have, for any 2<i<N+1,

J
o1 (Za(S)) _ Pr-1Peysi(8)) _ n—1 (LA (P () _ Ls; @ i
In-1(ZLa(S) Bno1(Pe,s(€) Bn-1(LaPs (V) f

Ps' ()

Ia

This implies the relation (*) which follows:

Ja
Mn—1 (LA (S) — LE
In-1(Za(S)) J‘
Ja
s

Let k =N+ 1—(m+n), we have:

f JA=f (crzi+ . tozmt  FCumXmT Camer V1t - +Ck+m+nyn)_(N+1)
s’ r

Xdz,.dz,dx,.dx,_,dy,.dy,_,

where
1
Xp==(1—z;— ... —2)—X;— ... —Xp_1>
2
and
1
In= '2‘(1_21" e TZY TV e T Vet
and the domain of integration I' is given by:
0=z,<1, 0=z,51—z,
0=z;<s1—z,—...—z_4, O§x1§%(l—zl—...—zk),
1
0§xm_1§5(1—zl— T Z) T X T e~ X 2
1 1
0§}"1§5(1_21_ Cee Ty, 0§J’;.—1§§(1_Z1" e TZY) TP e T Y
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In order to evaluate the rates on the right hand side of (*), we have to consider the
above integral restricted to five subsets.

Case 1: x,2K z,.

Case 2: x, 2K z,.

Case 3: z;, 2K x,.

Case 4: y, 2K x,.

Case 5: x, =K x,.

For short, we will assume that S satisfies case 1, and prove that the rates in (*) are
smaller than N/(K—1). Any other case will be the same. We have:

_[JA f(clzl+czzz )TNV G dgdxy . . dx,_ dyy .. Ay,

with T, ={0<z,<1/(1+K), Kz, <z,<1-z, ... }.
Therefore we have:

Ja= ~[(clzl+czzz+ )TNV G L dzdxy ...
L; 1+K

Let L=(1+(K—1)/N))/(1+(c;/c;)) (K—1)/N)). In order to evaluate the right hand
side of (*), we consider two cases:

L=t
—N+ 1) N
JA<— (clzl+czzz+ ) dzl...dzkdxl...gﬁ Ja
-1

(i) L>I:

1 , z ~(N+1)
J,JA'_'W-[(CIZI'FCZ L+c3 L ) dz,...dz,dx,. ..
S;

1+KL3J (crz1+cyzp+ .. ) N Vdz, . dzdx,. ..

where
1 1
r,= 0§Z1§1,0§22§E(1_21)a0§2k§E(1_21_---_Zk—1),-~~ crI.
Therefore:

JJA<—J(6121+0222 )TN g .dzkdxlu'éKllJ Ja

This implies that P<N?/(K — 1), and this proves the claim. O
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2. The relation linear involutions — measured foliations

In this section we shall show that there exist applications from measured foliations to
linear involutions, which are, in a sense to be defined, locally linear and onto.

2.1. MEASURED FOLIATIONS AND TRAIN TRACKS. — We consider (as in the whole paper)
a closed surface of negative Euler characteristics. A measured foliation (%, \) of M is
a foliation & with isolated singularities which are saddles with at least three prongs. This
foliation &# has a transverse measure A, regular with respect to the Lebesgue measure,
invariant by holonomy and with support M. This type of foliations, which appears
naturally in quadratic differentials, was first considered by W. Thurston in [T 1]. See
[FLP] for more details. In our notations we will oftenly omit to mention the
measure A. One can introduce an equivalence relation between two measured
foliations. Two foliations are equivalent if one goes from one to the other via isotopies
and Whitehead operations (create or collapse a connection). W. Thurston showed that
the space of equivalence classes of measured foliations, endowed with a good topology,
is homeomorphic to (R™3*™)—{0}.

