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CURVE SHORTENING ON SURFACES

BY MICHAEL E. GAGE

What happens when a simple closed curve on a surface M is allowed to move so that
the instant instantaneous velocity at each point is proportional to the gepdesic curvature
k of the curve at that point? This evolution is suggested by the equation of motion of
an idealized elastic band along the surface (assuming that the friction term is relatively
large and the mass relatively small). The only fixed curves are geodesies—where the
geodesic curvature is identically zero. Using our intuition about elastic bands it seems
reasonable to predict that at least some simple closed curves near geodesies will evolve
towards the geodesies. Other curves will "slide off the surface", /. e. collapse to points.

To better understand the evolution of the curve, focus on these three questions:
(1) Does there exist a family of smooth curves X: S1 x [0, T) -> M which satisfies the

evolution equation

(0.1) X,==^N

and for how large a T can this solution be defined?
(2) Do the simple closed curves remain simple?
(3) What is the "final shape" the limiting shape that the curve approaches as time t

approaches T? Initial research on this problem concentrated on the case where M is the
Euclidean plane. The results obtained include:

(a) For convex curves the isoperimetric ratio L2/A decreases under this evolution and
convex curves become asymptotically circular as they shrink to a point. No corners or
other singularities develop before the curve shrinks to a point ([Gl], [G2], [G-H]).

(&) Simple nonconvex curves evolve smoothly to convex curves without any self
intersections occurring; from there they evolve to "round" points according to the result
above [Gr].

(c) Closed curves with self intersections are likely to develop cusps (see [A-L] and [E-
G]).
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230 M. E. GAGE

This paper extends some of the results obtained in the plane to surfaces:
The main result of this paper is that a solution to equation (0.1) exists on a smooth

complete surface M2 with bounded Gauss curvature as long as the quantity k^ defined
in the next section remains bounded. Informally, this means that the solution exists
until a cusp forms; singularities such as corners cannot occur. A special case of this
theorem was proved for (locally) convex plane curves in [G-H], Theorem 3.2.1 and is
one of the cornerstones of the regularity theory described in that paper and in [Gr] and
[E-G]. This paper extends the result to arbitrary closed immersed curves on complete
surfaces of bounded curvature (1).

Secondly, we prove that if the initial curve is a closed simple curve, it remains simple
during the evolution as long as k^ remains bounded.

Our third result is that if a solution exists for an infinite time then the curvature of
the curves decreases uniformly to zero. If in addition the one parameter family of
curves remains within a compact subset of M2 then a subsequence of the family converges
to a geodesic in the C°° metric. The hypothesis is necessary since otherwise there are
examples where the curve slides off to infinity.

As an application we show that a simple closed curve on the unit two sphere which
divides the sphere into two regions with equal areas and for which the total space
curvature is less than 3n converges under the curve shortening evolution to a great

circle. The total space curvature is given by (fe2^- \)112 ds In this case we are able

to show directly that no cusps occur, and therefore the conclusions of the main theorem
are valid. We can also show in this case that the limiting geodesic is unique — the entire
one parameter family of curves converges to a single great circle. This is significant
because a priori one must allow the possibility that the curve converges to a slowly
rotating great circle with different subsequences converging to different fixed great
circles. This does not occur.

Returning to the original questions, what remains to be done?
(4) One would like to generalize Matt Grayson's result [Gr] for plane curves to

surfaces; i. e. Show that if the geodesic curvature is zero at some point then k^ must be
bounded. Therefore the curve is smooth with finite geodesic curvature and the evolution
can continue (2).

(5) If the curvature of the curve is everywhere positive and the curve is null homotopic
show that the curve converges to a "round" point. (If one can show that such curves
shrink smoothly to points then it seems likely that one can show that they are asymptoti-
cally circular by comparing with the Euclidean case).

(6) Does every family of curves satisfying equation (0.1) which has a subsequence
converging to a geodesic converge uniquely to this geodesic? The application to spheres

(1) See also [Gr2] for a similar theorem.
(2) Added in proof: This has been proved by M. Grayson in [Gr2].
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CURVE SHORTENING ON SURFACES 231

in this paper is a small step in this direction. Uniqueness is also easy to prove if the
surface in the neighborhood of the geodesic has negative curvature. The question for
geodesies on surfaces with positive or mixed Gauss curvature remains open.

Result (4) above together with the main theorem in this paper would complete the
answer to question (1). Question (2) is essentially answered in this paper—only cusp
singularities can introduce self intersections. The other results above would complete
the answer to question (3) about the final shape of the curve.

