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C---WHITTAKER VECTORS
FOR COMPLEX SEMISIMPLE LIE GROUPS,

WAVE FRONT SETS,
AND GOLDIE RANK POLYNOMIAL

REPRESENTATIONS

BY HISAYOSI MATUMOTO (1)

ABSTRACT. — The existence condition (resp. the dimension of the space) of C~00-Whittaker vectors seems
to be governed by wave front sets (resp. Goldie rank polynomial representations). In this article, I should
like to show this is indeed the case for representations of connected complex semisimple Lie groups with
integral infinitesimal characters.

Dedicated to Professor Bertram Kostant on his sixtieth birthday.

0. Introduction

Let G be a connected (quasi-split) real semisimple linear Lie group and let N be the
nilradical of a minimal parabolic subgroup P of G. We take a "generic" character \|/
on N, namely a one dimensional representation ofN, and consider the induced representa-
tion of G from \|/ on N. If an irreducible representation V of G is realized as a
subrepresentation of such an induced representation, we call V has a Whittaker
model. (This usage of "model" is different from that of Gelfand-Graev.) Such induced
representations are considered first in [GG1,2] and they suggest the possibility of useful-
ness of such induced representations for a classification of irreducible
representations. After the pioneer work of Gelfand-Graev, Whittaker models of repre-
sentations of real semisimple Lie groups have been studied from the viewpoint of number
theory by many authors ([JL], [Ja], [Sc], [Sh], [Ha]), etc. Especially, the multiplicity one
property of the above induced representation for a quadi-split group is established by
[JL], [Sh], [Ko2], etc.

In [Ko2], Kostant proved that if a representation V of a quasi-split group G has a
Whittaker model, then the annihilator of V in the universal enveloping algebra of the
complexified Lie algebra of G is a minimal primitive ideal. [Casselman and Zuckerman
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312 H. MATUMOTO

proved this result for G=SL(/z, R).] This result strongly suggests the possibility of the
description of the singularities of representations in terms of similar kind of
representations. [Ha2], [VI, 2], [How] also support such a possibility. Lynch developed
the theory of Whittaker vectors for non-split case in his thesis at MIT [Ly], and
generalized some of the important results of Kostant.

Before [Ko2], Rodier [R] had pointed out the relation between the existence condition of
Whittaker models and distribution characters for the p-sidic case. Recently, Kawanaka
[Kawl,2,3] and Moeglin-Waldspurger [MW] constructed such an induced representation
from each nilpotent orbit and described the relation to the singularities of irreducible
representations for reductive algebraic groups over finite fields and /?-adic fields,
respectively. It is natural to ask whether a similar phenomenon exists in the case of a
real semisimple Lie group. In [Mat4,5] (also see [Kaw3] 2.5, [Yl], [Mat2]), we proposed
the study of Whittaker models in the general sense.

In this article, we give an affirmative answer in some special case. Namely, we assume
G is a connected complex semisimple Lie group and V has an integral infinitesimal
character. We also put some assumptions on \|/ and P.

We are going into more detail. Hereafter we assume N is the nilradical of a parabolic
subgroup P and consider the induced representation of G from a "generic" character on
N. Unfortunately, apparently, this induced representation is too large. Namely, in
general, we cannot expect that an induced representation of G appears with finite
multiplicity. However, interestingly enough, it is known that some irreducible represen-
tations appear in the induced representation with finite multiplicity. So, we can study
the following problem.

PROBLEM. — Classify an irreducible representation which appears in the induced represen-
tation of G from \[/ with finite multiplicity. What is the multiplicity of such a
representation ?

As a matter of fact, the above problem is quite obscure. In order to clarify the
problem, we should define what is "generic", "representation", "the induced representa-
tion", and "appears with finite multiplicity". First, we choose the definition of the
induced representation from G as follows:

CO O (G/N;^)={/€CO O (G) | / (^)=v| /^)- l / fe)foral l^eG,MeN}.

G acts on the above space by the left translation. We regard C°° (G/N; \|/) as a Frechet
representation in a usual manner.

Second, we fix a maximal compact subgroup K of G and we consider Harish-Chandra
modules (cf. [Vo3], [W2]) in stead of "representations of G".

Third, let n be the complexified Lie algebra of N and we denote the complexified
differential character of v|/ on n by the same letter. v|/ is regarded as an element of the
complexified Lie algebra of G by the Killing form. We say \|/ is admissible if v|/ is
contained in the Richardson orbit (9p with respect to P. We replace "generic" in the
above problem by "admissible".

4eSERIE - TOME 23 - 1990 - N° 2



C - °°-WHITTAKER VECTORS 313

Last, we should give the definition of "multiplicity". Let 9 be the complexified Lie
algebra of G and let U (9) be its universal enveloping algebra. The most naive definition
is the fallowings. For an irreducible Harish-Chandra module V, we define the multiplic-
ity of V in C°° (G/N; \|/) by the dimension of the space of U (9)-homomorphisms of V to
C°°(G/N;v|/).

In order to define "appears" in another way, for a Harish-Chandra module V, we
consider an admissible Hilbert G-representation H whose K-fmite part coincides with
V. H is not uniquely determined by V, but the space of C°°-vectors V00 is unique as a
Frechet G-representation [Ca3]. If we take notice of the topology of C°° (G/N; v[/), then
we can give another definition of "multiplicity". Namely, we define the multiplicity of
V in C°°(G/N; \[/) the dimension of the space of continuous G-homomorphisms from
V^toC^G/N;^).

It is known that the above two definitions of the multiplicity actually different
[GW]. The problem in the first definition was studied in [GW], [atl,2,4,5] (also see
[Ko2], [Ha2], [Ly]).

In this article, we consider the second definition and assume G is a complex semisimple
Lie group. We define the space of C'^-Whittaker vectors of an irreducible Harish-
Chandra module V as follows.

Wh^(V)= {^eVjVXenXz^vKX)^}.

Here, V^ denotes the continuous dual space of V^. Then, the space of continuous
G-homomorphisms of V^ to C°° (G/N; \|/~1) can be identified with Wh^ (V) as a usual
manner. So we can rephrase the above problem in terms of Whx^ (V).

For an irreducible Harish-Chandra module V, we denote by WF(V) the wave front
set of V (cf. [How], [BV1,2,3,4]). Let X= G/P be the generalized Hag variety and let \|/
be an admissible character on N. We assume the moment map n: T* X -> S)p (cf. [BoBr],
[BoBrM]) is birational.

Let (9 be a nilpotent orbit of the Lie algebra of G. For example, we assume that
G= SL(^, C) or that (9 is even. Then, there exists some P such that:

(1) (9 coincides with the Richardson orbit corresponding to P.
(2) The moment map \i: T* X -> 0 is birational.
(3) There exists an admissible character on N.
One of the main results of this article is:

THEOREM A (Theorem 3.4.1). — We assume the moment map p. is birational and ^ is
admissible. Then, for any irreducible Harish-Chandra module V with an integral infinitesi-
mal character, the followings are equivalent.

(1) Wh^ (V) + 0 and dim Wh^ (V) < oo.
(2) WF(V)=^p.
Remark. - It is known that Wh^ (V)^0 implies i0p ̂  WF(V) ([Mat2], also see 3.4).
Let g be the Lie algebra of G (So, the complexified Lie algebra is 9 x 9.) We fix a

Cartan subalgebra I) of 9. We denote by P (resp. W) the integral weight lattice (resp.
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314 H. MATUMOTO

the Weyl group) of (9, t)). We remark that W x W acts on the polynomial ring on
t)*xl)*. We assume ^, [i is regular and denote by F^ the set of irreducible Harish-
Chandra modules V with the infinitesimal character (X, a) such that WF (V) =;' £>p. For
the dimension of Wh^ (V), we have a result. Since it requires further terminologies to
state the whole statement, I do not present our second main result precisely here (see
Theorem 3.3.6). However, at least, it contains the following result.

THEOREM B (cf. Theorem 3.3.6). — Let V be an irreducible Harish-Chandra module
with a regular integral infinitesimal character such that WF(V)=;^p and let
©y(^, n), (k, |LieP) be the coherent family in which V is embedded. Then
P x (9 (X, \\) ̂  dim Whxj? (Qy) (^-, \\) is well-defined and extend uniquely to a harmonic
polynomial (say pvy[V]) on t)*xt)*. Fix regular X,, ^ieP. If we consider the C-linear
space E which is spanned by

{^[V]|VGF,,,}
then E is closed under the W x W action. Moreover E is irreducible as a W x W-
representation and written by a (g) a. Here, a is the Goldie rank polynomial representation
(the Springer representation) associated with (Pp.

The classical multiplicity one theorem can be related to the fact the Springer representa-
tion associated with the regular nilpotent orbit is a trivial representation C. I .

The points of our proof are as follows:
(1) The exactness of V -^ Wh^ (V) (for precise statement, see Proposition 3.2.1).
(2) Yamashita's multiplicity theorem on induced representations [Yl].
(3) Vogan's construction of harmonic polynomials from coherent families [Vol].
(4) Deep analysis on double cell representations due to Joseph, Lusztig, and, especially,

Barbasch-Vogan [BV2,3,4].
Using the above facts and applying a similar method to [D3], we prove Theorem B

above. Theorem A is a corollary of Theorem B and results in [Mat2,5] (cf.
Lemma 3.4.2 below).

The most crucial part is (1) above. It was W. Casselman who proved the correspond-
ing result for the nilradical of a minimal parabolic subgroup of a general real semisimple
Lie group. The main ingredients of his proof are:

(1) The vanishing of higher twisted cohomology groups of principal series.
(2) Casselman's subrepresentation theorem.
Casselman proved the above (1) by a very ingenious method "the Bruhat

filtration". (He sketched the proof in [Cal].) We show that his method is also appli-
cable to a proof of a generalization of his result, which we need, under some minor
modifications. We also use an idea from [Yl].

To generalize the above (2) is much more difficult, I think. Casselman's subrepresenta-
tion theorem itself is a fairly deep result. However, if we consider Harish-Chandra
modules with integral infinitesimal character for complex semisimple Lie groups, we get
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an embedding theorem (Theorem 2.4.1) using the deep results of Joseph [Jol2], Lusztig
[Lu7], and Lusztig-Xi Nanhua [LuN].
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1. Notations and preliminaries

1.1. GENERAL NOTATIONS. — In this article, we use the following notations and
conventions.

As usual we denote the complex number field, the real number field, the rational
number field, the ring of (rational) integers, and the set of non-negative integers by C,
[R, Q, Z, and ^ respectively. We denote by 0 the empty set. For each set A, we denote
by card A the cardinality of A. Sometimes " i " denotes the imaginary unit /--I.

For any (non commutative) C-algebra R, "ideal" means "2-sided ideal", "R-module"
means "left R-module", and sometimes we denote by 0 (resp. 1) the trivial R-module
{ 0 } (resp. C). For In R-module M of finite length, we denote by JH(M) the set of
irreducible constituents of M including multiplicities and denote by /(M) the length
ofM.

For an abelian category ja^, we denote by K(j^) the Grothendieck group of ^ ' . We
denote by [A] the canonical image of an object A of ^ in K(^). If ^ is a full
subcategory of the category of R-modules of finite length, then [A] = [B] if and only if
JH (A) == JH (B) for all objects A and B of ^.
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316 H. MATUMOTO

Often, we identify a (small) category and the set of its objects.
Hereafter "dim" means the dimension as a complex vector space, and "®" (resp.

Horn) means the tensor product over C (resp. the space of C-linear mappings), unless we
specify.

For a complex vector space V, we denote by V* the dual vector space and we denote
by S (V) the symmetric algebra of V. Sometimes, we identify S (V) and the polynomial
ring over V*, if V is finite-dimensional. For any subspace W of V, put
Wl•= { / eV* | / |W=0} .

For real analytic manifold X, we denote by C°° (X) the space of C°°-functions on
X. For a subset U of X, we denote by U the closure of U.

1.2. NOTATIONS FOR SEMISIMPLE LIE ALGEBRAS. — In this article, we fix the following
notations. Let g be a complex semisimple Lie algebra, U(g) the universal enveloping
algebra of 9, I) a Cartan subalgebra of 9, I) a Cartan subalgebra of 9, and A the root
system with respect to (g, t)). We fix some positive root system ^+ and let II be the set
of simple roots. Let W be the Weyl group of the pair (9, t)) and let <(, ) be the Killing
form of 9. We also denote the inner product on t)* which is induced from the Killing
form by the same symbols <( , ). For aeA, we denote by ^ the reflection in W with
respect to a. We denote by l(w) the length of weW and denote by WQ the longest
element of W.

For aeA, we define the coroot a by a=2a/( a, a ), as usual.
We call ^-el)* is dominant (resp. anti-dominant), if ( K, a ) is not a negative (resp.

positive) integer, for each aeA4 ' . We call ?iet)* regular, if < \, a ) ^0, for each
aeA. We denote by P the integral weight lattice, namely

p = ^ e l ) * | < X , a > e Z f o r a l l a e A } .

If Xet)* is contained in P, we call ^ an integral weight. We denote by P~ ~ (resp. P+ +)
the set of anti-dominant (resp. dominant) regular integral weights in t)*. We also denote
by P~ (resp. P4') the set of anti-dominant (resp. dominant) integral weights in t)*. We
define peP by p= 1/2 ^ a.

a e A '

Put

^={Xe9 |VHel ) [H,X]=a(H)X},

^= Z 9a.
aeA 4 '

H= Z 9a-
-aeA'^

Put

6=l)+u,

b=t)+u.
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Then b and b are Borel subalgebras of 9.
Nest, we fix notations for a parabolic subalgebra (which contains b). Hereafter,

through this article we fix an arbitrary subset S of II. Let S be the set of the elements
of A which are written by linear combinations of elements of S over Z. Put

ds= {HeI ) |VaeSoc(H)=0} ,

I s= t )+E^
o c e S

^S= Z ^
aeA 4 ' -S

^S= Z _9a.
-aeA '^ -S

m s = { X e I s | V H G a s < X , H > = 0 } ,

Ps = ̂  + ̂  + ̂ s = 4 + ̂

Ps=ms+as+ns=Is+ns•

Then ps (resp. ps)ls a parabolic subalgebra of g which contains b (resp. b). Conversely,
for an arbitrary parabolic subalgebra p =? b, there exists some S i= II such that
p=Ps. We denote by Wg the Weyl group for (Is, t)). W§ is identified with a subgroup
of W generated by {^ | a e S}. We denote by w§ the longest element of Wg.

It is known that there is a unique nilpotent (adjoint) orbit (say ^5) whose intersection
with Hg is Zariski dense in Hg. (9^ is called the Richardson orbit with respect to
ps. Using the Killing form, we sometimes identify 9 with g*. So, sometimes we regard
(9^ as a coadjoint orbit.

We denote by B, B, A§, Lg, N5, . . . the analytic subgroup of G corresponding to b, b,
ds, lg. Us, . . . respectively. We denote by Ad the adjoint actions on Lie algebras.

We denote the anti-automorphism of U(g) generated by X ̂  —X(Xeg) as follows.

u^u, (MeU(g)).

For an ideal I in U (g), we define ^= { ^ M e l } . Then Iv is also an ideal.
Next we fix the notations for highest weight modules.
Define

Ps^^^eI^IVaeS^oQep,^ . . . } } .

If S = n (resp. S = 0), then P^+=P++ (resp. Ps"+ = t)*).
For ^iet)* such that ^i+pePg^, we denote by cjs(^) the irreducible finite-dimensional

Ig-representation whose highest weight is n. Let Es(n) be the representation space of
cjs(n).

We assume \i + p e Pg"+. We define a left action -of Us (n) by X. v = 0 for all X e Hg
and veE^([i). Then we can regard £5(^1) as a U (pg)-module.
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318 H. MATUMOTO

For ^lePs^, we define the generalized Verma module (Lepowski [Le]) as follows.

MS^U^)®^)^-?)'

For all aet)*, we define the Verma module by M(T)==M(p(T).