A train track © in M is a closed graph embedded in M such that each edge is smooth,
and each vertex is the extremity of three edges which are tangent to a line, and, besides,
one in one direction of the line, and the other two in the opposite direction (as a switch
of a rail-way, see Fig. 3). Since the train track t has a tangent space, we say that 71 is
orientable if its tangent space is orientable. Throughout the paper, we consider only
train tracks 1 such that each component of M —1t is homeomorphic to a disk whose
boundary has at least three cusps.

a
> ‘ B@ (b )=p(c )
b

Fig. 3

Let T be a train track, and E be the number of edges of T. An application p which
associates to each edge e a positive number p(e) is a weight system for T, if at each
vertex it satisfies the equation of compatibility (see Fig. 3). We call E (1) the space of
weight systems for 1. If we consider in RE the vector subspace S of solutions of the
compatibility equations, E (1) is equal to (R*)ENS. So, if E(z) is nonempty, E (1) is
an open cell in S. Therefore there is in E (1) a Lebesgue measure.

Now we choose a weight system p on 1. Replace each edge e of t by a foliated
rectangle with transverse Lebesgue measure of total length p(e), and we glue all these
rectangles by their sides, using the transverse measure (as in Figure 4). We obtain a
foliation &, of a neighborhood V of 1, with a transverse measure. It is clear that V
does not depend on the weight system. For each edge e of T, we chose a vertical
segment I, in the middle of the rectangle as in Figure 4.
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b . %}u@)
—a———<c @) { —£ s

a Ic

Fig. 4

Now, since the components of M —1 (and hence M —V) are homeomorphic to disks
with at least three horns, we can collapse each of these components, creating one (and
only one) saddle, as in Figure 5. We obtain a measured foliation # of M, and say
that & is carried by t. We also call E(t) the space of foliations carried by t. Note
that every measured foliation is carried by a train track. All these definitions were

introduced by W. Thurston in [T 2], chap. 9.

<

This defines an application from E (1) into #% (M). One can show that this applica-
tion is continuous and injective. Moreover, #% (M) has a PL structure whose charts

are given by complete train tracks, i.e. the train tracks T such that each component of
M —1 is a triangle. '

o

W

Fig. 5

2.2. FIRST RETURN ON THE TRANSVERSALS. — Let # be a measured foliation, and I be
an interval transverse to &. As said in the introduction, we can cut the surface M
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along I, creating a new surface M’, and a foliation &' of M’'. The boundary of M’ is
the union of two copies of I, namely I, and I_. The Poincaré’s recurrence theorem
says that each leaf of &' coming from J0M’ either goes to a singularity, or cuts M’
another time. Therefore, except for finitely many points, each leaf of #' which cuts
I, UL_ is a segment. This defines an involution T” of I, \U I_ but finitely many points,
which assigns to each point x the other endpoint of the leaf of &' going through
x. Since & is a measured foliation, T’ preserves the Lebesgue measure of I. Therefore
T=0°T is a linear involution.

The linear involution we obtain is of type a=(p, q, @, F). If is now easy to give an
interpretation of the set F which appears in the definition of linear involutions. Note
that i belongs to F if and only if, for x in J;, the closed curve which is the union of the
leaf of #' going through x and a piece of I, is a one-sided curve.

Let T be a train track on M. We associated to each edge e of T a segment I, which is
transverse to all foliations carried by t. Moreover, the family of segments I, cuts all
leaves of the foliations carried by t. For each edge of t, the operation above described
gives an application from E (1) into the set A of all linear involutions. Then we have E
(the number of edges of 1) applications @, from E(t) into A. The remaining of Section 2
is devoted to the proof of the following proposition, which gives the naturality of the
applications ®; with respect to the linear structures of A and E (7).

Remark. — We want to find a closed leaf in the foliation, when the surface is
nonorientable. So we need to look at all I,, because the closed leaf cuts only some of
the intervals I,.

PROPOSITION 2. 1. — There exists a subset o of E (7) such that:
1. The measure of E (1)— ./ is 0.
2. For all # , in A, there exists a neighborhood V of & , in E (1), such that:

(i) For all i, there exists a type o; such that ®;(V)cA,,
(i.e. the type of the linear involution ®,(¥) is constant in V)

(i) ®,|y is the restriction of an onto linear map.