I am particularly grateful to the referee whose patient and thorough persual of the
first version of this manuscript caught many careless and typographical errors. I wish
to thank Wolfgang Ziller, Herman Gluck and the rest of the geometry faculty at the
University of Pennsylvania who first suggested studying this evolution of curves and
gave it is name. Thanks also to Richard Hamilton and Matt Grayson whose comments,
suggestions, and ideas on this subject have been invaluable. I am grateful to ITnstitut
des Hautes Etudes Scientifiques for their hospitality while much of this paper was being
written.

1. Basic calculations

In this section we calculate the evolution equations for several quantities associated
with a curve which evolves on a surface M according to the evolution equation

X,=^N

where X is the position vector, k is the curvature and N is the normal to the curve. The
subscript indicates differentiation and the family of curves is parameterized by u and by
t. The arc length s is defined by ds = | X^ | du and we set v = | X^ |.

Let the unit tangent vector be defined by T=X,= \/vX^ and let W=X,=fcN. The
Frenet formulas are T,=VTT=A:N and VvN= -A:T where V is co variant
differentiation. This defines k, since N is chosen so that T, N is a properly oriented frame
on the surface M. The commutator of W and N is given by [W, T] = - (vjv) T. This is
easily checked: if/: M -> R then

WT/=^ /=-a l^=-l^+ l^TW/-^T/.
St9s 8t v 9u v2 8t 9u v 8u8t v

To calculate z^ we consider

V^^W^X^ ̂ V^X^ - vtx^^(k^)= - ̂ T+^N-^T.
\v / v v- v

Since < V w T , T > = O w e have ^= -k2v. We conclude that [W, rT}=k^rT.' We collect
these and related results from these calculations in
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232 M. E. GAGE

LEMMA 1.1.

[W,T]=^T

VwT=A:,N
V^N=-^T

^=-^.

Furthermore, for any function f we write (f,\ as f ̂  and observe thatf^=f^+k2f,.
To calculate the evolution for k we use the curvature tensor

VxVYZ-VYVxZ-Vp^Z=R(X, Y)Z.

The sectional curvature of a plane spanned by orthonormal vectors X and Y is
K (X, Y) = < R (X, Y) Y, X >. For surfaces, of course, this defines the Gauss
curvature K.

From Lemma 1.1 we observe that Vw(^N)=^N+A:(-A:,T), while from the definition
of Gauss curvature we derive

Vw(A;N)=VwVTT=R(W,T)T+VTVwT+V^.T]T=A;R(N,T)T+^N-^^T+^3N.

Comparing components in these two expressions yields.

LEMMA 1.2. — The curvature evolves according to

k^k^k^+kK.

For later use we derive the evolution equations satisfied by arc length and the total
curvature of the curve.

LEMMA 1.3

(H-FL,=- \k2ds, ( \kds}= [kKds.

Proof. — These follow from the formulae is Lemma 1.1 and Lemma 1.2.

PROPOSITION 1.4. — On any surface with bounded curvature, curves which are convex
(k>0 everywhere) remain convex under the curve shortening evolution. In fact the mini-
mum value of the curvature decreases at most exponentially.

Proof. - We derive a minimum principle for A^A^+^+^K. Let \3=ke^ where a
will be chosen below. U satisfies the equation:

U^U^+O^+K+oOU.

Choose a so that K+a>0. If U is initially greater than 8>0 there is no subsequent
time at which 0 < U < 8, i. e., the minimum value of U is non-decreasing in time. Suppose
that U achieves the value e, 0<e<8. From continuity and compactness this occurs at
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CURVE SHORTENING ON SURFACES 233

some first time and place (no, to) where

U (Mo, to) ̂  0, U^ (Mo, to) ̂  0 and (A:2 + K + a) U > 0.

This contradicts the fact that U satisfies the equation above. Hence U^8 and
k^e-^k^WX).

It is important to have some control over the magnitude of the curvature k. This is
obtained by considering the quantity w=(C2+k2)l/2 where C is chosen so that
C2 ̂  | K (x) [ for every point x on the surface M.

LEMMA 1.5. — The function w=(C2-\-k2)l/2 satisfies the equation

C2 w2 (w2-C2)(w2-C2+K)
wt-H7ss W(W2-C2) W '

The quantity w^l(w2 — C2) = (k^lw2 and is therefore well defined everywhere despite the
apparent division by zero.

Proof. - We calculate that

_ k k , _k(k^k3-^kK) _ k k , _k2 _kw,k, kk^
Wf , H^ , ^ss T •

W W W W W W

Simplifying the last formula gives

C2^2 kk,,
i.ti — ________s -L ___5S

ss / 2 r^2\ ?w(w — C ) w

which when substituted in the formula for w^ proves the lemma.