Let L(a) be the unique highest weight U(g)-module with the highest a-p. Namely,
L(a) is a unique irreducible quotient of M(a). For aePs^, the canonical projection
of M (?i) to L (k) is factored by Mg (k).

For aeP^ we denote by E^ the irreducible finite-dimensional U(9)-module with the
highest weight u. Clearly E^ = L (a + p) for all a e P +.

We denote by Z(g) the center of U(g). It is well-known that Z(g) acts on M(X) by
the Harish-Chandra homomorphism ^: Z (9) -> C for all 'k. ^ = ̂  if and only if there
exists some w e W such that X, = w a.

1.3. ASSOCIATED VARIETY, GELFAND-KIRILLOV DIMENSIONS, AND MULTIPLICITIES. — We

recall some important invariants for finitely generated U (g)-modules. For details, see
[Vol], [Vo4].

For a positive integer n, we denote by U« (9) the subspace of U (9) spanned by products
of at most n elements of 9. We also put Uo (9) = C q^ U (9) and LL i (9) == 0. Then the
associated graded algebra 91 U (9)= © Un(g)/U^_i(9) is naturally isomorphic to the

n^O

symmetric algebra S (9) of 9. Let M be a finitely generated U (9)-module and z^, . . ., v^
its generators. Put M^= ^ Un(9)^i and consider the associated graded module over

1 ̂ i^h

S(9):grM= ® M^/M^,i. Since we can identify 8(9) and the polynomial ring over 9*,
n^O

we can define the associated variety of M as follows.

Ass(M)={z;e9* | / (zO=Oforal l /eAnns^(grM)}.

Ass (M) is a Zariski closed set of 9* and its definition does not depend on the choice of
generators v^, . . .,^. Using the Killing form, we regard often Ass(M) as a closed
subvariety of 9. We call the dimension of Ass (M) the Gelfand-Kirillov dimension and
we write Dim(M). We define Dim(0)= - oo, where 0 is the trivial module.

Next we introduce another important invariant, the multiplicity. A classical theorem
of Hilbert-Serre implies that there exists some polynomial ^ (x) in one variable over Q
such that dimcM^=/(^) for sufficiently large n. We can also see the Gelfand-Kirillov
dimension of M is the degree of 50 (x). For de N, we define Q(M) by

c,(M)=
the coefficient of x^(M) in d! / (x) if d-= Dim (M)

0 if^>Dim(M).
oo if d<Dim(M).

If rf=Dim(M), we call c^(M) the multiplicity of M. The multiplicity is always a non-
negative integer and its definition does not depends on the choice of generator z^, . . ., v^.
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1.4. NOTATIONS PRELIMINARIES FOR COMPLEX SEMISIMPLE LIE GROUPS. — Here, we intro-
duce some notations on representations of complex semisimple Lie groups and review
some fundamental results. First, we introduce some notations. For details, see [Dl].

Hereafter G will denote a connected simply-connected complex semisimple linear Lie
group whose Lie algebra is 9. Indeed, for our purpose, there is no harm in supposing
G is simply-connected.

We can regard 9 as a real Lie algebra as well as a complex Lie algebra. So, we want
to consider its complexification.

First, we fix a (complex) Cartan subalgebra t) and a triangle decomposition 9 == u +1) + u
as above. We denote by Qo tne normal real form of 9 which is compatible with the
above decomposition and denote by X-^X the complex conjugaison with respect to
9o. Then there is an anti-automorphism X -> ^X of 9 which satisfies the following (1)-
(3).

(1) ^o-So.
(2) ^=11, tu=vi.
(3) ^^(Xel)).
We extend X ̂  ^X to an anti-automorphism on U(g).
We define a homomorphism of real Lie algebra 9 - ^ 9 x 9 by X ̂  (X, X) for

X€9. Then the image of this homomorphism is a real form of 9 x 9. Hence, we can
regard gx 9 as the complexification 9,, of 9.^= {(X, -^[Xeg } is identified with the
complexification of a compact form of 9. i^ is also identified with 9 by an isomorphism
X -> (X, -^X) as complex Lie algebras. So, sometimes we regard B^eP^ as a U(y-
module.

Put f= {(X, Y)efJX=Y }. Hence I is a compact real form of
9= { (X, X) |Xe9 } . We denote by K the analytic subgroup of G with respect to I.

Next, we consider the complexification of parabolic subalgebras. Under the identifica-
tion: 9 == { (X, X) | X e 9 }, ps is identified with { (X, X) | X e pg }. So, the complexifica-
tion (ps)c [resp. (rts)J o/pg (resp. Us) is identified with pg x ps (resp. Ug x Hg).

We put U=U(9,)= U(Q) (x) £7(9).
Let V be a U-module. If the center Z (9^) of U acts on V by scalar, we say that V

has an infinitesimal character. An infinitesimal character is written by the Harish-
Chandra homomorphisms. Namely, if we identify Z (9^) with Z (9) 00 Z (9), the it is
written of the form ̂  00 ̂  for some X, [i e t)*. In this case, we say V has an infinitesimal
character (k, u). We say that V has an integral (resp. a regular) infinitesimal character,
if ^, ^ieP (resp. X, and [i are regular). An arbitrary irreducible U-module has an
infinitesimal character.

If V is a U-module, put

LAnn(V)= { M e U ( 9 ) | u ® 1 eAnnu(V)} ,

RAnn(V)= [uEV(^)\ 1 ®MeAnnu(V)}.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



320 H. MATUMOTO

For a U-module V and ^eP4 '+ , we define as follows.

V^) = {v E V | U (y v is isomorphic to the direct sum of some copies ofE^}.

For a U-module V, we call z?eV is Infinite, if dimU(fc)^ is finite. A U-module V is
called (g^, IJ-module, if all the element of V is Infinite. A (c^, y-module V is called
admissible, if Y^) is finite-dimensional (or trivial) for all ueP"^. An admissible (9^, y-
module of finite length is called a Harish-Chandra (c .̂, f^-module. The category of
Harish-Chandra (( .̂, ^-modules is defined as a full subcategory of the category of
U-modules.

For U (g)-modules M and N, the dual space of the tensor product (M x N)* can be
regarded as a U-module in the obvious way. We denote by L* (M ® N) the termite
part of (M ® N)*. Namely,

L*(M®N)= {t ;e(M®N)*|dimU(f,)^<oo}.

Hence, L* (M ® N) is a (c .̂, (^-module.
Next, we construct another ((^, ^-module L(M,N) from U(g)-modules M and

N.Hom(M, N) has natural structure of a U (g)-bimodule. We introduce a U-module
structure on Hom(M, N) by

(u ® v) (p = ^u (p v (u, v e U (9), (p e Horn (M, N)).

We denote the ^-finite part of Hom(M, N) by L(M, N).
We easily have:

LEMMA 1.4.1 ([Jo2] 4 .3) .—Let ^et)* and let M be a subquotient of a Verma
module. Then, we have an isomorphism of U-modules:

L (M, L (k)) ̂  L* (L (k) ® M).

Next we define the principal series representations. For X, nel)*, we define

L (?i, u) = L* (M (- ?i)®M (- a)).

The relation with the usual definition of principal series is found in [Dl]. It is known
that L(^, u)=0 unless ^-p-eP.

Let ^, H satisfy X-^eP. We denote by V(^, u) the unique irreducible subquotient
of L(k, a) containing a l^-subrepresentation isomorphic to E^_^. V(X, a) and L(^, a)
have an infinitesimal character (X,, u).

The irreducible Harish-Chandra (9^, y-modules are parametrized as follows.

THEOREM 1.4.2 (Zhelobenko, see [Dl] 4, [BV4], Proposition 1.8). — (1) Any irreduci-
ble Harish-Chandra Harish-Chandra ((^, t ̂ -module-module is isomorphic to V(X, a) for
some A,, ^et)* such that ^-neP.

(2) Z^ ^, u, ^, H'et)* fl^ assume ^-a, ^-^eP. T/z^, V(X, H)^V(T, u') ;/^J
o^/y ;y there exists some w e W 5'McA ^Aa/ X = w \1 and a = w a7.
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The following may be regarded as a special part of the Bernstein-Gelfand-Joseph-
Enright category equivalence theorem (cf. [BG], [GJ]).

PROPOSITION 1.4.3 (Joseph [Jo2] 4.5). —Let p-el)* be dominant and regular. Then
for all vet)* such that p ,—veP,

L(MOi),L(v))^V(-v, -^i).

Hence, we have another parametrization of irreducible Harish-Chandra (c^, y-modules
with regular infinitesimal characters as follows.

COROLLARY 1.4.4. — Let V be any irreducible Harish-Chandra Harish-Chandra (c^, l^)-
module-module with a regular integral infinitesimal character. Then there exist a unique
pair of anti-dominant regular characters (k, p)eP~' ~ x P~ ~ and a unique zeW such that

V^L(M(wo^),L(z-1^)).

We consider the associated variety, the Gelfand-Kirillov dimension, and the multiplicity
of a finitely generated c^-module V. In this case. Ass (V) is a closed subvariety of g*
(org,=gxg).

1.5. TRANSLATION PRINCIPLE. — Here, we introduce the translation principle. For
details, see [BG], etc.

For X, ^iel)* and for a Harish-Chandra (9^, Ic)"1110^^ V, we say that V has the
generalized infinitesimal character (^-, \\), if every irreducible consituent of V has the
infinitesimal character (k, [i). We define a full subcategory Jf of the category of
U-modules as follows.

^ = {V | V is a Harish-Chandra (9^, y-module and any irreducible constituent
ofV has an integral infinitesimal character}.

For X, H e P, we denote by Jf [ ,̂, \i] the category of objects of ^f with the generalized
infinitesimal character (^-, \x).

From the Chinese reminder theorem, we have the following direct sum decomposition
of categories.

^f= ® Jf[?i,ri.
3i, v e P +

We denote by P^ ^ the projection function of e^f onto ^\k, \\\. For r|eP, we denote
by V^ the finite-dimensional irreducible U(g)-module with extreme weight T|. For X-, ^i,
X', p/ e P, we define the translation function T^' ̂  : Jf [X-, p,] -> Jf [K\ [i'] as follows.

T^(V)=P,, ^(V®(V,,_,®V^_,)) (VeJf[^, ri).

The following is important.

THEOREM 1.5 .1 .—The translation functor is exact. I f ' k , ^, ^/, j^eP^, ^^
T^' ̂ ': J^ [ ,̂ \\\-> ̂  [^/, ^i'] ^ a^z equivalence of categories.
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From the definition, we can easily deduce the following results.

PROPOSITION 1.5.2. — We assume X, n, K ' , [ i ' e P ~ ~ .
(1) IfxeW, then

T:^ _-̂  (L (M (wo ^), L (x-1 H))) = L (M (^ ̂  L (x-1 ̂ )).

(2) Ifx, yeW satisfy x X, y^eP^, then

T:{;; _-̂  (L* (Ms (x H)(x)Ms (j X))) = L* (Ms (x ̂ Ms (y D).

(3) Ifx,yeW,then

T^-^ (L (L (x ?0, L (y ^i))) = L (L (x X'), L (y n7)).

Fix X', ^eP". For X, ^eP", zeW, we define

V°(z-1; -n, -^)=T:^-_\,L(M(wo^),L(z-l^i/)).

From Proposition 1.5.2, we see the definition ofV°(z~1; -H, - ' k ) does not depend
on the choice of X', p/eP~ -. We also see if ^, neP" ~, then

V°(z-1; -^ -^=L(M(^o^L(z-l^i)).

For general (possibly singular) )i, H € P ~ , V^z"1; -^i, -^) is either irreducible
or 0. If it is irreducible, then we have

V°(z-1; -H, -X)=L(M(wo^),L(z-1^)).

The following generalization of Corollary 1.4.4 is known.

THEOREM 1.5.3. —Let V be any irreducible Harish-Chandra (9^, i^-module with an
integral infinitesimal character (-|LI, -X)eP+xp+. Then there exists some weW such
thatV^V°(w~1; -^ -X).

1.6. GLOBALIZATIONS OF HARISH-CHANDRA MODULES. - Let H be an admissible continu-
ous representation of G on a Hilbert space on which K acts unitarily and let V be the
K-fmite part. Harish-Chandra proved V has a natural structure of a Harish-Chandra
(9,, ^-module.

Conversely, if we fix a Harish-Chandra module V first, then there exists some admissi-
ble Hilbert space G-representation H whose K-finite part is V([W1]). Here, H is not
unique in general.

In their joint work, Casselman and Wallach ([Wl], [Ca3]) proved that, if we consider
the space H^ of C00-vectors in H, H^ is uniquely determined by V as a Frechet
representation. In fact, H^ is characterized as a Frechet representation with growth
conditions. For details, see the above-mentioned references.

So, we write V^ for H^. V -> V^ is an exact functor [Ca3].
We denote by V^ the continuous dual space of V.
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Let V be a Harish-Chandra (9^ ^-module and let E be a finite dimensional
U-module. Then, we can easily see:

LEMMA 1.6.1

V,®E*=(V®E),.

2. Additive invariants and an embedding theorem

2.1. COHERENT FAMILIES AND ADDITIVE INVARIANTS. — First, we recall the notion of
coherent family and collect some elementary properties.

We consider the category Jf (1.5).
A full subcategory M of ^ is called good subcategory if M satisfies the following

condition (G 1) and (G2).
(Gl) For any object V of M, every subquotient of V is an object of M.
(G2) Let E be any finite dimensional representation of 9^ and let V be an object of

M. Then E®V is an object of M.
We remark that Jf itself satisfies the above properties (Gl) and (G2).
For fifeJ^, we define a full subcategory J^j of ^f by

jf,=={VeJf|Dim(V)^}.

Jf^ is a good subcategory of J'f for each d.
We denote by Ji [v, T|] the category of objects of M with the generalized infinitesimal

character (v, T|). Then, the Grothendieck group K(^[v, T|]) is regarded as a subgroup
ofK(^).

A map ©: P x P -> K (Jf) is called a coherent family (on P x P) if © satisfies the
following condition (Cl) and (C2).

(Cl) © (v, T|) e K (^f [v, ri]) for all v, T| e P.
(C2) For any finite dimensional (^-module E and \, H e P, we have

©(v, n)®E== ^ m^ ^©(z^+Si, r|+§2).
(§1, 8 2 ) e P x P

Here, m^ ^ denotes the multiplicity of I)c(==I) x I))-weight (§1, §2) in E.
Let ©i and ©2 be coherent families. We define the sum ©i+©2 by

(®i+®2)(v, n)=®i(v. r|)+©2(v, ri)(v, r}eP).
A coherent family © is called irreducible, if © (v, T() is the image of an irreducible

Harish-Chandra (g,, I,) -module into K(^f) for every v, T| eP'^+ . Let V be an arbitrary
irreducible Harish-Chandra (9^, tj-module with an integral infinitesimal character and
let (-a, -^) be its ininitesimal character. We can assume X, p^P". It is known that
there exists a unique irreducible coherent family ©y such that ©v(-a, -^)=[V]. If
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weW and V^M^o^L^-^ejn-H, -^ ^ have
©v^U', -r>=[V°(w-1; -H7, -D] for all ̂ , ^eP-.

Fix 5i, neP-. Then, any XeK(^)[-n, -^] is written by the finite sum
x- L "i^j, where n^Z and V, is an irreducible Harish-Chandra (g,, f,) -module with

the infinitesimal character (-n, -X) for all i. Then we define a coherent family ©x
by ©x=E^©v,. Clearly, we have ©x(-H, -^)=X and X^©x defines a homo-

morphism of abelian groups.
Fix a good subcategory M of Jf. We remark that, for Ve^, we have

©v(v, r|)eK(^[v, T|]) for all v, r|eP. Let ^, ^eP-. We introduce a WxW-module
structure on K {M [ - ̂  - ̂ ]) as follows. For K (^ [ - n, - ̂ ]) and w, y e W, we define

(w,JO.X=©x(-w- l^, -j^X).

WxW-representation K(^ [-H, -),]) (or K(^ [-H, -)i])®^C) is called a coherent
continuation representation.