2.3. UNsTABLE CONNECTIONS. — This subsection is devoted to the definition of the set
o of Proposition 2. 1.

In Proposition 2.1, we want to assure the local stability of the type of the linear
involutions. If &, has a connection and the foliations near &, do not, then the type
of the linear involutions will not be the same for &, and the foliations near #,. For
this reason, we began studying the “stability” of the connections.

We call connection path any smooth path vy in t satifying the two following properties:

(i) y goes from one vertex to another, leaving the origin (and coming at the end) by
the edge of maximal weight at this vertex.

(ii) v can be approximated in M by an injective path.

This definition is justified by the following fact. If &# is carried by t and has a
connection, there corresponds to this connection a connection path in . (A connection
of a foliation carried by t always “follows” a connection path in t.)
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We shall speak often of the left and the right of smooth paths in t. This means that
we choose arbitrarily a right (and left) side at the beginning of the path, and transport
this throughout the path. One consequence of this is that, if the path y has a double
point, the notion of right and left at this point could not be the same for the two values
of the time parameter, say ¢, #¢,, such that y(¢,)=v(¢;). The choice of right and left
at the origin will have no importance, the derived conditions will be symmetric.

Let y be a connection path of t. We draw the picture (in fact in the universal covering
of 1) of v (Fig. 6).

bm
G\ S J N
e DD

Fig. 6

We denote by b,, ..., b, the edges coming on y by the left and by ¢y, ..., ¢, the
edges coming on y by the right. We define g;=1 if b; comes on y with a positive
direction, and g;= —1 if b; comes on y with a negative direction. We define g;=1 if ¢;
comes on y with a positive direction, and ;= —1 if ¢; comes on y with a negative
direction (e. g.: in Figure 6, ¢, =¢,=¢;=¢,=¢3;=1 and g;=¢,=¢,= —1.)

Let p be a weight system on t. If there is, in the foliation associated to p, a connection
following vy, the following equality is clearly satisfied:

g ub)+ ... +e,pn(b,)=0.

This equation is equivalent, since p is a weight system, to the following one:
giule)t+ ... +ep(c,)=0.

We call the first equation E,.

If we consider this equation in RE (E=number of edges of 1), we have a space of
solutions H, which is, in general, a hyperplane. Recall that, if S is the space of solutions
of the equations of compatibility at each vertex, E(t)=S N (R*)E. So there can be two
cases:

(i) Sis not contained in H,. We say that y is an unstable connection path. H,NE(1)
is a hyperplane of E(t). The foliations which are not in this hyperplane have no
connection following 7.

(i) ScH, (the equation E, is a linear combination of the equations of compatibility
of 1). We say that vy is a stable connection path.

There exist countably many connection paths.

DeriNiTION. — We define «/ in the following way: &/ =E(1)— U H,.

Y unstable

The set o/ equals E (1), but countably many hyperplanes. It follows that the complement
of o/ has measure 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



484 C. DANTHONY AND A. NOGUEIRA

2.4. LocaL staBiLITY. — Let t be a train track on M. We have the applications
®,: E(t) > A, defined in 2.2. Let #, be a foliation in o/ associated to a weight
system p,. We shall show that the type of the linear involutions is constant in a
neighborhood of # .

Lemma 2.2. — There exists a neighborhood, W, of 1, in E (%), and types o, such that
Jor all i, ®;(V)cA,,
This result is a direct consequence of the following lemma:

Lemma 2.3. — For all i, there exists a neighborhood, V,, of 1, in E(1), and a type q;
such that ®;(V))cA,,

We will consider the linear involutions induced by the foliations on I,, the transverse
interval which corresponds to an edge e of t.

DerFNiTIONs. — We define T as the set of all smooth paths o (a sequence of edges)
of t such that the first edge is e and o goes through e at most twice, if twice, the last
edge of a is also e. If ael’, we call length of a, and write /g (a), the number of edges
of Tin a.

We denote by T the set of all paths of I which are closed (the two extremities are e).