COROLLARY 1.6. — The quantity wds decreases with time provided |K(x)[^C2 for

all x in M.

Proof:

( [wds} = L-wk-ds= f- ^\ ̂ -^-^O.
U A J J ^-c2)

The derivative is zero only where w is identically C, i. e. for geodesies.
Remark 1.7. — Corollary 1.6 provides an analog to the fact total absolute curvature

decreases with time for plane curves evolving according to (0.1).

2. The cusp theorem

In this section we obtain upper bounds on the maximum absolute curvature in terms
of the initial curve, the time interval [0, T) over which the system evolves and the median
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234 M. E. GAGE

curvature k^ which will be defined below. A consequence of these bounds is that the
curve shortening evolution can always be continued until a cusp forms.

DEFINITION 2.1. —Let ^ ( ^ ) = s u p { P | { M | . \k(u, 0 |>P} contains an interval I satis-
f r ) / r \fying ^\\k\ds^^Y If the set is empty (which occurs if \\k\ds<^>) then let

k^(t)=mm[\k(u,t)\ueS1}.

The integral \k\ds is the turning angle of the interval I. A cusp occurs if the
Ji

curvature approaches infinity uniformly on an interval whose turning angle remains
greater than n.

The quantity w^ is defined in a slightly different way so that lemma 2.3 will hold.

DEFINITION 2.2.—Let H ^ ( 0 = s u p { P | { M | | w ( M , 0 |>P} contains an interval I satis-
f F 1fying ^ k ' ^ / w ds > (p ^ . If the set is empty, let w^ (t) = min {\v (u, t) \ u e S1}.
t Ji j

We have the following inequality between H^ and k^.

LEMMA 2.3. — k^^w^-C2)112.
Proof. - Let |3>H^(Y)-8 then on some interval I, ^-^rC2)1'2^ hence

k2^^2-C2^w^2-2Sw^-C2 on I and (p^ k2/wds< \k\ds. Taking the limit as 8

goes to 0 proves the lemma.

Remark 2.4. — This modified definition is used rather than taking the supremum over

intervals satisfying | w \ ds> (p because, with the modified definition, when w^ approaches
Ji

infinity one can conclude that the curvature goes to infinity on an interval for which the
turning angle is more than (p. The turning angle decreases to (p as w^ becomes large. If

we used the definition | w [ ds > (p one could conclude only that the curvature goes to
Ji

infinity on an interval with turning angle (possibly less than (p) whose turning angle
approaches (p as w^ becomes large. Experience with curves in the plane indicates that
this small difference is very important (see [Gr]).

We will make use of the following properties of H^.

LEMMA 2.5. — The inequalities inf{\w(u, t) 1 1 u e S1} ̂  w^ (t) ̂  sup { | w (u, t) \ | u e S1}
hold. The set [ u \ w (u, t) > w^ (t) ] is the countable union of disjoint open intervals I;

satisfying w=w^ at both endpoints and k2/wds^^).
Ji,

Proof. — The inequalities are obvious. In the second statement the set is a proper
open subset of S1 since the points where w= in f{ \w(u, t)\} are in the
complement. Every open subset of the line is the union of countably many disjoint
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CURVE SHORTENING ON SURFACES 235

rintervals. Suppose that on one of these open intervals k2/wds>^', then since w is
Ja

continuous at each endpoint there is smaller compact interval on which the integral is
still strictly greater than (p and on which W>H^(O+E for some positive s. This
contradicts the definition of w^.

A similar lemma holds for w^.

PROPOSITION 2.6. — If w?<B on [0, T) then w.\og(w/C)ds is bounded uniformly for

all t e [0, T). In fact, we have w. log (w/C) ds ̂  C\ B + C^ where C^ and C^ are constants

which depend on the initial curve. We have chosen C so that C2 ̂ sup | K | on the surface.

Proof. — We calculate using Lemmas 1.1 and 1.5

G \ p
w. log (w/C) ds = w,. log (w/C) + w, - w. log (w/C) (w2 - C2) A

A J

= [w, (log (w/C) + 1) - w. log (w/C) (w2 - C2) ds

= L (log (nVC) + 1) - ̂ c 2^ (log (H^/C) + 1)

+ (^-CW-C^K) ̂ ^^ ̂ ^ + i) - H. log (v^/C) (w2 - C2) ds
w

f »; _ _C^ ^(,/G)+ .)+ O- '̂X- '̂̂ dogMO+l)
J w w^-C2) w

-^WW^-C')^^- ̂  - ̂ %)1»8MC)

+ (^-C'X^-C2) ̂ g ̂ ^ + l) + ̂  (^2 _ c2) ̂ .