Next, we introduce the notion of additive invariants (cf. [Mat5]). Let M be a good
subcategory of ^ and let a be a map of the set of objects in M to f^J. a is called an
additive invariant on M, if it satisfies the following two conditions (Al) and (A2).

(Al) For all exact sequence in M

0->Mi-^M2-^M3->0,

we have

a(M^=a(M,)+a(M^.

(A2) For any Me M and any finite dimensional U(g,)-module E, we have

a(M(g)E)=dimE.^(M).

For example, the multiplicity ^ is an additive invariant on ̂  for any de ̂  [Vol].
The following result is important.

THEOREM 2 . 1 . 1 (Vogan [Vol]). — Let M be a good subcategory of^e and lei a be an
additive invariant on M. Then we have:

(1) We take a coherent family © on P x p which takes values in K(^). Then the map

Pxp9(v, T|)->^(©(V, r|))€Z

extends uniquely to a W x ̂ /-harmonic polynomial v [a; ©] on t) x t).
(2) Fix ^, neP~, then the map

0,: K(^[-n,-^])9X^^[a;©x]eS(l)Xt))

is W x W-equivariant.
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2.2. DOUBLE CELLS IN WEYL GROUPS. - In this section, we review the theory of cells
(cf. [Jo3, II], KL1], [BV2, 3, 4], [Lu4, 5, 6, 7], etc.). Especially, we can find most of the
following results in [BV4] section 3.

Let H e P ". For w e W, we put J (w \i) = Anny ̂  (L (w n)). For x, y e W, we define
L R L R

preorders ^, ^ as follows, x^y iff J(^H)SJ(y^i). x^y iff there exists some finite
dimensional U(g)-module E such that L(y[i) is an irreducible constituent of

L
L(;cp,)(g)E. Form the translation principle, it is known that the definitions of ^ and
R _ _ L
^ do not depend on the choice of ^eP . We define an equivalence relation ~ (resp.
R L L L R R R

~) by x ^ y iff x^y smdy^x (resp. x ^ y iff x^y and^^x).
L LR L R L

We denote by ^ (resp. ^) the relation on W generated by ^ and ^ (resp. ~ and

^).
Form the definition we can easily see:

LEMMA 2.2.1. — Let [teP~~ and let Wg be the longest element o/Wg. Then, for all
R

xeW, Wg^x if and only ifxHePs"^.
We quote:

THEOREM 2.2.2 (Joseph [Jol], also see [BV4], 3.10).— Let K, \ieP~~ and let
zeW. PutV=L(L(woK), L(z-l^l)). Then

LAnn(V)=J(z-l^)v=J((woZ-l(-^)),

RAnn (V) = J (n^o zw^ ?i)v = J (zn^ (- ̂ )).

The following results are known.

THEOREM 2.2.3 ([KL1], 3.3 Remark). — The maps x ̂  XWQ and x ̂  WQ x reverse each
L R LR

of the preorders ^, ^, ^ on W.

THEOREM 2.2.4 (cf. [BV4] section 3, [Vo2], Theorem 3.2, also see
Proposition 1.4.3). — We assume X, ^eP"", x, yeW.

(1) We have:

x^y iff RAnn (L(M(n^), L(x-1 n))) £ RAnn (L (M (wo ̂ ), LCF-^))),

x^y iffLAnn (L(M(w^), L(x-1 n)))gLAnn (L(M(wo?i), Lfj-1^)),
L R

x^ iff x~l^y~l,

LR LR
jc^^ iff x~^^y~^.
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L R
(2) x^y (resp. x^y) if and only if there exists some finite dimensional U(c^-module

E such that L(M(W()X), l.(y~1^)) is an irreducible constituent of L(M(W()^),
^"^^(E®!) [resp. L(M(wo^), L(x~1 u)]®(l®E)). ^^, 1 m^^ ^ trivial
U (c^-module and "we regard \®E and E®1 05" U-modules.

LR
(3) x^ if and only if there exists some finite dimensional U-module E such that

L (M (WQ X), L (y~1 n)) ;51 a^ irreducible constituent of L (M (wo K), L (x~"1 u))®E.
For weW, we define full subcategories ^f(w) and Jf'^) of J'f as follows.

^ (w) == { V e J'f [ For every irreducible constituent X of V there exist some K, p- e P~
LR

and j^eW such that w^y and X^V0^"1; -^ ~^)},
Jf (w) = { V e J'f | For every irreducible constituent X ofV there exist some X,, |i e P -

LR LR
and yeW such that w^y, w^, and X^V0^"1; -|LI, -X)}.

We can easily see ^ (w) and Jf7 (w) are good subcategories of e^f form Theorem 2.2 .2
(3) and the translation principle. Hence we can define coherent continuation W x W-
representations K(^f(^)[-u, -X]) and K(^f'(w)[-^i, -X]) for all X, |LieP". We
put

V^w; -H, -X)=K(^f(w)[-n, -X])®^C,
^(w; -^ -X)=K(^ /(w)[-^, -X])®^C,

V^^; -H, -^V^w; -H, -XVV^Cw; -ILI, -X).

As a representation of W x W , V^w; -H, -X) [resp. V^^; -H, -X)] does not
depend on the choice of X,, neP"", and it is called a double cell (resp. a double cone)
representation (cf. [BV4] section 3). So, we often denote the double cell (resp. cone)
representation by V^w) [resp. V^w)].

LR
From the definition, we see immediately that x ^ y implies

V^x; -u, -^V^O; -H, -X).
Although many deep results are known on double cells, we only remark the following

properties (cf. [BV4]).

LEMMA 2.2.5. —Let weW and X, [ieP~~.
LR

(1) The image of [ L (M (WQ X), L (y 1 jn)) | y ^ w} forms a basis of V^ (w; — |LI, — X-).
(2) 77^ multiplicities of any irreducible constituent of V^ (w; — |i, — X) [r^yp. V1^ (w;

— p,, — X)] ^ always one. For any irreducible constituent V of V^ (w; — p,, — X) [r^y/?.
^^(w; — u , —X)], ^r^ ̂ ^^ ^'ow^ irreducible W'-representation a ^MC/Z ^^^ V^a®a.

(1) Is clear from the definition. (2) follows from the fact that V^^; -a, -X) [resp.
yLR ̂  - n, - X)] is equivalent to some W x W-subquotient (subrepresentation) of the
regular representation C [W] and any irreducible representation W is self-dual.
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Lastly, we quote the following:

L R
LEMMA 2.2.6 (cf. [Lul], Lemma 4.1). — I f x, yeW satisfy x-^y (resp. x^y) and

LR L R
x ^ y , then ̂ ^ (resp. x ^ y ) .

2.3. INDUCED REPRESENTATIONS WITH FINITE-DIMENSIONAL QUOTIENTS. — In this Section,

we consider some induced representations. The material in this section is more or less
known.

First, we fix some terminologies on induced representations. Let S^=n and let pg
(resp. Pg) be the corresponding parabolic subalgebra (group) as above. Let a be an
irreducible finite dimensional (continuous) representation of Pg. (We do not assume a
is holomorphic.) We denote by E^ the representation space of a. We define the space
of smoothly induced representation by

C00 (G/Ps; a) = { F : G -> Ej F is of the class C00

and F^/^aOT^F^) for all geG andj^ePs}.

G acts on C°° (G/Pg; a) by the left translation and there is a natural differential action
of U. We denote by Ind^(a) the 1,-finite part of C°° (G/Pg; a). Clearly, it is Harish-
Chandra (c^,, y-module.

From Sobolev's lemma, we see Ind^(a)^ coincides with C°°(G/Ps;<7)
(cf. [BW]III7.5).

Nest, we recall the definition of the Casselman-Jacquet module of a Harish-Chandra
(9,, f,)-module (cf. [Ca2], [Wl]). For a Harish-Chandra (g,, f,)-module V, we define

J(V)={z;eV*|3^1, VXi, . . ., X^eu,, Xi. . .X^=0}.

It is known that J (V) is a U-module of finite length and any irreducible constituent of
J (V) is a subquotient of some Verma module of U with respect to the Borel subalgebra
b,=b(x)b.

The following result is a special case of [Wl], 5.11.

THEOREM 2.3.1 (Casselman-Wallach). — For any Harish-Chandra (c .̂, ̂ -module-
module ^f^ every element of J(V) extend to a continuous linear form on Voo
^uniquely. Namely, J (V) ̂  V^.

For simplicity, we hereafter only consider the integral case. For T|, vePg"1' OP, we
denote by Es(r|, v) the finite dimensional irreducible U ((Ig) c)-module
EsCn'P)®^^"?) with highest weight (r|-p, v-p). Then, Es(r|, v) has a natural
Ls-module structure whose differential module structure is the original U ((Is)^)-module
structure. We define that ^eNg acts on Es(r|, v) identically. Then, Es(r|, v) can be
regarded as a continuous Ps-representation. We denote by E^ (r|, v) the contragredient
representation ofEs(r|, v).
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From standard arguments, we easily see:

LEMMA 2.3.2. — Let S g II and T|, v e Ps+ + U P. As a Harish-Chandra (9,, i^-module
L*(Ms(r|)(g)Ms(v)) is isomorphic to Ind^(E^(r|, v))).

Next, we investigate special induced representations. Let ^eP" and let Wg be the
longest element of Wg. Then we have w^eP^. So, we can consider the generalized
Verma module Mg (ws ̂ ). We can easily see Mg (n^ ̂ ) is irreducible. Hence, we have

L (Ms (ws X), Ms (ws ?i)) ̂  L* (Ms (ws ?i)(g)Ms (ws ̂ )) ̂  Ind?, (Es* (^s ̂ , ^s ?i)),

from Lemma 1.4.1 and 2.3.2. In fact, this induced representation has a finite-
diemnsional unique irreducible quotient. However, for our purpose, an irreducible
subrepresentation is more important. So, we are going to investigate the structure of
this induced module.

First, we regard U(g)/J(ws^) as a Harish-Chandra (9,, ^-module by (M(g)^)X=%XS
for M, v e U (9) and X e U (g)/J (ws ̂ ).

Since we can regard X e U (g)/J (ws ̂ ) as a linear transformation on Ms (^s ̂ ) = L (ws X),
there exists a natural linear map

(D: U (g)/J (ws )l) ̂  L (Ms (ws 5i), Ms (^s ̂ )).

We can immediately see the above 0 is an injective morphism of Harish-Chandra ((^, y-
modules. Here, we quote a deep result.

THEOREM 2.3.3 (Conze-Berline and Duflo [CD] 2.12, 6.13).—For any 5ieP",
^'- U (g)/J (ws ̂ ) ̂  L (Ms (ws ̂ ), Ms (ws ̂ )) ^ isomorphism.

Remark. - The assumption "^eP" is stronger than enough. Actually, Conze-Berline
and Duflo proved the above result under a weaker assumption. Gabber and Joseph
showed the assumption can be relaxed further (cf. [GJ], 4.4).

An ideal I of U (9) is called primitive if it is the annihilator of some irreducible U (9)-
module. Duflo proved in [D2], any primitive ideal I satisfies l=tl. Here
tl={tu\u€l]. Since J (ws ̂ ) is primitive, we have:

THEOREM 2.3.4

LAnn (Ind^ (E? (ws ̂ , ^s ̂ )) == RAnn (Ind^ (E^ (^s ̂  ^s ̂ ))) = J (^s ̂ )v.

An ideal I of U(g) is called prime, if J^^I implies J^I or J^^I for ideals J^,
J2. We can easily see a primitive ideal is prime. Taking account of the fact that
(2-sided) ideals of U(g)/J(ws^) correspond to submodules of Ind^g (E^ (w^, w^)), we
see the primeness of J (^s ̂ ) can be rephrased as follows.

LEMMA 2.3.5. — LetK e P~ ~. (1) Ind^ (E^ (^s ̂  ^s ̂ )) ^^ a unique irreducible sub'
module [say Vs(^, ^-)]. /^ o^r words, the socle o/Ind^(Es6 (ws^, w^)) is irreducible.

(2) Let V be a subquotient of Ind^(Es*(ws?L, Ws^))/Vs(^, ?i). Then,
J (ws ̂ )v S LAnn (v) ̂ ^ J (^s ̂ ) v £ RAnn (V).

(3) J (^s ̂ )v = LAnn (Vs (5i, )̂) = RAnn (Vs (?i, 5l)).
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Since Ind^ (E^ (w^ ̂ , Ws^)) has an infinitesimal character (-^, -^), there exists a
unique element v^ of W such that

Vs ( ,̂ ?i) = L (M (wo X), L (z;s-1 ?i)).

From Theorem 2.2.2, we have

jOi^^.K^^r.
Hence, we have:

PROPOSITION 2.3.6

R
Ws ~ z;s.

Using the translation principle, 2.2.4, and 2.2.6, we finally have:

PROPOSITION 2.3.7. — Let K, p,eP". Then \ve have:
(1) Ind£(E^(wsp,, Ws^)) has a unique irreducible submodule L(M(WQ^), L(z;s-i \\)),
Here z^eW is uniquely determined and independent of the choice ofk, H G P ~ ~ .

R

(2) Ws^^s-
R

(3) If L (M (WQ ̂ ), L(x~1^)) is a subquotient of Ind^g (E^ (wg ^i, WgX,)), rA^ z;s^x and

z;s^x. If L(M(^o^), L(x-1^)) appears in Ind^ (Es* (ws ̂  Ws ̂ ))/L (M (^ ̂ ),
LR LR

L(^s— 1 (i)), ^w ^s^ and z^s^^.

2.4. AN EMBEDDING THEOREM. — In this section, we will prove:

THEOREM 2.4.1. — Let S^=II, K, [ieP~~, and zeW. Then the follomngs are equiva-
lent.

LR
(1) w^z.
(2) There exists some finite dimensional irreducible ^-module a such that L(M(W()X),

L(z~1 n)) ^ a submodule o/Ind^(a).
(3) TA^r^ ex^^ some finite dimensional irreducible ^-module a such that L (M (\VQ ^),

L(z~1 p,)) ^ a subquotient oflnd^(o).

Remark 1. — Even if ^ or \i is not integral, we can prove the equivalence of (2) and
(3) in the same way as below.

Remark 2. — This result gives an affirmative answer to [Mat4] Working Hypothesis I
in a special case. However, if we do not assume the integrality of infinitesimal characters,
then there is an easy counterexample of this working hypothesis for Spin (5, C).

In the above theorem, (2) -> (3) is trivial. First, we prove that (3) implies (1).
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From Proposition 2.3.7, if L(M(woK), L(z-1^)) is a subquotient of L(Ms(n'sX),
LR

Ms^sH^Ind^E^WsH, w^)), then we have H^Z. Hence, it suffice to prove for
any x, yeW such that xK, y^icP^ there exists some finite dimensional U-module E
such that Ind^(jH, x ' k ) is a subquotient of Ind^sH, H\^)®E. But, this statement is
easily deduced from the following form of the Mackey tensor product theorem.

LEMMA 2.4.2. — Let E (resp. V) be a finite dimensional Ls-(resp. G-)
representation. Then, we have the following functorial isomorphism of Harish-Chandra
Harish-Chandra (g^, ̂ -module-modules.

Ind^ (E)®V ̂  Ind̂  (E®V |p,).

In order to prove that (1) implies (2), we should quote several deep results with respect
to the cells.

First, let y^ y , (x, y, zeW) be a non-negative integer which is defined by Lusztig in
[Lu6]. y^ y ^ satisfies the following properties.

THEOREM 2.4.3 (Lusztig [Lu6] Theorem 1.8, Corollary 1.9). — (1) For all x, y , z e W,

I x , y, z Yy, z, x Yz, x, y

(2) Let x, y, zeW. Then y^ ^ ̂ 0 implies

-i R -i R -i Rx ^y^ y ~^ ^ ~^.
The following statement is just a rephrasing of [Lu7] 3.1 (k) and (1).

THEOREM 2.4.4 Lusztig [L\i7]).—Let w, zeW. If z^w, then there exist some x,
R R

yeW such that x ' ^ y ^ w and y^ ^ ̂ 0.
Next, we recall some results of Joseph in [Jol2].
In [Jol2], A 3.3 and A 3.6, Joseph defined a map Wey^y^eW which has the

following properties.
(*1) y^^Y for all yeW. In particular, y ^y^ is bijection.