Let o be in I, we choose the left and the right side of a, and draw the picture
(Fig. 7). In fact, the picture is in the universal covering of t.
b

BN J /7
et

n

Fig. 7

We denote by b, ..., b, the edges coming on a by the left, and by c,, ..., c, the
edges coming on o by the right. We define g;=1 if b; comes on o with a positive
direction, and g;= —1 if b; comes on o with a negative direction. We define g;=1if ¢;
comes on o with a positive direction, and &;=—1 if ¢c; comes on o with a negative
direction (e. g.; in Figure 7, ¢, =¢,=¢; =¢,=¢3=1 and g;=¢,=¢g,= — 1.)

Let p be in E (1), we define:

L,()= min (z Siu(b,-)> and  R,()= min (2 8£u(c'.-)>

15jsm\i=1 1=jsn\i=1

and set J,(W)=p(e)+ L, (W + R, ().

Remarks. — (i) The foliation &, defined by the weight system p has leaves going
along a if, and only if /,(u1)>0. Moreover, the transverse measure of the band of leaves
of # going along a is exactly /, (1).

(i) For a given a, the map p— [, (p) is a continuous function, since it is an infimum
of linear maps.
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(iii) Let T, (W={yel :[,(W>0}. To each yeI', (1) corresponds a band of leaves
which goes from I; to I, i.e. a small interval of the linear involution ®;(#,). Hence
', (w is finite. The type of the linear involution ®;(#,) is entirely determined by
I', (0). For example, the flip set F corresponds to the elements of I', (u) which are
one-sided curves. The numbers [ (), for y in I', (), are the lengths of the intervals
exchanged by ®;(# ).

In order to prove Lemma 2.3, we have to show that, if p,eo/, there exists V;, a
neighborhood of p,, such that for all pin V,, T', (W=T", (o).

We denote by N the maximum of the Ig (y) for v in I', (ny) (which is finite). We set
Ii={ael:lg(<N+1}and I',={ael : lg(@)=N+1}. These two sets are finite.

Scholium 2.4. — If ais in T',, then [, (n,)<0.

Proof. — If I,(uy) >0, there exists a band of leaves of &%, along a. These leaves must
cut I; another time (Poincaré’s recurrence) but this will be done after a path of length
superior than N, which is impossible by definition of N. [

Scholium 2.5. — Let ael',, there exists a neighborhood V, of p, in E (%) such that:
1) if I,(ny) >0, then I,(W)>0 for all peV,;
(i) if 1, (1) <O, then [,()<0 for all peV,

Proof. — We consider 3 cases.
Case 1. — If [, (uy) >0, then there exists V,, a neighborhood of p,, such that J, (1)>0
for p in V,, by continuity of [,.
Case 2. — If [, (ny) <0, then there exists V,, a neighborhood of p,, such that /, (1) <0
for p in V,, by continuity of /..
Case 3. — [, (no)=0. We choose 1 <j, <m and 1=<j, <n such that:
J1 J2

L, (no)= Z &; Mo (b)) and R, (Ko)= Z, & Ko ()

We draw the picture in Figure 8.
i1 ji+1
By the choice of j;, Y, &Ho(B)=< ), €Ho(by), hence g . =1.

i=1 i=1

We call €' the edge of a after the point y. If j, is the index of the last edge arriving
on o by the left before y, we have:

Ho(e)=no(e)+ Z € Mo (c)+ Z & Mo (b)
i=1 i=1

1

=Ho (@) + R, (o) + L, (o) + Z & lo (b)= Z & Mo (b))

J1<izj3 J1<iZj3
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Fig. 8

Since p,(e)>0, we must have j;>j,, that is, the edge b; ., arrives on a between the
points x and y (see Fig. 9).

Fig. 9

We look at the connection path y, which is the part of o between the endpoints of
bj,+, and c;, indicated by the two arrows in Figure 9. If we sum the weights of p,
arriving and leaving y by the right, we find p,(e)+ R, (1) +L,(1o) which is 0. This

J2 J1
says that p, satisfies the equation E, for all p in E (1), p(e) + Y giu(e)+ Y, gp(b)=0.
i=1 =1

i

This implies that /,(W)=p(e)+ R, (W+L,(W=0. O
We now conclude the proof of Lemma 2.3.