W

To obtain an upper bound for the left hand side we can drop the second and third
terms on the right since w^C. Then for a fixed time t we divide the space parameter
into disjoint open intervals Ip whose union is the set { M | w ( M , t)>w^], and the comple-
mentary set U. Notice that U is never empty since it contains the points where w= w^.
On each 1̂  we change variables, letting d6=(w2-C2)|wds:=k2/wds to obtain

!-w^w2dQ== f-^+^-w^^w^-w^e^H^ wrf9=2< k2 ds.

The inequality follows from Wirtinger's inequality which states that i f /=0 at the
endpoints of an interval and the length of the interval is less than n then
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236 M. E. GAGE

(f')2—f2dx^0. In the case above the function w—w^=0 at the endpoints of I and
•/i

rfO^Ti follows from the definition of H^.
Ji

dQ^n follows from the definition of H^.
Ji

On U the inequality w ̂  H^ holds and we have that

l-^^+w^-C2)^^ j k2ds^2w! ] k2ds.

Adding these inequalities yields

G \ r
wAog(wlC)ds ^2< \k2ds=-2w!L^-2BL,.

A J

using the formula for L( given in Lemma 1.3. We integrate this to obtain

\w\og(w/C)ds ^w\og(w/C)ds +2B(L(0)-L(T))
J T 0

which completes the proof of the inequality.
We can now easily obtain a bound for k^ with (p<7t. This will be needed in

Lemma 2.9.

COROLLARY 2.7. — If\v^<B on [0, T) then for any 0<(p^7C we have

^Cexpf^-^V
\ (p 7

Proof. — Let (3 be a constant such that [u\k(u, 0>P} contains an interval I on

which | k | ds ̂  (p, then

/ /P^C^X / f \ //p^TC^ f /^ \
( p . l o g p — . — — ^ wA l o g p — , — — ^ w.log . \ds.

\ ^ / \J / \ ^ / Ji \^ /

From Proposition 2.6, the right hand side is bounded by C^B+C^ and the estimate
follows by taking the supremum of such P.

The next three lemmas will enable us to bound the sup norm \\k\\^ of the curvature
on S1 x [0, T) in terms of the initial curve, the bound on the Gauss curvature of M, the
bound on H^ and on T.

LEMMA 2.8. — If ^k^ds is bounded on [0, T) by B then

k2 ds |̂  C5 + €3 C4 L (0) + C4 B t where t e [0, T) and €3 and €4 are universal constants,
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CURVE SHORTENING ON SURFACES 237

C2 bounds the Gauss curvature, L (0) is the initial length of the curve, and €5 depends on
the initial curve.

Proof. - Choose C^IKO:)] for all xeM. As in [G-H] we use Lemma 1.1,
Lemma 1.2 and integration by parts to obtain:

<!-2k2^1-£kl+-7-k6-}-26C2k2^^-C2k2ds.
~ ] ss 3 ss 12e ss 28

The inequality ^6^£^24-(4£)- l b2 is used twice. Choosing 8 and £ small we have

^ \ r
k^ds ^€4 ̂ k^ds-C^C2^,

/( J

from which the lemma follows by integration.

LEMMA 2.9. — If wf is bounded on [0, T) then are constants C-j and Cg depending on
the bound for w^, on the maximum curvature of the manifold and on the initial curve, such

that [l^A^^+CeT)4.

Proof. — We calculate

^1^6^ = ^-30k4k2-^5ks-^6k6Kds.
/( J

We wish to absorb the k6 term. Choose 8 such that 82/7^2= 20/49 and therefore

Wirtinger's inequality /2^(8/7^)2 /2 holds when/=0 at the endpoints and rf9^8.

We choose, Bi so that B^sup(6|K|) and B^k^(t) for re[0,T). (From
Corollary 2.7 we see that such a constant B^ exists.)

Now divide the space parameter into disjoint open intervals whose union is
[u\ \k(u, t)\>B^ ] and the complement U of this set. Changing variables with
818Q=(\/k)818s and dQ^kds yields

\-30k4k2-^5k8+6k6Kds= | - 12G ((fc7^)2 + 5 k'1 + 6 ̂ 5 K dQ

^ [-120/49((fc7/2)e)2+6A:7rf9^12B^2 |^7/2rf9= 12 B7/2 ^k^ds
Ji Ji Ji

where the Wirtinger inequality has been used as in Lemma 2.5. On the set U we have

| ^O^^fe^^K^UB7/2 | k^ds.
Ju Ju
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238 M. E. GAGE

Using Holder's inequality, we bound the last integral by a power |A:|6^ times a

constant which depends on the length of the initial curve. This yields

a \ / r \3/4^ds)^ i f c 6 ^ ) ./( \ j /
The proposition follows by integration.