(*2) Fix w e W. Then y ̂  w implies y^ ~ WQ w.
(*3) For all yeW, we have (J-1)^=(J^)~1.

Hence, we have x ^ y (resp. x^y, x^y) if and only if^^^ (resp. x^y^, x^y^).
The following result is one of the crucial points of our proof.

THEOREM 2.4.5 (Joseph [Jo 12] 4.8 Theorem). — Assume )i, ^ e P ~ ~. Then for all x
yew,

Soc L (L (x ~1 WQ ̂ ), L (ywo n)) = © L (M (^o ̂ ), L (z ~1 (LI))^*. ̂  (^o ^)*.
z e W
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Here, Soc means the socle.

Remark 1. - In [Jo 12], the above theorem is described in terms of c^ ^ ^ which is
defined in [Lu5]. However y^ ^ ^ coincides with the absolute value of c^ ^ ^

Remark 2. - The statement in [Jo 12] is a apparently weaker than the above
statement. However, using the translation principle (Theorem 1.5.1 and
Proposition 1.5.2), we can deduce the above statement from that of Joseph.

R R
Let ^, ^ e P ~ ~ . Lemma 2.2.1 implies that, if Wg^x'^o, w^ywo,

L (y^o H)®L (x~1 WQ 'k) is a quotient of Ms (ywo H)®Mg (x~1 \VQ ^)- From Lemma 1.4.1,
R R

we see that Wg^x'^o, w^y\Vo implies L^.x"1^^), L(y\Vo^)) ls a submodule of
L* (Ms (ywo ̂ )®Ms (x-1 WQ ̂ )) ̂  Ind?, (Eg* (yw^ ̂  x-1 w^ X)).

Hence, we have only to prove the following lemma.

LR R
LEMMA 2 . 4 . 6 . — I f Ti^z, then there exist some x, yeW such that Ws^x'^o,
R

ws^ywo andy^ ^ (woz)*^0-
In order to prove the obove lemma, we need the following deep result.

THEOREM 2.4.7 (Lusztig-Xi Nanhua [LN] Theorem 3.2). — Let x, y e W be such that
LR L R

x^y, there exists zeW such that x^z and z ^ y .

Remark 1. - In [LN], W is an affine Weyl group. However, the same proof is
applicable the case of a Weyl group. (The author learned this fact from G. Lusztig.)

Remark 2. ~ From Theorem 2.2.4 (1), we can interchange L and R in the above
LR R L

statement. Namely, x^y implies the existence ofzeW such that x^z and z ^ y .
LR

Now we prove Lemma We assume Ws^z. From the above Remark 2, there exists
R L LR

some z;eW such that w^v^z. Since z'^z follows from the existence of a Duflo
L LR

involution a such that z ̂  a, we have WQ z ~ ~ 1 ̂  WQ z (2.2.3). Hence, using (2.2.3) and
(2.2.4 (1)) again, we have

L LR _ i LR
WQ ̂  ZWQ ~ WQ Z ~ WQ Z.

Therefore, we have

LR
(iWo^^Wo7)*-

R R
Theorem 2.4.4 implies that there exist some x ' , /eW such that (x')~1 ̂ y ' ^(vwo)^

and Y;c',y' ,(woz)^0- put ^(Ac and y^(y'\- Hence, Y^. y*, (woz)^O- Using the

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



332 H. MATUMOTO

above properties of the map w^w^, we immediately have x ' ^ ^ y ^ v w ^ . From
'T''L^—^-—- ^ ^\ ^ r" 11 iTheorem 2.2.3, we finally have

R R
W^^V^X~1 WO^J^WQ.

Q.E.D.

2.5. WAVE FRONTS SETS FOR COMPLEX GROUPS. - Here, we review some notions which
represent the singularities of Harish-Chandra (9^, y-modules. The contents of this
section are more or less known. For details, see [KV2], [How], [BV1, 2, 3, 4]. For
Harish-Chandra (9^, y-module V, we consider the distribution character ©y, which is a
distribution on G. (In fact, the classical ressult of Harish-Chandra says that it is a
locally integrable function on G.) Let WF(©y) be the wave front set of ©y (c/. [Hor],
[T]). Usually, wave front sets are defined as closed conic subsets of the cotangent bundle
T*G. However, it is more canonical for us to regard WF(©y) as a subset of ;T*G,
because there is no reason to define, in order to define wave front sets, the Fourier
transform using the character e~1 < ^ " > instead o f e + i < s l ' x > . The wave front set WF (V)
of V is the fiber of WF(©y) at the identity element of G. Since the fiber of T*G at
the identity element is canonically identified with the dual of the Lie algebra 9*, WF(V)
is regarded as a closed conic subset of ;9*. Using the Killing form, we also regard
WF(V) as a subset of ;9. If E is a finite-dimensional U-module, then

LR
WF (V®E) = WF (V). (©E is a real analytic function on G!) Hence, if x ̂ y, then

WF(L(M(H^), L<j-1 n)))^WF(L(M(wo?i), L(x-1^))),

for all ^, [ieP~ ~. Therefore, wave front sets are uniquely determined for double cells.
Since the distribution character ©y is an invariant eigen-distribution (in the terminology

of Harish-Chandra), WF (V) is a union of some nilpotent orbits. It is known that the
following exact result.

THEOREM 2.5.1 (Barbasch-Vogan [BV4] Theorem 3.20). —for weW, there exists a
unique nilpotent orbit [say ^(w)] of 9 such that WF(L(M(H\)^), L(z~1 [i)))=i0(w), for

T O

all z^w, 'k, HeP".
Let V an irreducible Harish-Chandra (9^, y -module and let I=Annu(V). Then the

associated variety Add (U/I) of U/I can be regarded as an algebraic analogue of the
wave front set of V (cf. [How]). It is known that Ass (U/I) is the closure of some single
nilpotent orbit in 9^ under the adjoint action of G x G. (This statement is studied by
several mathematicians, Borho, Brylinski, Joseph, Hotta, etc. and established in full
generalities by Joseph.) For the real semisimple case the relation between the wave
front set and the associated variety of U/I is rather complicated. For a complex
semisimple linear group G, the following exact result is known. Here, we regard 9 as a
real form of 9^ = 9 x 9 by

9={(X,X)[Xe9}.
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as before.

LR
PROPOSITION 2.5.2. — Let w e W. jFw ^, ^ e P ~ ~ W z - w, /^ I = Ann^j (L (M (WQ ^),

L(z~1 n))), then we have

Ass(U/I)=^(w)x^(HO.

50, WF L(M(^), Mz-^^HAssOJ/I).
From a result of Gabber, we have

(1) dim (9 (w) = }- Dim (U/I)

=Dim(L(M(wo?l),L(z- l^l))).

We need the following (known) result.

LR LR
PROPOSITION 2.5.3. — Let 'k, \ieP~~ Let x, ^eW satisfy x^y and x^y. Then,

Dim (L (M (wo ̂ ), L (y-1 ̂ i))) < Dim (L (M (wo X), L Qc-1 n))).

For the convenience of readers, we give the proof. For simplicity we put
V^=L(M(wo^), L^-^)) for weW and 4=Annu(VJ. Since Duflo [D2] proved
that I^=LAnn(VJ®U(g)+U(9)(x)RAnn(V^), from Theorem 2.2.4 (1), we have

c:
I^^Iy. From a result of Borho and Kraft ([BoKr], 3.6), we have
Dim (U/Iy) < Dim (U/y. Hence we have the proposition from the above (1).

Now we consider the situation in 2.3. So, we fix S^=II. Let ^, ^eP" ~. If we put
I=Annu(L*(Ms(ws^i), Ms(wsX,))), then we see Ass(U/I)=^s®^s using irreducibility of
Ass (U/I).

Finally, we have

PROPOSITION 2.5.4. — Let 'k, [i e P~ ~ and S ̂  n. Then we have
LR

(1) Ifz^w^, then

Wr^M^),!^-^)))^,
Dim (L (M (WQ ^), L (z ~ 1 ̂ ))) = dim ̂  = 2 dim Hg.

LR LR

(2) Ifws^z and w^z, then Dim (L(M(WO^), L(z~1 |^)))<dim 6^=2 dim Us.
From Proposition 2.3.6, we have:

COROLLARY 2.5.5. — Let\ H e P~ ~ a^rf S g n. Then

Dim (Ind?, (Eg* (^s ̂ , Ws ?i))/L (M (wo ̂ ), L (z;s-1 n)))

< Dim (L (M (wo ̂ ), L (z;s~' ^i))) = 2 dim Hg.
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2. 6. SPECIAL REPRESENTATIONS AND GOLDIE RANK POLYNOMIAL REPRESENTATIONS. — In

this section, we review some results on special representations and Goldie rank polynomial
representations which is defined by Lusztig [Lu2, 3] (also see [Lu4]) and [Jo7, 8]
respectively. We also review a result of Barbasch-Vogan [BV2, 3] which relates these
two notions.

For an irreducible W-module E (over C), we can attach non-negative integers a^ and
b^. ^E ls defined in [Lu4] (4.1.1), using the formal dimension, b^ is the smallest
integer i^O such that the W-module E occurs in the ;'-th symmetric power of I) ([Lu4]
(4.1.2)).

For an irreducible W-module E and weW, if E(g)E occurs in the double cell V^nO ,
LR

we write w^E. The following result is important for our purpose.

THEOREM 2.6.1 (Lusztig [Lu4] (4.1.3), 5.27. Corollary). — (1) For an irreducible
W'-module E, we have always a^ ̂  b^.

(2) Let weW. Then, there exists a non-negative integer a(w) such that a(w)==a^for
LRall irreducible ^-modules E such that H^E.

An irreducible W-module E is called special if a^=b^ holds [cf. [Lu4] (4.1.4)].
The following result is also important.

THEOREM 2.6.2 (Barbasch-Vogan [BV2, 3], [BV4] Theorem 3.20). — Fix
weW. Then, there exists just one special representation E^ such that E^OOE^, occurs in
the double cell V^ (w) with the multiplicity one. Moreover the correspondence E^ <-^ (9 (w)
(see Theorem 2.5.1) coincides with the Springer correspondence (c/. [Spl, 2], [KL2],
[Hoti, 2, 3], [KT], [BoMI, 2], [BoBr], [BoBrM], [Gi], [HotK], etc.).

The theory of Goldie rank polynomials ([Jo7, 8]) implies:

THEOREM 2.6.3 (cf. [Jo8] 3.6, 5,4, also see [BV2, 3], [Bey L]). — For all weW, we
denote by E^ the special representation which is defined in Theorem 2.6.2. Put
r = dim u = card A +. Then we have

0) b^=r-(\/2)dim(9(w).
(2) The multiplicity ofE^ in the b^-th symmetric power oft) is just one.

For weW, we denote by a(w) the unique irreducible W-subrepresentation of the
a(w)(==AEj-th symmetry power of t) which is isomorphic to E^. We call a(w) the
Goldie rank polynomial representation (cf.. [Jo7, 8]). Clearly, G^^aCy) for all x,

LR
yeW such that x ^ y .

Here, we investigate the case w=Wg for some S^n. Using the Killing form, we
identify t) and t)*. We define a polynomial ps on I)* by

ps^ n a-
ae f^S n ^+
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Clearly the degree of ps is r — (1/2) dim ^g, where r=dimu. Put d==l/2
dim 6?s = dim Us. Then, C [W]/?s ̂  S'"^ (t)) coincides with CT (wg) ([Jo7, 8]). The irreduci-
bility of C [W]/?s 1s a classical result of MacDonald [Mac].

2.7. MORE ABOUT ADDITIVE INVARIANTS. — Let weW. From the results in 2.6
(especially Theorem 2.6.2), we see there is a unique surjective W x W-homomorphism

^ V^HO-^HO^aCHO

up to some scalar factor. The above homomorphism induces

0^: V^ (w) -^ CT (w)®a (w).

Here, we regard the outer tensor product a(w)(S)<^(w) as a sub-W x W-representation
of the r—rf-th symmetric power of t)c=^x^' Here, r=dim u=card A4' and
^=(1/2) dim fi\y. In this section, we investigate the relation between 0 ,̂ and additive
invariants on e^f (w).

Let a be an additive invariant on J^(w). Taking account of Theorem 2.1.1, we
define the degree deg (a) of a as follows.

deg (^)==max {deg v\a\ ©v]|V€Jf(w)[-iLi, -)i], X, |^eP-- }.

Here, deg v[a; ©y] means the degree as a polynomial and we define deg 0= — oo.
The following result is convenient to get the degree of additive invariants.

PROPOSITION 2 .7 .1 .—Le t weW and let a be an additive invariant on Jf(w). We
assume there exist some K, \JL e P- - and V e ̂  (w) [ — p,, — 'k] which satisfy the following
condition (D).

LR
(D) There exists some zeW such that z^w and L(M (H\) X-), L(z~1 ̂ )) ^ an irreducible

constituent ofV.
Then, deg (a)=deg ^[^; ©y].
In order to prove the above proposition, we prove:

LEMMA 2 . 7 . 2 . — F i x weW, X, |LieP". Let Ve^f(w) [-n, -^] ^rf let a be an
additive invariant on Jf(w). Then, for any irreducible constituent X of\, we have

deg v\a\ ©x]^deg v[a; ©y].

Proo/. - Put deg v [a; ©y] = n and put

m == max { deg v [a; ©x] | X is an irreducible constituent of V }.

We assume n<m. We choose an irreducible constituent X of V such that
m = deg v [a, ©x]. Let p^ be the w-th homogeneous part of v [a', ©x]. Since P'^+ x p'^+

is Zariski dense in l)xl), there exists some T|, veP4"^ such that p^(r\, v)^0. We, if
necessary, exchange X and can assume p^(r\, v)<0. Hence, for sufficiently large ke N,
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we have

v[a;Q^(kr[,kv)<0.

However, this contradicts the positivity of additive invariants. D
Now, we prove Proposition 2.7.1. Put X = L (M (WQ X), L (z ~1 jn,)) and

w=deg v[a; ©y]. Since clearly n^deg(a), we prove deg(d)^n. From the above
lemma, we have deg v[a; @^]^n. From the translation principle and
Theorem 2.2.4 (3), for any irreductible object Y in ^f (w), there exists some finite
dimensional U-module E such that Y is an irreducible constituent of X®E. If we use
the property (C2) of coherent families (2.1) and the above lemma again, we can easily
see deg v [a; ©y] ̂  n' Q

Using the results in 2.6, we have the following result.

THEOREM 2.7.3 [(2) is due to Vogan and Joseph]. — Let weW and let a be a non-
trivial additive invariant on ̂  (w). Put r = card A + = dim u and d== dim (9^. Then,

(1) We always have 2 r — d^ deg (a).
(2) The multiplicity c^ is an additive invariant on ^ (w) and deg (c^) = 2 r — d.
(3) If 2r—d=deg(a), then there exists some positive constant k such that

a=kc^. Moreover, 0^ (cf. Theorem 2.1.1) coincides with 0^ up to scalar factor.

LR
Proof. — If w^y, then dim ^^dim (9y. So, a(w)^a(y). Hence, Theorem 2.6.1,

2.6.2, and 2.6.3 implies a(w)®a(w) is the only irreducible sub-W x W-module of
© S'^xt)) which occurs in V^w). Hence, we have (1) and the latter part of

i^2r-d

(3). (2) is deduced from [Jo8] 5.7. Theorem. The positivity of the above k follows
from the positivities of additive invariants.

Q.E.D.

3. Whittaker vectors and Whittaker polynomials

3.1. WHITTAKER DATA AND C~00-WHITTAKER VECTORS. — Next we define the space of
C°°-continuous Whittaker vectors. Fix S^II. Here, we consider Ug as a real Lie
algebra. Let \|/: Hg -> C be a character, namely one dimensional representation. Put
^F^US, v|/). We call the above pair ^ a Whittaker datum. If the image of v|/ is
contained in ;' [R, ^F is called unitary. Namely, v|/ is a differential of a unitary character
of Ng in this case.