We denote by V, the neighborhood of &%, which is the intersection of the V,, for a in
I, (which is a finite set). We will show that ', (u)=T"_ (), for all p in V,.

First inclusion: T, (no)<T' 1 (w). Let yeD', (no), then yeI'; and [ (uo)>0. By
Scholium 2.5, [, (u)>0 for all pin V,. Therefore yeI', () for all pin V..

Second inclusion: T, (W)=l (no). If y¢I', (no), then [ (no)<0. If yel',, by
Scholium 2.5, [, (W <0, for all pin V,. Therefore y¢T', (n).

If y¢I',, lg(y)>N+1. The N+1 first edges along y give a path o in T',. By
Scholium 2.4, I, (1y) <0. By Scholium 2.5, /, (1) <0 for all pin V;. Since a is a part of
Y, Ly(W <L, (W) and R, (W=R, (), so [, (W= ()<0. Then y¢I', (p). O

2.5. LINEARITY AND SURJECTIVITY.

LEmMMA 2.6. — For p, in o, let W be given by lemma 2.2. There exists a neighborhood
V of po in W, such that ®; v, is the restriction of an onto linear map.
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Proof. — Linearity. — The lengths of the intervals exchanged by ®; (i) are the numbers
L(w for v in I', (uy). We have [ (W=p(e)+R,(W)+L,(n), where p(e) is linear in p,
and L, and R, are minimum of linear maps in p.

If this minimum is reached for p, at only one index, we can find a neighborhood of
Ko such that the minimum is reached by the same index, and therefore the formula is
linear. Assume there exist r <s such that:

L,(ho)= Z & Ho (b)= Z & Mo (b))
i=1 i=1

r+1
By definition, L, (o)< Y. & 1o (b)), then g, =1.
i=1
A similar reasonning shows that g =g,=—1. Then we have the picture in
Figure 10. Let 8 be the connection path which is the part of y between the endpoints
of b,,, and b, indicated by arrows in Figure 10.
S

We have Y g po(b)=0, then p, satisfies the equation E; associated to & as in
i=r+1
2.3. Since p, is in &/, this equation is always satisfied, that is, for all p,
s

Y &p(b)=0, therefore Y g pu(b)= Y, gn(b). Therefore, the maps corresponding
i=r+1 i=1 i=1
to indices r and s are equal. Therefore the formula defining L, (p) is linear in a
neighborhood V of p,.

b b b

r r+1 s

A N a

Fig. 10

Surjectivity. — Let %, defined by the weight system p, be fixed, and let
Mis .. .5 Ay g be the lengths of the intervals exchanged by @;(# ), which is the linear
involution induced on an interval I, Let 3,, ..., d,,., be nonnegative real numbers
such that §;=39,,; and &, + ...+, =98, ., +...+3,.,. For each pair (j, ¢ (), we
choose a segment L; of a leaf of #, whose endpoints lie on I;, and which goes from the
Jj-th interval to the ¢ (j)-th interval. We cut the neighborhood of t along I, and all
L, We glue in place of L; a foliated rectangle of width &;, and glue back the two copies
of I, (see Fig. 11). We obtain a new foliation & which is carried by 1, and such
that the lengths of the intervals exchanged by ®;(#) are A;+3; This proves the

surjectivity. [
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Fig. 11

3. Applications to measured foliations

In this section, we shall use the results of Sections 1 and 2 to prove some results about
measured foliations.

3.1. NONORIENTABLE SURFACES. — Let M be a nonorientable surface. We call € the
subset of .#% of foliations which have a compact regular leaf which is a one-sided
curve. (This property is not modified by Whitehead operations.) Note that € is an
open set in A F.

ProPOSITION 3.1. — € is dense in MF (M).

Before we prove this proposition, we give some definitions. We denote by & the set
of isotopy classes of closed simple curves in M which do not bound a disk or a Mdebius
band. Lety,,...,Yy, benelements of & such that, if i#j, v, N v;=F, and v, and y; do
not bound an annulus. Let X,,...,A, be n positive real numbers. We call such a
(Yi> -+ +» Yus Mgs - - -5 A,) @ multicurve, and denote by 4% the set of all multicurves.