For a Whittaker datum ^^tig, v|/), we denote by the same letter the
complexification v|/: (n^ -> C of \|/. Since the complexification (n^\ of Hg is identified
with its x Us, we regard \|/ as an element (\|/L, vM of n^ x n^. If \|/ is unitary, we have
^^-^R-

We call ^^HS, \|/) admissible if \|/L and \|/R are both contained in the Richardson
orbit ^s-
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We consider a generalized flag variety X = G/Pg. An admissible Whittaker datum ^F
is called strongly admissible, it the moment map p,: T* X -> Sg (for example see [BoBr],
[BoBrM], etc.) is birational. In [BoM2], the degree of the moment map is given in
terms of the Springer representations.

If an admissible (resp. strongly admissible) Whittaker datum exists, then we call pg
admissible (resp. strongly admissible). Admissible parabolic subgroups are classified by
Lynch [Ly] except E^, E7, and Eg. It is known that, if G=SL(w, C), any nilpotent
orbit is the Richardson orbit of some strongly admissible parabolic subalgebra (cf. [Yl],
[OW]). Parabolic subalgebras associated by a sl^-triples which contain even nilpotent
elements are strongly admissible. If g consists of only factors of type A, admissibility
implies strong admissibility.

Taking account of [Yl], we say that a Whittaker datum ^^Us, v|/) is permissible, if
the restriction of \|/ to HsnAd(/w)ps is non-trivial for all /eL and weW such that
w^L. Here, w is a representative of weW in G.

The following result is known:

THEOREM 3.1.1 (Yamashita [Yl] Lemma 3.3, Proposition 3.4). — A strongly admissi-
ble Whittaker datum is permissible.

I do not know an example of an admissible character which is not permissible.
Let V be a Harish-Chandra (9^, y-module. We define

Wh^(V)={z^V:JX.z;=^(X) z;(Xens)}.

We call an element of Wh^(V) a C~00-^-Whittaker vector for V. (For simplicity,
we call it a C~00-Whittaker vector.)

3.2. EXACTNESS OF Wh^. — Hereafter, we fix a permissible unitary Whittaker datum
^= (^s? ^lO an^ denote by (ns)c tike complexification of rig. The following is one of
crucial point of this paper.

PROPOSITION 3 .2 .1 .—Let S^n. We assume ^=(ns, v|/) is a permissible unitary
Wittaker datum. Then ^ (wg) 9 V ̂  Wh^ (V) is an exact functor from ^f(^s) to the

category of complex vector spaces.
Remark. — W. Casselman proved the exactness of Wh^ when Pg is a minimal parabolic

subgroup. The above proposition does not contain his result, since Casselman proved
the exactness without the assumptions "G is complex" and "V has an integral infinitesimal
character". He described a sketch of proof in [Cal].

We consider the (twisted) (ns)c-cohomology (cf. [Ko], [Ly], [W3], also see [Mat5] 2.2,
2.3). For a U ((ns),.)-module M and ieN, the 0-th (ns)^-cohomology group H° ((its),., M)
is defined by

H°((nsL M)={z^M|Xz;=0(Xe((ns),,)}.

M ̂  H° ((ns)c, M) is a left exact functor from the category of U ((ris)c)-module to the
category of vector spaces. The ;-th (tts^-cohomology group H1 ((n^, M) is defined as
an ;-th right derived functor of a functor M ̂  H° ((rtg)^ M).
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For a Whittaker datum ^=(ris, v|/), we define a one-dimensional U ((ns),)-module C_.
by Xz;= -^(X)v (Xe(ns),, veC^).

Since Wh^ is a left exact contravairant functor from Jf to the category of complex
vector spaces, taking account of the exactness of V->V^(VeJf), we immediately see
we have only to prove H^^s),, V^(2)C_^)=0 for all VeJf(ws). From a standard
argument using a long exact sequence, we easily see Proposition 3.2.1 is deduced to the
following lemma (In fact, we only need the vanishing of the 1st cohomology.)

LEMMA 3.2.2. — Let ^=(ns, \1Q be a permissible unitary Whittaker datum and let V
be an irreducible Harish-Chandra (9^, i^-module with contained in Jf (n^). Then we have

H^tts),, V,(g)C^)=0,

for alii>0.
The following result will be proved in § 4 using Casselman's idea.

PROPOSITION 3 .2 .3 .—We assume ^=(ns, \|/) is a permissible unitary Whittaker
datum. For all finite dimensional irreducible representation o o/Lg, we have

W ((nsL C00 (G/Ps; ay®C _^» = 0,

for all p > 0.
Using this proposition, we prove Lemma 2.2.2. First, we show that we can assume

VeJf(ws)[p,p].
Let V e ̂  and let E be a finite dimensional U ((ns)c)-module. E always bas a U ((Te-

stable finite filtration whose grading module is a direct sum of the copies of the trivial
U ((^^-"^dule C. From a standard argument using a long exact sequence (or a
spectral sequence), we see:

LEMMA 3.2.4.—Let VeJf and lei E be a finite dimensional U-module such that
E^O. Then, ?(0 ,̂ ((V®E),®C_^)=0(p>0) ifW((n^ (V'J®C_^=0^>0).

Let ^, neP- and let VeJf(w)[-^, -?i] be irreducible. Then there exists some
irreducible Harish-Chandra (^, fj-module VoG^f(w)[p, p] such that V^"^ "^(Vo).
Since V is a direct summand of Vo®V_^_p _ ^ _ p , we see that we can assume
V e ̂  (ws) [p, p] in order to prove Lemma 3.2.2. So, hereafter we assume
VGjf(H^)[p,p]).

Put fl?==dim (n^)c- Since (ns)c-cohomologies are computed by a Koszul complex, we
always have

H^tts),, V,®C^)=0

for all p > d.
So, we prove

Wk H^Tts),, V,®C_^)=0 foral l^>yfc.
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by the descending induction on A;. We assume (^\ holds. Using long exact sequences,
we see that H^1 ((Us),, M^®C_^)=0 for all Me^f(^s)[p, p].

From Theorem 2.4.1, there exists some irreducible finite dimensional Lg-
representation CT such that V is a submodule of Ind^(a). Put M === Ind^g (a)/V.

Theorem 2.4.1 also implies MeJ^(ws)[p, p]. Hence, Lemma 2 .2 .2 follows from
Proposition 2 .2 .3 and the following long exact sequence.

...^^((ns),, ^(G/P^^^C^^^H^^s),, V,®C_^)
-. H^ans), M,®C_^.. .

Q.E.D.

Remark. - The above argument is suggested in [Cal] and Casselman uses his subrepre-
sentation theorem in stead of Theorem 2.4.1.

3.3. WHITTAKER POLYNOMIALS. - We fix S^n and a permissible unitary Whittaker
datum ^((Hs)^ . First, we have:

LEMMA 3.3.1. — Let S g II and let ^¥ = (Tig, \|/) be a permissible Whittaker datum. Let
V be a Harish-Chandra (^ ^-module and lei E be a finite dimensional V-module. If
dimWh^(V)<oo, then

dim Wh,? (V®E) = dim E dim Wh^ (V).

Proof. - Since we have (V®E)^=V^®E*. Hence, we have the lemma from [Ly]
Theorem 4.2 (also see [Ko2]). D

We need:

THEOREM3.3.2 (Yamashita [Yl] Theorem 3.7). — Let SgII and let ^=0^, \|/) be a
permissible Whittaker datum. Let (a, E(,) be an irreducible finite-dimensional continuous
representation ofL^.

Then we have

dim Wh^ (Ind^(a))^dim E^.

Remark 1. - Yamashita proved the above result for real semisimple (reductive) Lie
groups.

Remark 2. — In [Yl], the above result is stated under a stronger assumption on ^F,
namelyx? should be ofGGGR type (cf. [Kawl, 2, 3]). However, in his proof, Yamashita
only uses the permissibility of a character.

Remark 3. - In [W3], independently, Wallach proved a related result.
Hereafter, we put w^(V)=dim Wh^(V) for all VeJf(ws). Using the above results,

we have:

PROPOSITION 3 .3 .3 .—Let Si=n and let ^^(ns, \|/) be a permissible Whittaker
datum. For an arbitrary V e ̂  (^s), we have Wxp (V) < oo.
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Proof. - Let V e Jf (wg). From Proposition 3.2.1, we can assume V is
irreducible. Hence, there exists some ^, neP" and zeW such that

LR
V^V°(z-1; -H, -^) and z^Wg. Since V=Tp7p -'(L(M(p), L(-z-1 p))), V is a
direct summand of V_^ _,_p®L(M(p), L(-z11 p)). From Lemma 3.3.1, we can
assume V has infinitesimal character (p, p). The proposition follows from
Theorem 3.3.2, Theorem 2.4.1, and Proposition 3.2.1. D

If ^ is unitary and permissible Wh^ is non-trivial, namely we have:

LEMMA 3.3.4. — Put ps = 1 /2 (p + ws p). Then, sufficiently large k e N, we have

Wy(Ind^(Es*(-Wsp-2A:ps, -Wsp-2feps))= 1.

Proof. - First, we remark that the dimension of
°k = ES? (- ̂ s P - 2 k ps, - Ws p - 2 k ps) is one. Hence /e C°° (G/Pg; o^) can be regard as
a function on G. For/eC°°(G/Ps; c^), we define the Whittaker integral (cf. [Jc], [Sc])
by

^(/)=f W/(^.
JNS

Here, rf/z is a Haar measure on Ng. The absolute convergence of the above integral for
sufficiently large k is proved in just the same way as the case of intertwining integral
(cf. [Kn], Theorem 7.22). Clearly Whittaker integral defines non-zero element of
Wh^(Ind^(CTfc)) for sufficient large keN. Hence, l^Wy(Ind^((7fc)). The other
inequality is just Theorem 3.3.2. D

Proposition 3.2.1, Lemma 3.3.1, Proposition 3.3.3, and Proposition 2 .7 .1 imply:

COROLLARY 3.3.5. — Let S^H and let ̂  (rig, \|/) be a permissible unitary Whittaker
datum. Then, Wy is an additive invariant on ^f(wg).

For Ve^f(ws) with an (integral) infinitesimal character, we define the Whittaker
polynomial of V with respect to the admissible unitary Whittaker datum ^F by

p^\y\=v[^\ ©y].
Here, the right hand side is a polynomial defined in Theorem 2.1.1. If 5i, ^eP" ~ and
V e Jf (wg) [ - H, - ^] is irreducible, then

MV]=MT:^--^(V)]

for all ^/, n'eP- such that T:^ _-^(V)^0.

Remark. - Whittaker polynomials are first introduced by Lynch [Ly] for the algebraic
analogue ofWh^.

Hereafter, we put r = card A + and d= dim 0^ = dim (ns), = 2 dim Us. Theorem 3.3.2,
Proposition 2.3.7, Proposition 2.7.1, and WeyFs dimension formula imply
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deg (Wy)^2r—rf. From Lemma 3.3.4 and Theorem 2.7.3, we have the main result
of this paper.

THEOREM 3.3.6. — Let S ̂  IT and let ^V be an permissible unitary Whittaker
datum. Then we have

(1) Wxp ( = dim Wh^) is an additive invariant on ^f (wg) and deg (Wy) = 2 r — d.
(2) 0^: V" (ws) -> S (t) x 1)) (cf. Theorem 2.1.1) induces a surjective WxW-Aowo-

morphism

<Pw<p ^ V^ (̂ s) -^ ̂  (^s) ® or (wg).

Here., cr(ws) ^ S21" ̂ (t)) ^ generated by p^ as a ̂ -module.
(3) TT^r^ exists some positive constant k such that Wxp = fee,,. Hence, for all V e ̂ f (w§),

w^ Aaw^ /?^ [V] = fe^ [c^; ©y].
LR LR

(4) For ̂  H e P~ ~ W Wg ̂  z, /?<p [L (M (1^0 ̂ ), L (z~1 ^i)))] 9^ 0 ;/ awrf ^/y ;/ z - Wg.
Remark. — If ̂  is permissible but non-unitary, then Wy is trivial.
From Theorem 2.6.2, the above (p^y is determined up to a scalar factor. The

following result determines the scalar factor.

PROPOSITION 3.3.7. — Let S ̂  n nd let ^¥ be a permissible unitary Whittaker
datum. Let K, [i e P ~ ~. Then

p^ [L (M (wo ̂ ), L (z;s-1 H))] (11, v) = ̂ P^ .
Ps(P)

Proof. - We can assume ^ = ̂  = - p. From Proposition 2.3.7 and Theorem 3.3.6,
we have

^ [L (M (p), L (- z-1 p))] =^ [Ind^ (Es* (- ̂  p, - w., p))].

[Jo4], 6.7 Remark and WeyFs dimension formula implies /?y[L(M(p), L^-z^p))] is
proportional to ps^Ps- So, the proposition follows from Lemma 3.3.4. D

Remark. — Since the actions o f W x W o n the double cells are, in principle, computable,
we can, in principle, compute Whittaker polynomials using the above
proposition. However, in actual computations, this fact is not so useful (for example,
see a discussion in the introduction of [BV3]).

Remark. — Casselman [Cal] and Wallach ([W3], Theorem 7.2) got a similar result
for real semisimple groups (also see [Mat5], Corollary 7.3.8). It is possible to prove
Proposition 3.3.7 without using Joseph's result.

3.4. C~ °°-WHITTAKER VECTORS AND WAVE FRONT SET. — In this section we prove:

THEOREM 3.4.1. — Let S g II and let ^F be a strongly admissible unitary Whittaker
datum. For an irreducible Harish-Chandra (g^, ̂ -module V with an integral infinitesimal
character thefollomngs are equivalent.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



342 H. MATUMOTO

(1) Wh^ (V) ̂  0 and dim Wh^ (V) < oo.
(2) WF(V)=^s.
Proof. — From Theorem 2.5.1 and Proposition 2.5.4, we can easily see (2) implies

the following (3).
(3) There exist some ^, |LIGP~ and zeW such that V ^ L(M(W()^), L(z~1 |LI))^O and

LR
Z- Wg.

From Theorem 3.3.6, we see that (3) implies (1).
Next, we remark that (2) is equivalent to the following (4) (c/. 2.5).
(4) Ass (U/I) =:Ssx ̂  where I == Anuy (V).
We quote:

LEMMA 3.4.2 ([Mat2] Theorem 2, [Mat5], Theorem 2.9.4). — Let S ̂  U and let T
be an admissible unitary Whit taker datum. For an irreducible Harish-Chandra (c^, y-
module V, put I == Ann^ (V).

Then,
(1) Wh^ (V)^0 wz/^ ^s x ^s S Ass (U/I).
(2) //' Dim (V) > dim (9^ their either Wh^ (V) = 0 or dim Wh^ (V) = oo.

(1) —> (4) ^ clear from the above lemma.

4. Vanishing of twisted Us-cohomologies of an induced representation

4.1. A VANISHING THEOREM. — In this 4, to complete the proof of our main theorem,
we prove a vanishing theorem of twisted Us-cohomology groups of some induced represen-
tations (Proposition 3.2.3). We would like to stress how much the contents in this 4
owes to Casselman.

In order to state the result in a general form, we abandon the notations of 1.4, and
use the following notations. (We retain the notations in 1.1-1.3.)

Let go be a real form of 9 and let G be a connected semisimple linear Lie group whose
Lie algebra is go. We fix a minimal parabolic subgroup P^ of G whose complexified Lie
algebra p^ contains b. Let S^ be the subset of n corresponding to ?„,. Hereafter, we
fix a parabolic subgroup P of G such that P^ £= P. Let S be the subset of II correspond-
ing to p and we write I, n, n, a, and m for Is, rig, n§, and m§ respectively. Let P = M^ A^ N
be a Langlands decomposition of P and we denote by m, and a^ the complexified Lie
algebras of M^ and A^ respectively. We assume a^+m^I, a^ ^ a, and msm^. We
put L=M^A^. We denote by N the opposite nilpotent subgroup to N. Let
P^==M^A^U^ be the Langlands decomposition which has the same properties as the
above Langlands decomposition of P. Let U^ be the opposite subgroup to U^ and
let G=KA^U^ be the Iwasawa decomposition which is compatible with the above
definitions. We denote the complexified Lie algebras of A^, K, M^, U^, and U^ by a^,
I, m^, u^, and u^ respectively. We denote by £ the restricted root system with respect
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to (9, aj and denote by ^+ the positive system corresponding to u^. We denote by
n^ the simple root system of ̂ +. Then P corresponding to a subset S^ of H^,, namely
S^ is a simple root system of (I, a^). Let W^ 6^ ̂  little Weyl group.

Let (a, E^) be a finite dimensional continuous L-representation. We define that N
acts on E^ trivially and regard a as a P-representation. We define

C00 (G/P; a)= { F : G -> Ej F is of the class C°°
^indF(gp)=a(p~l)¥(g){oT2i\\geGsindpeP}.

We regard the above space as a Frechet G-module in the standard manner. Then there
is a differential action of U(g) on C00 (G/P; a).

Let \ |/:n^C be a character and we define a 1-dimensional n-module C_^ by
Xz= -\|/(X)z for zeC_^ and Xen. Using the Killing form, we can regard v|/ as an
element of 9. We call v|/ permissible, if the restriction of \|/ to n H Ad (Iw) p is non-
trivial for all ZeL and weW^ such that H^L. Here, w means a representative of w
inK.

The purpose of § 4 is to prove:

THEOREM 4.1.1. — For a permissible unitary character \|/ of n and an irreducible finite
dimensional continuous ^-representation o, we have

H^n.C^G/P^yoC.^O,

for all f>0. Here, C00 (G/P; a)' ^ ̂  continuous dual space ofC^ (G/P; a).
Proposition 3.2.3 is clearly a special case of the above theorem.
The above theorem is proved by Casselman (c/. [Cal]) when P is a minimal parabolic

subgroup. Our proof of the above theorem is essentially the same as that of Casselman
which is sketched in [Cal]. Since L is not stable under the conjugations of W^ and
since N does not act transitively on the Schubert cells in G/P for a general P, our proof
is technically more complicated. In particular, we reduce the theorem to the class one
case and consider the Bruhat filtration on G/P in stead of that of G/N.

4.2. THE FIRST REDUCTION. — Here, we reduce Theorem 4.1.1 to the following lemma
using an idea in [LeW] and the technique of wall crossing.

LEMMA 4.2.1. — Let T be a one-dimensional continuous ^-representation such that
T L = id^ . Let \|/ be a permissible unitary character on n. Then we have

W (n, C00 (G/P; T)' ® C _^) = 0,

foralli>0.
In 4.2, we assume Lemma 4.2.1 and deduce Theorem 4.1.1.
First, we remark that we can assume G has a simply-connected complexification. Let

fir be the covering group of G whose complexification is simply-connected. Let P and
L be the corresponding subgroups to P and L respectively. For a continuous finite
dimensional L-representation a, we denote by a the lifting of a to L. Then clearly we
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have C°°(G/P; ay^C^G/F; a)' as U (g)-modules. Hence, hereafter, we assume the
complexification G<c of G is simply-connected.

Next, we investigate the precise structure of L and its finite dimensional irreducible
representations.

Let LC be the analytic subgroup of G<c with respect to 1. Then, we have L ̂  L<c. For
XePg^ OP, we denote by E^_p the finite-dimensional irreducible U(I)-module with the
highest weight 5i—p. It is not difficult see (for example, see [Mat5], Lemma 7.1.3)
E^_p can be lifted to an L<c-representation. We denote the above lifting of E^_p to an
L<c-representation by the same letter E^_p. We also denote the restriction of E^_p to an
L-representation by E^_p. Let 7 '• L -> Cx be a linear character, namely one dimensional
representation. We denote by C^ the representation space of 7. We denote by X the
complexified differential representation of / and denote the restriction of 5c to I) by the
same letter. We denote by L" the set of linear character on L. For /eL", we put
A^^+P^t)*. We denote by E^.pOc) an L-representation E^_p®C^ for all
^ePs^UPand /eL".

For ocell^, we put e^ = exp (n i^flj, where fi^ea^ is defined by
X(fi,)=2(5i, a) /(a , a)(?iea^). We denote by Z§ the group generated by
^aell^. Since G is linear and connected, we have L=LoZg. Here, L() is the identity
component of L. Using this fact, it is not difficult to prove:

LEMMA 4.2.2. — For any irreducible finite dimensional ^-representation V, there exist
some 'k e Ps+ + 0 P and % e L v such that ^ \^ and V ̂  E^_p Qc).

(I learned this lemma from D. A. Vogan.) The details of the proof of this lemma are
left to readers. However, if G is complex, we have L==LQ. So, in this case, the above
lemma is trivial.

Put ps=l/2(wgp+p). For 3ceLV and ^eA^HPs^ we define

C°°(G/P; ^^C^G/P; E,_^ps-p0c)).

We can easily see C°° (G/P; ^, ^) has an infinitesimal character X.
Let A^, A^, and W^ be the integral root system, the integral positive root system, and

the integral Weyl group with respect to A^. We denote by n^ the set of simple roots
of A^-. We remark S g 11̂ .

The following result is similar to Lemma 3.2.4.

LEMMA 4.2.3. — Let V be an arbitrary U (c^-module and let E be a finite dimensional
U (^-module. We assume that W^V® C_^)=0 for all /?>0. Then we have
H^n^V^E^C.^O./br a///?>().

Next, we consider translation functors. Fix ^ 6 L". For ^eA^ and a U(g)-module
V such that Z(g) acts on V locally finitely, we define P^(V) in the same way as
1.5. Namely,

P^)={veV\3neM^ueZ(Q)^(u)-u)nv=0}.
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Clearly P^(V) is a direct summand of V. For r|eP, we denote by V the irreducible
finite dimensional U(g)-module with an extreme weight T|. We also denote by P(V )
the set of t)-weights of V^.

Let 'k, \x€\ and let V be a U(9)-module with an infinitesimal character H. Then, we
define the translation functor by

T;;(V)=P,(V®V,_,).

Using Lemma 4.2.3, we immediately have:

LEMMA 4 .2 .4 .—Le t x61^ • Let ^, !^eA^ and let V be a U {^-module with an
infinitesimal character |A. We assume ?'(11, V ® C_^)=0 for all p>0. Then, we have
W(n,rT^(y)®C^)=Oforallp>Q.

For ^ e A^, we define

A^^aeA^K^oO^O},

W^={weW|w)i=?i} .

The following is well-known:

LEMMA 4.2.5 (cf. [Vo3]). — (1) Fix ^eL" and let \, |ieA^. We assume \ is regular
and A (k) == A (^). Then, the equation "k + T| = w p, for T| e P (V^-^) a^rf w e W WA ;/ and
only ifweW^ and T|=H-X. The equation [i+V[=w'kfor T|eP(V^_^) ^rf weW WA
if and only ifweW^ and X==w(i .

(2) L^r ^-, ^ePs++ and let \ be a finite dimensional completely reducible L-
representation. We assume that E,,_p is an irreducible constituent o /E^_p®V as a L-
module. Then there exists some w e Wg aw^/ a w^/zr T| 6 P (V) of V ^MC/? r^ar K + T| = w n.

Here, we recall that the following Mackey tensor product theorem.

LEMMA 4.2.6. — For a finite dimensional continuous ^.-representation E and a finite
dimensional continuous G-representation V, we have

C°°(G/P; E^V^C^G/P; E(x)V|p).

From Lemma 4.2.5, Lemma 4.2.6, it is not difficult to see:

LEMMA 4.2.7. —Fix x^L" and let X, ^cA^OPs^. We assume 'k is regular and
A(^)=A(n). Then

^ (C00 (G/P; ̂  x)) = C00 (G/P; H, x).

From Lemma 4.2.2, we immediately have:

LEMMA 4.2.8. — Let x e L v. 77^ rA^ 6?x^ some regular K € A^ 0} P^ + such that
A^^P^SCA"^ and E^_^2ps-p(x) ^ ^^ dimensional continuous ^.-representation such
that r|M,=idM,.
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From Lemma 4.2.4, Lemma 4.2.7, and Lemma 4.2.8, we immediately see that
Lemma 4.2.1 implies:

LEMMA 4.2.9. — Let / e L v. We assume that k e A % U Ps+ + satisfies that
A^^SHA^ T^,?(n,COO(G/P;5l,5cy®C^)=0/^^/^>0.

For regular XePg^ + 0 A^, we define a non-negative integer n ( ' k ) as follows.

^(^cardA^-card^SHA^

In order to deduce Theorem 4.1 .1 from Lemma 4.2.9, we have only to prove for all
k^O the following statement.

(A)fc: For all regular ^eA^ 0 Ps+ + such that n(k)^k, we have

H^n.C^G/P^.xy^C^O

for all/?>().
(Here, from Lemma 4.2.4 and Lemma 4.2.7, we see we can assume k is regular.)
We prove A^ by the induction on k. A() is just Lemma 4.2.9. We assume (A)^

holds and ^ e \ 0 P^ + is a regular weight such that n (X) = k + 1.
We denote by A^ (^) the positive root system of \ such that k is antidominant with

respect to A^ (k). Let H\ be the unique element of W^ such that w^eP", namely
H\X is antidominant with respect to A^. Since ^(X)>0, we have ^(^)>/(^s), where /
means the length function on W^ with respect to n .

We need:

CLAIM 1. - There exists some simple root o^ of^ (T) such that s^e^ + Pi A^ and
n(s^K)==k.

Proof. - Put T==H^~1 and H=w^eP~~. For all aeW, put ^=aA^ 0 -A^. We
remark that /(a) = card 0^. We assume TII^H-A^^O^. So, TlI^g^gUA^
=(ZSnA,)UA^. I fp , ye(ZSnA,)UA,+ and P+yeA,, then P+Ye(ZSnA,)UA,+.
Hence, rA^g^gUA^. So, we have 0^=rA^ 0 -A^ ^ 0)^. This contradicts
/(wg)</(T). So, there exists some aerII^O "A^ such that a^O^. Hence we have
^TA^=TA^ U { -a} - { a } . So, we have <D^==<3\- { a } ̂  0^. So, we have
^ T^I e PS" +. Since easily we see A^" (k) = T A^, we have the claim. D

We quote:

LEMMA 4.2.10 (c/. [Vo3], Lemma 7.3.6). — Let 5ceLV and let ^eA^nPs^ satisfy
^)=fc+l>0. r/?^ ^r^ ^x^^ some 'kfePs'+^}\ such that < a ^ , ? l / > = 0 and
<P, ;V>^0/^peA^)-{a ,} .

Choose ^-/ as the above lemma. We choose a regular weight oePs^ HA such that
A(^)=A(co), co-A/ePs^, and ^©-^ePs^. The existence of such an co can be
proved easily. For example, put K^-H^P. Then ( O = ^ + W K satisfies the above
condition for sufficiently large positive integer m.
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We prove:

CLAIM 2. — There is an exact sequence

0 ̂  C00 (G/P; o), x) -^ ̂  (C00 (G/P; ;V, x)) -> C^ (G/P; ̂  (0, x) ̂  0.

Proo/. " Put T^co-X'ePs^ 0? and ^^o-^ePs^ HP. Since V^ has T| and
^ as extreme weights, there are embeddings of L^-modules E^ <^ V^ and E^ V^. Put
Ei=E,^ps-pOO and E^E^^ps-pOcy Then there exist embeddings of
L-modules

EiC,E^_;^ps-p(x)®V,,

E2c,E,/_^ps-pW®V,.

Let F be the P-subrepresentation ofE^+^pg./x) ® V^ which generated by E^. Since
EI is closed under L, we have F=U(n)Ei. We assume £2 is an irreducible constituent
of F as an L-module. From Lemma 4.2.5, there exists some r|€P(U(n)) and we W^
such that H^CO^CO+TI. Put ^ = - < X , o ^ > . Then n is a positive integer, since
a^ e A^ (^). Hence we have n a e T| + Z S. Since a^ e - A^" and a^ ̂  0^(c/. the proof of
claim 1), we have the root space of a appears in n. Hence, we have a contradiction. So,
we have E^ Fl F = 0. We have the claim form Lemma 4.2 .5 and Lemma 4.2.6. D

From Claim 2, we have the following exact sequence.

O^CO O(G/P;^(o,xy®C_^T^(CG O(G/P;^,x)y®C^

^C^G/PiCD.xy®^^.

From the assumption of the induction, we have

H^n.C^G/P^CD.xy^C.^O

for all p > 0. From Lemma 4.2.7 and Lemma 4.2.4, we have

W (n, T?/ (C00 (G/P; K\ x))' ® C _^) = 0

for all p>0. Hence, using the long exact sequence associated to the above short exact
sequence, we have

H^n.C^G/P^.xy^C-^O

for all p > 0. We use Lemma 4.2.7 and Lemma 4.2.4 again and have

W (n, C00 (G/P; ?i, xV ® C ̂ ) = 0

for all p>Q.
Q.E.D.

4.3. THE SECOND REDUCTION (Casselman's Bruhat filtration). - Now we can use the
Casselman's ingenious idea in [Cal]. He constructs the Bruhat filtration using his theory
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of functions of Schwartz class on real algebraic varieties, which he refers in [Cal] to. It
seems that Casselman's Schwartz class is the dual of the tempered distributions in the
sense of Kashiwara [Kas] (also see [Lo], [Mar]). I understand that Casselman and
Kashiwara developed their theory independently. W. Casselman told me that around
1975 he had got his basic results, the first the result that the Schwartz space of a real
algebraic variety was invariantly definable, the second the filtration of the Schwartz
space associated to a stratification.

However, unfortunately, Casselman's theory has not been published at this time. So,
for the convenience of readers, the following construction of Bruhat filtration, which
is also ascribed to Casselman, will be depends on Kashiwara's results on tempered
distributions.

First, we recall the original notion of tempered distributions by Schwartz [Sch]. A
distribution u on W1 is called tempered, if there exists some positive C and non-negative
integers m, r such that u satisfies the following condition

(2) u (x) (p (x) dx ^ C ^ sup
M^m

(l+lxl2/^^) for any (peC^IT).

Here, C^IR") denotes the space of C^-functions on W1 with compact support,
a=(a^, . . .,a^) is a multi-index, \x\l=x{+ . . .-\-x^, dx==dx^ A . . . A dx^ and
| a | = a^ + . . . + o^. We denote by y W)1 the space of the tempered distributions on W
in the meaning of Schwartz.

We regard R" U { oo} as a ^-dimension sphere §" naturally. Then, the following
holds.

THEOREM 4.3.1 (Schwartz [Sch] VII § 4 Theoreme V). — A distribution u on R" is
tempered if and only if there exists some distribution v on §" such that v |^n.

The following result follows from, for example, the above theorem and a standard
argument.

LEMMA 4.3.2 (cf. [Cal]). — Let 0<m^n and we consider an Euclidean global coordi-
nate (jq, . . ., x^). Let 8(Xi, . . .,x^) be the delta function on W1. Namely we have

8(xi, . . .,xJ(p(xi, . . .,xjrfx=(p(0, . . .,0)

for (peCy (IR"*). We assume u is a tempered distribution on 1R" whose support is contained
in Rm= {x^= . . . =x^=0}. Then, u is uniquely written as follows:

Q\»\
u= ^ ——8(.Xi , . . . ,xJ®^.

| a | ^ / » OX

Here, h is a finite non-negative integer, a is the multi-index (a^, . . .,aJ, and ^ is a
tempered distribution on Rn~m=[ (x^+1, . . ., x^)} for each a.
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We review the theory of tempered distributions in the sense of [Kas], § 3. Let X be
an ^-dimensional real analytic paracompact manifold. We, for simplicity, assume X is
orientable and fix a real analytic volume form (K, on X. For an open set U of X, we
define the space ^ft(U) of distributions on U by C^(Uy(g)(^)~1. If we write the
pairing as follows, then it well behave under local coordinate changes.

f ^)(p(i;)^

forall(peC^(X).
A distribution u defined on an open subset U of X is called tempered at a point p of

X if there exist a neighborhood V of p and a distribution v defined on V such that
M | v n u = z ; | v n u • It M is tempered at any point, then we say that u is tempered. We
denote by ^~x (U) the space of the tempered distributions on U. It is clear that the
definition of temperedness dose not depend on the choice of d^.