To each multicurve, we can associate a measured foliation ([FLP], exp. 5, § III). So
MF is a subset of #/F. The elements of #F are the foliations whose regular leaves
are compact. The following result is well known.

LEMMA 3.2. — A& is dense in MF .
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Proof. — Let &, in MF be carried by a train track 1, and let p, be the weight
system on t which gives #,. In E (1), the weight systems with rational weights are dense,
since the compatibility equations at each vertex have integer coefficients. Therefore, we
can approximate &, by a foliation & given by a rational weight system p. It is easy to
see that all regular leaves of # must be compact. [

The next lemma is a generalization of Proposition 1.2 of [S].

LemMA 3.3. — Each element (Y, - .., Yp Mp> - - -» Ay) Of MSF can be approximated by
a multicurve (8y, ..., 8, Wy, ..., U,) where at least one d; is a one-sided curve. In
particular, M is in the closure of €.

Proof. — 1If one v; is a one-sided curve, we are done. If not, we first approximate
(Yis oo s Y Ay -5 A) BY (Y45 -+ 5 ¥ Al - -5 Ay), Where each A; is a rational
number. We call k the least common multiple of the denominators of the A{. Let C
be a one-sided curve in M which cuts at least one v;, and such that the number of times
C intersects v;, namely /;, is minimal in the isotopy class of C. Let / be the least common
multiple of the /., We construct a train track, and for each p a weight system as
in Figure 12. We obtain foliations %, wich are multicurves (rational weights) and
in ¥. Moreover, it is clear that lim(% )=(yy, ..., Yp A3, ..., A). This proves
Lemma 3.3 O

; weight )»‘
(o)
—_——
(o
ight
weig T
Fig. 12

Proposition 3.1 is a direct consequence of Lemmas 3.2 and 3.3 A corollary of 3.1 is:

COROLLARY 3.4. — Let t be a complete train track, and o, ®,, o;=(p;, q;, ¢;, F,) be as
in proposition 2.1. Let # e /. Then there exists i such that & #F;#{j:s,()>0}.

Proof. — Let #, be in &«/. By Proposition 2.1, there exist a neighborhood V of &%,
in E(7), and o;=(p;, g, ¢;, F;) such that ®;(V)<A,,. Since t is complete, V is also a
neighborhood of %, in #4F. Therefore, by Proposition 3.1, there is an element of €
in V. This implies that there exists i such that @ #F;#{j:5,,()>0}. O
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Proof of Theorem I. — Let M be a nonorientable surface, and t be a complete train
track on M. If % is in &/, by Propositions 2.1 and 3.4, there exist a neighborhood
Vg, of #, in E(7), and i, o;=(p;, ¢, @;, F;) be such that the restriction of ®; to V4 is
linear and onto, and that @ #F,;#{;:s,,()>0}. By Theorem III, almost all elements
of Vg  belong to ¥ Since E(1) is separable, there exists J countable in ./ such that
&< UV, Then we have: o/ —€< U (V,—%). Therefore the set &/ —% has measure

xel xel
0. As E(t)— .« is also of measure 0, E (t)—% has measure 0. Since this is true for all
complete train track, Theorem I is proved. [

3.2. ORIENTABLE SURFACES. — Here, M is an orientable surface. The following propo-
sition is well known. One can prove it using the fact that the mapping class group acts
minimally on 2.4 % (M) when the surface is orientable.

ProposITION 3.5. — If M is orientable, the minimal foliations are dense in MF (M).

We call & the set of the foliations of .#% (M) which are uniquely ergodic. Let t be
a complete train track on M. If & is in the set o/ of Proposition 2.1, there exist a
neighborhood Vg, of #, in E(7), and o;=(p;, g;, ¢;; F;) such that the restriction of ®;
to Vg, is linear and onto. Since M is orientable, F;=(J. Since 1 is complete, V4 is
a neighborhood of %, in #F (M), and therefore, by Proposition 3.5, minimal foliations
are dense in V4, hence it is sufficient to look at one interval. We can use Theorem IV,
which says that almost all elements of A, are uniquely ergodic, and we deduce by
Proposition 3.5 that the measure of V4 —¢& is 0. Using the same reasonning as in 3.1,
we establish the following theorem, due to Masur.