Here, we describe some of the elementary properties of tempered distributions. First,
the following result justify the name "tempered distribution" in the viewpoint of
Theorem 4.3.1.

LEMMA 4.3.3 ([Kas] Lemma 3.2). — Let u be a distribution defined on an open subset
U ofX. Then the following conditions are equivalent.

(1) u is tempered.
(2) u is tempered at any point of 3U = U — U.
(3) There exists a distribution w defind on X such that u== w |u.
For a subset A of R" and a point x of R", we denote

d(x,A)=mf{\y-x\\yeA}.

LEMMA 4.3.4 ([Kas] Lemma 3.3). —Let u be a distribution defined on a relatively
compact open subset U ofW1. Then the following conditions are equivalent:

(1) u is tempered at any point of 1R".
(2) There exist a positive constant C and a positive integer m such that

{x)^{x)dx ^C ^ sup
Ia I ̂ w

8^
~8^ (P

forany(f>eC^(U).

(3) There exist a positive constant C and a positive integer m and r such that

u (x) (p (x) dx | ̂  C ^ sup ( d(x, 9U) -r

|«|^m \

^1

Sx" <P

forany(peC^(V).
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From Lojasiewicz's inequality ([L], also see [Kas], Lemma 3.7), we immediately have:

LEMMA 4.3.5. — Let Z be a closed subset of V and feC(x^ . . ., x^) be a rational
function which is defined (and has a finite value) at any point in R" — Z. Then, for any
relatively compact open subset U of IR", there exist a positive constant C and reN such
that

\f(x)^C(d(x,Z)rr,

for all xeV.

We call a C°°-function / on R" is tame, if for all constant coefficient differential
operator P there exist some positive C > 0 and r e N such that | P / (x) | ̂  C (1 +1 x I2/ for
all xetR". For example, a rational function/ eC(Xi, . . ., x^) which is defined on the
entire 1R" is tame.

Here, we assume on X and dL, the following conditions.
(x\) X is compact.
(x2) X is covered by a finite number of real analytic local coordinate system [say

(x^\ . . ., xj,0; Uf) 1 ̂  i^k] such that (x^\ . . ., x^) gives the real analytic surjective diffeo-
morphism q\.: U^ ̂  1R".

(x3) On each U,, if we write dv^^f^dx^, then the both/ and/^1 are tame real
analytic functions. Here, we put dx^ = dx^ A . . . /\dx^\

(x4) For all distinct l^i.j^k,

(^lu.nu/^r'L.^nu^^^nu^^cp^Hnu,)
extend to a tuple of rational functions (z^ J), . . ., z^ J)), (z^ ^eC^, . . ., x^)).

Remark. - In (x4), we automatically have z^ ^eIR^, . . . . x^). Hence, under the
above conditions, X is a rational non-singular algebraic variety over R.

We have:

LEMMA 4.3.6. — Let X be a real analytic manifold which satisfies the above conditions

(x \)-(x 4). Then, under the identification cp,: U^ ̂  R", J^x (U^) coincides y (R"y for all i.

Proof. - We can assume i^\. We identify U, and R" by (pi. We assume
Me^"x(Ui). Since X is compact, there exists a finite open covering { V \ , . . . , V ^ } such
that for each l^j^m there exists some l^s^k such that V, is a relatively compact
subset of U .̂. Put W^ Ui U V, for 1 ̂ j^m. Let {^. 11 ̂ j^m ] be a C°°-partition of
unity subordinate to { V ^ , . . ., V^}. Put r^,==^.|^ and u^^u. Hence we have
^^(Ui). Thus, we have u^yW from Lemma4.3.3. Hence
M-^+...+^€^(ry.

Conversely, we assume Ke^(R»y. Since we can easily see each T|̂  is a tame C°°-
function on Ui, we have u^y(Wy. From Lemma 4.3.3 and Lemma 4.3.4, we see
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that Uje^~^(Wj). Since W^ is relatively compact in U,., we have ^•e^'x(Ui). D
Now we consider the case X=G/P. Clearly X satisfies (x 1).
For weW^, we define ̂ =w~1 ̂ + n -^+ and put

w^={w€W,|o^nzs=0}.

We denote by Wg* the Weyl group of (3, aj. For weW^, let /^(w) be the length of w
with respect to H^,.

We quote:

LEMMA 4.3.7 (Kostant [Kol]). —Each weW^ is uniquely written as w=xy, xeW^,,
yeW?.

For each weW^, we fix a representative weK. For weW^,, we put
u,=u,nwNw-1 .

Put Y^=UwP/P^X. Clearly, Y^=U^P/P.

LEMMA 4.3.8 (Bruhat, Harish-Chandra, cf. [War], Theorem 1.2.3.1)

X== U YW (disjoint union).

We put V^=wNP/PgX for weW^. Then each V^, is an open subset of X and
Yw ^= ̂ w- Hence X = U V^. Let n^ be the real form of n corresponding to N. Then

weW^,

i^: Ho 9 X -> w exp (X) P/P defines a real analytic coordinate system (p^: V^ ^> HQ.

Hence, X satisfies (x2). If we consider the complexification Xc=Gc/Pc of X, then it
is a projective non-singular rational algebraic variety. We can easily see the complexifica-
tion of V^ and (p^, are a Zariski open subset of X^ and an isomorphism in the category
of complex algebraic varieties respectively. Hence, we have (x 4) holds for X. Let cK,
be a K-invariant volume form on X, which is unique up to positive scalar factors. Then,
(x3) follows from, for example, [Kn] (5.25) and Proposition 7.17 (also see [He]).

Hence, we have:

PROPOSITION 4.3.9. —Let X=G/P and let dS, be a ^-invariant volume form on X,
which is unique up to positive scalar factors. Then ^x(^w) coincides the space of tempered
distributions in the sense of Schwartz for all weW^ under the identification by
(p: V^ ̂  rio ̂  V. Here, we put n = dim^ N = dim^ X.

In order to quote some results in [Kas], we introduce the notion of semianalytic sets
(c/. [GorM], p. 43). A semianalytic subset A of a real analytic manifold X is a subset
which can be covered by open sets U^=X such that each U C} A is a union of connected
components of sets of the form g~1 (0)-/~1 (0), where g and/belong to some finite
collection of real valued analytic functions in U. Semianalytic subsets are always
subanalytic [Hil, 2], also see [GorM]). We can easily see any subset Z of X=G/P of
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the following form is semianalytic.

(3) Z= U Y,U U V,- U Y, (A, B, CgW8,).
x e A yeB zeC

In particular the closure Y^ of Y^ is semianalytic.
Let A be a locally closed subset of X and let i: A c^ X be the embedding map. For

any sheaf F on X, we put F^i"1? and F^iii^F. Hence, we have
(F I^L = (F^L = F^ for all x e A and (F^y = 0 for all y e X - A.

Next, we introduce the notion of IR-constructible sheaves ([Kas], Definition 2.6,
2.7). Let F be a sheaf of C-vector spaces on a real analytic manifold X. We say that
F is IR-constructible if there exists a locally finite family {X^'eJ} of subanalytic subsets
of X such that, for all^'eJ, F|x. is a locally constant sheaf on Xj whose stalk is finite
dimensional and that X = U Xj. Hence, for all Z of the form (3) above, Cz (== (Cx)z) is
a [R-constructible sheaf on X = G/P.

Let ^x be the sheaf of real analytic differential operators on X. Following [Kas],
Definition 3.1.3, we introduce a contra variant functor TH from the category of
[R-constructible sheaves to the category of Q^^-modules. For [R-constructible sheaf F on
X, TH (F) is the subsheaf of J^om^ (F, 2by) defined as follows: for any open subset U
ofX

F (U, TH (F)) = { (p e F (U, Jfom<c (F, Q)byS) \ (p satisfies the following condition (T)}

(T) For any relatively compact open subanalytic subset V of U and .S-GF(V), (p(^) is a
tempered distribution.

We quote some results about TH.

LEMMA 4.3.10 (Kashiwara [Kas], Corollary 3.16). — For any open subanalytic subset
U and an open subset Q o/X, we have

Y (0, TH (Cu)) = { M e F (U 0 Q, 0>b^) \ u is tempered at any point of Q}.

LEMMA 4.3.11 (Kashiwara [Kas] Proposition 3.14). — For any R-constructible sheaf
F, TH (F) is a soft sheaf.

LEMMA 4.3.12 (Kashiwara [Kas] Proposition 3.22).—If Z is a closed subanalytic
subset ofX and if¥ is R-constructible sheaf on X, then we have

Fz(TH(F))=TH(Fz).

Especially, the following is crucial.

THEOREM 4.3.13 (Kashiwara [Kas] Theorem 3.18). — TH is an exact functor.
Now we consider the case X = G/P.
For w e W^,, we denote /„ (w) = dim^ Y^ = dim^ U^. For i e ^J, we put

Z- U Y,.
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Then Z^ is a closed subanalytic subset of X for each 0^i^n=dim^X and
X = Z^ From Lemma 4.3.11 and Lemma 4.3.9, we have

r (x, TH (Cz^)) = r (x, r^. TH (Cx))
(4) ==r(x,r^x)

= { M e ̂ &x (x) I supp (u) ̂  Zj.

For all weW^, we remark that Y^nV^=Y^. We also have from Lemma 4.3.11
and Lemma 4.3.9,

(5) r (x, TH (CY,)) = r (x, r^ TH (Cy,))
={Me^x(VJ|supp(M)gY,}.

If0^'<w, we have

(6) O^Cz^Cz^^ © Cy^O.
i+ l=^ (w)

From the above (3)-(4), Theorem 4.3.12 and Lemma 4.3.10, we have

LEMMA 4.3.14. — For all 0 ̂  i< n, the cokernel of the natural inclusion

r^x(X)c.r^^x(x)

is just

© {M€^x(VJ|supp(M)^Y,}.
i+ l=^(w)

We call the filtration {F^AxOO} of^&x(X) the Bruhat filtration (cf. [Cal]).

Remark. - In [Cal], Casselman considered not G/P^ but G/U^ and proved
Theorem 4.1.1 for a minimal parabolic subgroups without the first reduction in 4.2.

Now we consider C°°(G/P; T/, where T satisfies the condition in Lemma 4.2.1. In
this case, C°° (G/P; r) can be identified with C°° (G/P), since the line bundle associated
to T is trivial as a real analytic line bundle. Here, g acts on C°°(G/P) not as vector
field but as first order differential operators. Under the above identification, we put

C^ (G/P; T) = {u e ̂ x (V,) | supp (u) ̂  Y, },

for weW^. Hence, Lemma 4.2.1 (and Theorem 4.1.1) is reduced to the following
lemma.

LEMMA 4.3.15. —Let T be a one-dimensional continuous ^-representation such that
T IM^^M- ^et ̂  be a unitary admissible character on n. Then we have

H^n.C^G/P^y^C.^O
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for all p > 0 and

H^n.C^G/^Ty^C.^O

for allpeN and w e W^ - { e } . 7^r6?, ^ ^ ̂  identity element of W^.
Next, using again Casselman's idea, we further reduce the above lemma.
First, we consider the case w=e. This case, clearly C °̂ (G/P; T)'^^(N)'. Here, we

identify N and HQ ̂  R" by the exponential map. The action of n is induced from the
left regular action of N and irio ̂  V by the exponential map. The action of n is induced
from the left regular action of N. So, this case is reduced to:

LEMMA 4.3.16. — Let \|/ be a unitary character on n. Then, we have

H^n.^Ny®^)^

for all p>0.
Next we consider the case w e W^, - { e ]. Put k = l^ (w) = dim^ Y^. We denote by u^

(resp. nj the real Lie algebra of U^ (resp. wNvP"1). Since u^ is a subspace of n^, we
can choose a basis { X ^ , . . ., X^} of n^ such that X^, . . ., X^eu^. We introduce on
V^ an Euclidean coordinate (^i, . . ., ^) by n^sX^exp (X) wP/P, where X=^Xf.
Hence, we see that Yw={xk+l= ' ' • =xn=^}'

Let p^ be the complexified Lie algebra of P^ = M^ A^ U^. The action of g on ̂  (VJ'
is the dual action to the left regular action on the following space.

C^VJ^/eC^G/P; T) | supp/ ^ V,}.

For Xeg, we denote the first order differential operator by which X acts on C^ (VJ by

PX-E^^I, . . .^n)— +Fx(^i, • • ., ^).8xi

Since Y^, is a P^-orbit, for all X e p^ we have

a^(x^ . . ., x^ 0, . . ., 0)=0 for all k+l^i^n.

Hence U (pj preserves_S^ = y (YJ'08 (^+1, . . ., x^) c y (VJ7. Moreover, we assume
Xen. Since we see NU^ ^ U^wM^N^"1 , Fx vanishes on Y^. Hence, as a U(n)-
module^ S^ is isomorphic to ^(UJU^y. Here, U^=U^n^Pw- 1 and U(n)-action
on ^(UJV^y is induced from the left regular action ofN.

From Lemma 4.3.2, there is a surjective U (g)-homomorphism

T: U (g)®u (,,) S, ̂  C^ (G/P; T) = {u e ̂  (VJ | supp u c= Y, }.

From the Poincare-Birkhoff-Witt Theorem, we have

^^u^S^UCuJ®^.
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Let Up(uJ the space of the elements of U(uJ which is spanned by at most p products
of u^ If we put Ep===Up(uJ®S^, then clearly Ep is a sub U(n)-module of
U(g)®u(^)S^ Since cohomology commutes with a direct limit, we have only to prove

H^n.TCE^C^O

for all ; and p. Since it is not difficult to see there is a finite filtration
1®S^===L £ L _ i ^ . . . £ Lo=Ep such that nL, c L^.+i. From, for example, Corollary
4 4.4 in'the n'ext 4.4, we have H^n, T(L,)/T(L^i)®C_^)=0 for j<q. Hence, we
have only to prove

H^n.S^C.^O

for all f. Hence, we see that Theorem 4.1 .1 is reduced to Lemma 4.3.16 and the
following lemma.

LEMMA 4.3.17. — Let \[/ be a permissible character on n. Then, we have

H^(n,^(U,/U^y®C_^=0

for allpeN andweW^-[e].
4.4. THE FINAL STEP. - In this section, we prove Lemma 4.3.16 and

Lemma 4.3.17. In the last part, we use, following Yamashita [Yl], Hilberfs
Nullstellensatz. First, we collect some results of elementary homological algebra which
we need.

For a ring A, we denote the category of left A-modules by A-Mod. Let A be a unital
(non-commutative) C-algebra and let J be a 2-sided ideal of A. We consider the
following functor F^/j from A-Mod to A/J-Mod.

r^ (V)=={z ;6V|V^eJ^=0} (VeA-Mod).

Clearly, F^/j is a left exact additive covariant functor. So, we can define the right
derived functor R^T^/j. For example, if A is the universal enveloping algebra of a
complex Lie algebra and J is the augmentation ideal, then R^F^/j is the Lie algebra
cohomology.

On the other hand, we have a functorial isomorphism F^/j (V) ̂  Hom^ (A/J, V) of
abelian groups. So, as an abelian group, we have R^ F^/j (V) ̂  Ext^ (A/J, V) for all
V e A-Mod and p ̂  0. We consider how A/J acts on Ext^ (A/J, V). First we investigate
the simplext case. Namely, we assume xeA is contained in the center of A and is not
a zero divisor. Put I == x A = A x. Then we have the following free resolution of A/I.

0 ̂  A/I <- A ̂  A <- 0.

Here, « x » means the map a -> ax. Since x is contained in the center, the arrows in
the above exact sequence are all not only left A-module homomorphisms but also right
A-module homomorphism. Since Ext^(A/I, V) is the p-th cohomology of the following
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complex, we can define a left A/I-module structure on Ext^(A/I, V).