TueoreM (Masur [M]). — If M is orientable, almost all elements of MF (M) are
uniquely ergodic.

3.3. MORE ON NONORIENTABLE SURFACES. — In fact, when we began working on the
subject, our goal was to was to prove Theorem I using the result of A. Nogueira [N 2]
about interval exchange transformations with flips.

The programm was: —first to establish the properties of the applications which take
foliations to interval exchanges, (as in Section 2 of this work) —second to show that on
nonorientable surface, almost all measured foliations induce interval exchange with flips
on transverse segments.

But this programm works only when one is considering orientable foliations. Why?

Given a measured foliation &# and a transverse segment I, we can look at the first
return application on T for the orientation covering foliation. This defines an interval
exchange transformation.

So, given a train track T on M, it is possible to define, as in Section 2, a family of
applications from E (t) into the set of interval exchange transformations. We can almost
establish an equivalent to Proposition 2.1. The type of the interval exchange will be
locally constant, and the applications locally linear, but not onto, if T is not orientable.

In other terms, the interval exchanges correspond well to orientable foliations. It is
why we were led to introduce the linear involutions, which generalize interval exchanges
as foliations generalize orientable foliations.
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Before introducing linear involutions, we proved the following theorem, which asserts
that the set of foliations with a compact leaf which is a one-sided curve is of full measure
not only in 4% (M), but also in some linear subsets of .#% (M), the ones which contain
only orientable foliations.

THEOREM II. — Let M be a nonorientable surface, and t be an orientable train track on
M. Almost all foliations of E (1) have a compact leaf which is a one-sided curve.

This is not a consequence of Theorem I, because E (1) is a null set in #/F (M). The
proof of Theorem II is similar to the proof of Theorem I. We only need a Proposition
similar to Corollary 3.4.

ProPOSITION 3.6. — Let T be an orientable train track on a nonorientable surface. Let
F o be in the set of given by proposition 2.1. There exists an i such that the interval
exchange ®, (¥ ;) has a flip.

Let 1, o/, &, be as in Proposition 3.6. We look at the first return maps ®,; (£ ,) on
the intervals I, for i=1,...,E (number of edges of 7). Let S be a subset of
{1, ..., BE}. We denote by Ag the union of all leaves of %, which are not connections,
and cut I, if, and only if i€ S.

LemmMmA 3.7. — Ag is open.

Proof. — Let i be in S and x be in I, The point x is not in a connection, therefore
one of the two half-leaves of %, beginning at x, namely L,, is regular. There exists a
neighborhood I' of x in I; such that, if y is in I, the leaf containing y is not a
connection. If L_ is compact, all leaves nearby are compact, hence they cut the same
intervals, then they are in Ag. Otherwise, let J be the interior of the closure of
I'NL,. By ([FLP], exposé 9), x belongs to J.

Assume that there exists y in J such that the leaf containing y cuts a I;, There exists
a neighborhood J’ of y in J such that all leaves cutting J’ also cut I;, But L,NJ is
dense in J, hence L, cuts J', therefore it cuts I, As x is in Ag, j€S. This proves
Lemma 3.7. 0O

Let S#S'. By definition, A;N Ay =, and by Lemma 3.7, Ay is open. Then we
have: (Ag—Ag) NAg=F. Therefore (Ag—Ag) is a union of connections of #,. As
M= A, M is the union of two-manifolds with boundary, which are glued along the
boundary (union of connections of & ).

We want to show that one of the interval exchanges has a flip. We assume the
contrary.

Hypothesis. — None of the induced interval exchanges has a flip.

Let ieS. We denote by N; the closure of the union of leaves which cut I;. N; contains
Ag. Tt is clear that N; is a two-manifold with boundary.

LEMMA 3.8. — Since & y€ o/, N, is orientable.

Proof. — N; is the union of the closure of all bands of leaves which correspond to
first return. Let B be such a band and y be a piece of leaf in B with endpoints on
I, We complete y to obtain a closed path o using the segment of I, between the
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endpoints of y. We call o the elementary path associated to B. Since B does not
correspond to a flip, a is a two-sided curve.

We look at B as the rectangle (a, b) % (0, 1), with (g, b)<I; and {x}x(0,1) on a
leaf. We set dB=((a, b))*x{0,1})U({a, b}x(0, 1)). The interval (a, b) is in the
interior of N;. Since B is a band of first return, the leaf leaving I; by the point (a, 0)
goes back to I, Therefore there exists x,, x, in [0, 1] such that the point (a, x,) and
(b, x;) are in ON;. Let y, and z, (respectively y, and z,) be the infimum and supremum
of such x, (respectively x,). We claim that: {a} x[y,, z,J<dN; and {b} x [y,, z,] <ON,.

If not, there exists ¢, in [y,, z,] such that the point (g, ¢,) is in intN;. We call K the
connected component in intN; N\ {a} X (y,, z,) which contains the point (a, z,). It is
clear that K is a connection of &, which separates B from another band B’ (see Fig. 13).

Fig. 13

We cut along I, and the bold segment of Figure 13, add a band of width ¢, and
reglue. We obtain a foliation carried by t which has no connection corresponding to
K. This contradicts the fact that the connections in &/ are stable.

Then B is topologically a disk whose boundary is splitted into two segments in ON;
and two open intervals in int N;.

Now we look at a path o in N;. Each segment of « in B which is not homotopic to
0 relatively to 0B, is homotopic to a leaf in B. This says that each segment in B is
homotopic to the elementary path associated to B. Therefore the elementary paths
generate 7, (N,), hence N; is orientable. [

Ay is a submanifold of N, so it is orientable. Therefore M is a union of orientable
pieces glued together along connections of #,. Let v be a such connection correspon-
ding to a connection path 8 in 1. Since , is in &7, 8 is a stable connection path. We
parametrize 9.

LemMA 3.9. — If 8 (¢,)=8(,), the closed curve 3 ([t, t;]) is a two-sided curve.

Proof . — Suppose 3 ([t;, t,]) is a one-sided curve. This means that y cuts twice the
same I;, and the first return application has a flip, which contradicts our hypothesis. [

Therefore 6 is a stable connection path which satisfies Lemma 3.9. Then we can
apply Lemma 3.4 in [D] to conclude that 6 is injective. Using Lemma 3.5 in [D], we
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14a

Fig. 14

Fig. 15

see that y is a closed connection. This connection must be a two-sided curve. Then
using Lemma 3.6 of [D], we see that y separates M. Therefore, M is a union of
orientable pieces, glued along closed curves which separate M. This can happen only if
M is orientable. This proves Proposition 3.6. O

3.4. ReMarks. — Looking at Theorems I and II, one can ask some some questions.

First, if T is an orientable train track on an orientable surface, are almost every
foliations carried by T uniquely ergodic? The answer is no. There exist ([D]) orientable
train tracks on orientable surfaces which carry no minimal foliations, hence no uniquely
ergodic ones.

The second question is the following: if T is a train track on a nonorientable surface,
have almost all foliations carried by t a compact leaf? The answer is no. Here is a
counterexample.
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We construct a train track on the connected sum M of a torus and three projective
planes as follows. Each part on a P? minus a disk is as in Figure 14a. The part of
the train track on T2 minus 3 disks is as in Figure 14 b.

M-t is an octogon. We choose generators for the weight systems, and write the
numbers on the Figure 145. We shall look at the first return map for the orientation
covering foliation on the edge of weight 2a4. If we look at the open set in E (1) given
by a<b<c<2a and d<2a—c, we obtain interval exchanges without flips described in
Figure 15.

If a, b, ¢ and d are rationally independent, it follows from a result of M. Keane [Ka]
that the foliation given by the weight system is minimal, hence it has no compact regular
leaf. This implies that in E(t) a set of non zero measure contains foliations with no
compact regular leaf.
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