0 -̂  HoniA (A, V) ̂  HoniA (A, V) -. 0.

If we construct a suitable double complex, we immediately see this A-module structure
on Ext^(A/I, V) coincides with that on R^FA/^V). Hence we have:

LEMMA 4.4.1. — We assume xeA is contained in the center of A and is not a zero
divisor. Put I = x A = A x. Then, we have

R^A/iO^v/xV,
1^/100=0(^2).

In particular,

AnnA (V) +1 g Ann î (R^ I\/i (V)),

for all peN.
It is not difficult to check:

LEMMA 4.4.2. —(1) Let J be a 1-sided ideal of A. Then r\/j preserves injective
objects.

(2) Let R be a unital C-subalgebra of An such that A is flat over R. Then, the forgetful
functor Fgt^ preserves the injective objects.

Then we have:

LEMMA 4.4.3. — Let 3 be a 2-sided ideal which satisfies the following conditions.
(F 1) There exists a positive integer m and a sequence of C-albegra AQ, . . ., A^ such

that A()=A, A^=A/J, and A; 4.1 is a quotient of A^.
(F2) We denote by I, the kernel of the projection A^ -^ A,+i. Then, I, is generated by

an element x^ of A^ such that x^ is contained in the center of A^ and x^ is not a zero-divisor.
Then, there exists some positive integer I such that

AnnA (V)1 + J ̂  Ann,, (R9 I\/j (V))

for all VeA-Mod and q^O.

Proof. - We use the induction on m. Let I be the kernel of the projection
A-^A^_i . From the assumption of the induction, we have
Ann^Vy'+I^AnnACrA/iCV)) for some //. From Lemma 4.4.2, we have a Grothen-
dieck special sequence (cf. [HS], VIII, Theorem 9.3)

E^R^.^R^F^V) => R^F^(V).

From Lemma 4.4.1, we have E?' q = 0 for p ̂  0,1. Thus, R^ F^/j (V) has a A-submodule
V^ such that V^ [resp. R^FA/JOO/VJ is a subquotient of E;' q (resp. E^' q~l). Hence
Lemma 4.4.1 implies the lemma. D

4eSERIE - TOME 23 - 1990 - N° 2



C- °°-WHITTAKER VECTORS 357

If we consider an upper central series, we easily deduce:

COROLLARY 4.4.4. — Let q be a nilpotent Lie algebra and let \|/: q ->• C be a non-trivial
character. Let V be a U(q)-module such that Xv==0 for all ve\ and Xeq. Then
H^q.VOC.^O for allpeH.

From Lemma 4.2.2, we also have:

LEMMA 4.4.5. — Let R be a unital C-subalgebra of A such that A is flat over R. Let
I (resp. J) be a 1-sided ideal in R (resp. A) such that J C\ R=I and J=AI=IA. Then we
have the following isomorphism of functors for all p ^ N .

R^oFgt^Fgt^R^/j

The proof of the following lemma is similar to that of Lemma 4.4.3.

LEMMA 4.4.6. — Let Abe a unital C-algebra and let A = A^, A^, . . ., A^ be a sequence
of unital C-algebras which satisfy the following conditions.

(El) For each 2^i^k, there exists aflat algebra extention A^A^ such that A^ is a
quotient algebra of A^_^.

(E 2) We denote by I, the kernel of the projection p, : A^ -> A^+1 for \^i<k. Then, I,
is generated by an element x^ of A^ such that x^ is contained in the center of A^ and x^ is
not a zero-divisor.

Fix VeA-Mod. We define inductively a 1-sided ideal J^ of ̂  for each O^i^k as
follows.

Jo=AnnA(V).

J^i=A^in(^(J?+y) (0^i<k).

Put

<D = Fgt^ ° r^_ ̂ _ ̂  . . . ° Fgt^ ° r^: A - Mod -. A, - Mod.

Then we have

J^Ann^OW).

Now, we prove Lemma 4.3.16. We fix a basis { X ^ , . . ., X^} of Ho and define a
i

local coordinate system on N by exp (xiXi+ . . . +^X^). Put Q»= ^ C^.g=n. We
j=i

assume that

0=QogQi^...gQ«=n

is a refinement of the upper central series of n. Hence, Qi+i/Qi is contained in the
center of n/Q^ for each i.

Since an element of the enveloping algebra U(n) acts on ^(N)' as a differential
operator with polynomial coefficients, we can see U(n) is injectively embedded into
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the Weyl algebra ja^==C[;q, . . ., x^ 8^ . . ., 3J. Here, we put S ^ S / S x ^ . From the
Campbell-Hausdorff hormula, it is not difficult to see X^ are written as follows.

(1) X,^+^/,(x,. . . ,x,_,)^
i<J

Hence, the above injection induces the isomorphism

C[^, . . . ,xJ^U(n)^<.

Here, t is the smash product. Namely, as a C [x^ . . ., xJ-U (n)-bimodule, we have

C[xi, . . ., xJffU(n)^C[xi, . . ., xJ®U(n).

The product on the smash product is generated by

(fW(g®u)=fg®Xu+fX(g)®u (/, geC[x,, . . ., xj, Xen, ue\J(n)).

Hence, U (n)^n ls a ^^ extension. Let I be the kernel of \|/: U (n) -> C. Clearly, we
n n

have I = ^ U (n) (X, - v[/ (X,)). We put J = <. I = ^ j< (X, - \|/ (X,)). Then, we have
1=1 i = i

H°(n, ^(Ny^c.^^ru^/i^W)
^Homu^(U(n)/I,^(ry)
^Hom^^/J.^^y).

Since U(n)^j^^ is a flat extension, we have the following isomorphism of abelian
groups.

H^n, ^(ny®^_^Ext^(</j, ̂ (ry).

(Note : V^V®C_^ preserves injectivity.)
Hence we have only to prove Ext^ (^/J, ^ (R")') ==0 for p > 0. Since \|/ vanishs on

[n, n], from (1) we see
n

3= S <(a,-v|/(x,)).
i=l

Put F=F(xi, . . ., x^)===exp (^v|/(X^)Xf). Since \|/ is unitary, the both F and F~1 are
tame. Then u^>¥u gives an isomorphism of y(W1)'. If we twist the action of ̂
under this map we have

n

J= ̂  <<?,
i= l
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Put ^=C[3i, . . ., aj and

n

Jo= Z ̂ ,.
1=1

Since j^ is flat over ̂ , we have only to show

Ext^(^/Jo,^(ry)=o

for p>0.
From Lemma 4.4.1 and Grothendieck's spectral sequence, we can easily prove this

statement using the induction on n and the following claim.

CLAIM 1 : For a positive integer m, 8^ defines a surjective map of^^)' to y (V)'.
The above claim is well-known but I do not know the reference. So, for the conve-

nience of readers, we give a proof here. Twisting by the Fourier transform, the claim is
reduced to the surjectivity of a multiplication operator x^. Let y (V) be the space of
rapidly decreasing functions, y^)' is the topological dual space of ^(R^. We can
easily see the image of y (V) under x^ coincides with:

v^/e^ar1)]/^,..., x,_,, o)=o}.

Clearly V is a closed subspace of a Frechet space y^W). From the open mapping
theorem, there is a continuous inverse F: V -> y (R"1) of x^. For T e y (ff^y, we define
a continuous functional T' on V by T ° F. From Hahn-Banach's Theorem there is an
extension T of T' to y (R"1). Them, clearly we have x^ T = T. D

Lastly, we prove Lemma 4.3.17. We put

N^=Nn^Nw- 1 ,

N^NH^Pw-1 ,

u^u.nwpw-1.
Us=u,nL,

UCH^UUsHwNw-1 ,

u^Usn^pw-1.

We denote by n^, n^. Us, u (w), and u^ the complexifled Lie algebras of N^, N^ Ug,
U(w) and U^, respectively. Then we have u=n@Us and t^n^On^. Let UQ be the
real form of Us corresponding to Us. Put k=u^ and /= dining. Then,
n—k=dim nw=dim u(w) and l—n-\-k=dim u^. We choose a basis { X ^ , . . ., X^}
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(resp. {Yi , . . ., Y^.fc}) of no (resp. u^) which is compatible with the root space decompo-
sition with respect to the restricted root system £. Put

i
n,= ^ CX, (1^^),

j= i

u ,=n+^ CY^. (l^'^-^).
j= i

We can assume (and do) that 0^ ̂  . . .n^u^u^_,=u is a refinement of the upper
central series do u.

k

Let l^i<. . .<^w (resp. l^Th< . . . <T^_^) be such that n^= ^ CX^.
n-fc l=l

(resp. n— ^ CX^.). So, {^ , . . ., ̂ } U {^ . . ., ^.,}= 1, . . ., „}. Similarly, we

n-k
define 1^^< . . . <^_^/(resp. l^pi< . . . <p,_^^Q be suth that u(w)= ^ CY^.

<-,+» '=1

(resp.u— ^ CY,.). Put^=(ji,.. .,y^), x=(x,,..., x,), and

e(j, jc)=exp (jiY^+ . .. +^_tY^_,+^X^+ . . . +x,X^).

We define an Euclidean coordinate on 0/U^ by e(y, x)U^/tJ^. For /€ y (tJJO^)
and X 6 n, we define:

(Lx/)(c(y, x)U^/U^)= ^/(exp (-/X) e(y, x)U^O^)|^o,

(Rx/)(^0', x) U^/U^)= ^/(^(J, x) exp (-rX)U^/U^)|,,o.

X 6 n acts on y (VJU^) by - Lx. We consider a smash product

B=C[y,;c]#U(n).

Then, ^(U^/U^) has naturally a B-module structure.
We consider the relation between Lx and Rx. At the point (y, x), Rx is

^d (e [y, x)} x- LetX en'*'. Then, we have Rx = 0. This means an element Ad (e (y, x)) X
of B acts on ^(VJV^' by 0. Since ^ is permissible, there exists some r|, such that
^^n.)^0- We fix such r|,. From the assumptions on the basis, we see

Ad(e(y,x))X^=X.,,+ ^ F^(y,x)X,eB.
')>>7

Clearly F,(0,0)=0 for all ^>j. For k^i>j^\, we write ;~y if
Xj.£[u(w),..., [u(w), X,]...] (n-times) for some n. Clearly F^.(y, x) only depend on y
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for r|̂ 7. Since v|/ vanishes on [n, n], we have \|/(X^)=0 for al ly<rjf such that T[^J
and F^O. Again, from the assumption on X^, . . ., X^, Y^, . . ., Y^_^, we can see ¥j
only depends on (y, Xj+1, . . ., ^). Put Ao = C |>, x^ . . ., xj #U (n). We have proved:

CLAIM 2. - TA^ exists some r\i such that ^(X^^O and

X^-^(X^+ S F,(y)(X,-v|/(X,))
r\i-J

+ E F,(y, ̂ i, . . ., ^)X,eAnn^(^(UJU^).
T1l<J> T|l"/'J

For l^i^k, we put

A,==C[y, Xi, . . . , ^]ffU(n/n,_i),
A,=C|>, X f + i , . . . , ^]ftU(n/n,_i).

We define Afc=C[y|. Then, X^ is contained in the center of A^. We put
I^=AfX,. Then clearly A^+i is isomorphic to Af/I,. Put C=C|j]®U(n). (We easily
see that y^ commutes with X e n.)

If we define a functor 0 as in Lemma 4.4.6, we have

rc/cnFgt^=o.
Hence, Lemma 4.4.6 and claim 2 avove imply: for some positive integer /,

(W;)+ Z F.^vKX^eAnnc^^rc/cn^CUJU^))) (peN).
r\i~j

Since C is flat over U (n), from Lemma 4.4.5, we can regard
?(11, y(VJV^y®C_^ as a C[y]-module and we have:

H(^)=(v|/(X^)+ ^ F,^)vl/(X,)yeAnne^(W(n,^(U,/0^y®C_^)) (pe^).
t1i~J

Here, H(0)=v|/(X V^O. Fix some value of y (say ^o). We consider
^r=Ad(e(yo, O)"1^ in stead of v|/. Since e(y^ 0)eU(w)gL, v|/' is again a permissible
character on n. We choose X^ such that \|/ (X^) ̂ 0. Then the above argument implies
that there exists some HeC|>] such that H (jo)^° and

H e Ann<c ̂  (W (n, y (U^/U^)®C -^) = 0 for all p e N. From Hilbert's Nullstellensatz,
we have Lemma 4.3.17. Hence, we complete the proof of Theorem 4.1.1.

Q.E.D.

5 The real semisimple case - discussion

In this section we discuss about the possibility of extending our results to the general
real semisimple (reductive) linear Lie groups.
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There are several difficulties to get the such extensions.
First, in order to show dimWhx^ defines an additive invariant, we should extend

Proposition 3.2.1. Let P be a parabolic subalgebra of a real semisimple (reductive)
linear Lie group and a be an irreducible representation of P. Let N be the nilradical
of the opposite parabolic subgroup of P and we assume there is a permissible unitary
character on N. We consider the following problem:

Let a be a finite-dimensional irreducible representation of P and let V be an arbitrary
irreducible subquotient o/Ind^((7). Is there exists any finite dimensional irreducible P-
representation T such that V is a subrepresentation o/Ind^?(T)?

If we can give affirmative answer to the above question for a parabolic subgroup P
which also satisfies the above assumption, then, using Theorem 4.1.1, we can deduce
the higher cohomology vanishing of a Harish-Chandra module whose irreducible subquo-
tients are subquotients of induced representations from finite dimensional irreducible
P-representations.

Of course, Casselman's subrepresentation theorem gives the affirmative answer for a
minimal parabolic subgroup P, and Casselman's result [Cal] assures the exactness of
Whxj? in this case. Theorem 2.4.1 also gives affirmative answer in some special cases.

However, in general case, the above question seems quite difficult. W. Casselman
told me existence of a relation between the above question and his work on p-sidic groups
(cf. [BW]).

The second problem is that only a little, other than the results stated in [Vo5], is
known about coherent continuation representations for Harish-Chamdra modules for
general real semisimple (reductive) Lie groups. However, Barbasch-Vogan determined
the cell structure for U(p, q) ([BV5], Theorem 4.2). For example, if we construct cell
representations for U (p, q) in the same way as the double cell representations for complex
semisimple groups, they are all irreducible.

The third problem is that the intersection of a complex nilpotent orbit and a real form
of a complex Lie algebra need not be a single real nilpotent orbit any more.

For example, we assume G = U (p, q) and N is the nilradical of a minimal parabolic
subgroup F of G. We also assume the integrality of the infinitesimal characters of
Harish-Chandra modules. If p>q, then the above results of Casselman and Barbasch-
Vogan assure that we can deduce the corresponding results to Theorem 3.4.1. Details
are left to readers. (For the dimension of the space of C°°-continuous Whittaker vectors,
see [Mat5] § 8.) However, if p==q, then the third problem occurs and we cannot deduce
the corresponding statement in the same way as the case p > q.

Remark. — Although I do not know whether dim Wh^ defines an additive invariant
for general real semisimple case, we can define Whittaker polynomaials. Namely, the
following result can be easily deduced from some results in [Mat5], namely
Corollary 2.9.1, Theorem 2.9.3, and Corollary 5.1.4.

PROPOSITION 5.1.7. — (We use the notation in c 4. For simplicity, we also assume G
is simply-connected.) Let y^n, \|/) be an admissible Whittaker datum and let V be an
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irreducible Harish-Chandra (9, K)-module with a dominant infinitesimal character K. We
assume dim Wh^ (V) < oo.

Then, there exists some ̂ 'harmonic polynomial p^y [V] on t)* such that:

(1) For all dominant ^e^+P, we have

dimWh¥(T^(V))^[V]ai).

(2) 7/* Dim (V) < dim n, then ̂ p [V] = 0.
It seems likely to p^ [V] above is proportional to a Goldie rank polynomial. However,

I do not even know whether ^p[V] is a homogeneous polynomial of degree
card A4' —dim n, in general.
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