COROLLARY 2.10. — Ifw^ is bounded on [0, T) (where T is finite) then \ k\ ̂  is bounded
on [0, T).

Proof. - From the definition 2.2 it is clear that | k \ assumes the value /w^-C2 and
using the Schwarz and triangle inequalities we find that

I I A: I I < I I I k\\ - /w*2 - C2 14- /w*2 - C2
l l ^ l loo^ l l l^ l loo ^/^n ^ I 'V^" ^a \ l /2 _

^ kjds\ L112 4- y<2 - C2 ̂  (€7 + Cg T5)^2 L1/2 + w;.
/

The last inequality follows from lemmas 2.8 and 2.9.

LEMMA 2.11. — 7f H^(O is bounded on [0, T) then all of the derivatives of k with
respect to s are bounded on this time interval.

Proof. - The proof is by induction using the maximum principle. We will denote
the n-th derivative by/^.

We first remark that since T<oo and k is bounded, the family of curves lies in a
bounded portion of the surface M. Since K is smooth this means that K and all of its
covariant derivatives of any order are bounded.

Next observe that the derivatives of K along any curve gamma can always be written
as K^^P^, k^\. . ..^""^ where P is a polynomial in the first (n-2) derivatives of k
with coefficients which are smooth functions on M. If n<2 then P doesn't involve k at
all. The coefficients of P are the covariant derivatives of K evaluated on unit
vectors. For example,

K,=<VK, T>, K^=HessK(T, T)+(VK, V^ T > = Hess K (T, T)+fe<VK, N>,

and

K^=VHessK(T, T, T)+^(VK, N>+A:HessK(T, N)-^<VK, T>.

This observation and the one in the paragraph above imply that K^ is bounded on
[0, T) iffc, k^\. . ..^-^ are all bounded on this time interval.

We now proceed to the induction: The induction statement is that
(^-(^L+OS+^^+K) fc^+P^,^^,...,^-1)) for some polynomial P and
that k^ is uniformly bounded on the time interval [0, T).
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CURVE SHORTENING ON SURFACES 239

For n = 1 we have

k^k^k^^^k^k^Kk^k^^k^^k^^kK^Kk,

(^(1)), = (fe^ + (4 k2 + K) /c^ + K, fc.

Since the curves lie in a compact domain of M both K and K^ are bounded uniformly
and k is bounded by corollary 2.10. Let u=e~atk(l)-[it then ^=^+(4fc2+K)
M + K ^ ^ ' ^ — a M — p , and choosing a and [i sufficiently large insures that the coefficient
of u and the term K ^ k e ' ^ — y i are negative. From the maximum principle we see that
u must be bounded by its initial value at ^==0 and that ^(1) is therefore bounded on the
finite time interval [0, T).

If the induction statement holds for ^(1), . . ., k^~1) we observe that

(fc(n)),=(fc(n-l))^+^2A;(n)

=[(^-l)L+((^+2)fe2+K)^n-l)4-P(^ k^\ . . ., ̂ "-^L+^fc2^

= (^"^ + ((n + 3) k1 + K) k^ + F (k, ^(1), . . ., ^(n -1)).

Applying the maximum principle to M^^"01^00—^ as in the case where n== 1 proves
that fe^ is bounded.

We will need the short time existence theorem from [G-H] section 2.

THEOREM 2.12. — For any smooth initial curve X(u, 0) there exists a positive e and a
one parameter family of curves X (u, f) with 0 ̂  t^ e satisfying the curve shortening equation
(0.1)

THEOREM 2.13. Extension theorem. —Assume that on a smooth complete surface M
with bounded Gaussian curvature a solution to the curve shortening equation X (u, t) exists
for te[0, T). If w^ is bounded on [0, T) and T is finite then the solution of the evolution
equation can be extended to [0, T + s) for some positive s.

Proof. — The bound on w^ permits a uniform bound on k and all its derivatives,
hence using the Arzela-Ascoli theorem k can be defined smoothy on [0, T]. Furthermore,
the curves X(M, t) converge to a smooth limit curve X(M, T). Now use the short time
existence theorem to extend the solution of the interval [0, T+e).

3. The embedding theorem

This section is devoted to proving the following.

THEOREM 3.1. — Let X: S1 x [0, T] -> M2 be a solution to the curve shortening evolution
equation with T finite. If X ( • , 0) is an embedded curve and the curvature is uniformly
bounded on S1 x [0, T] then X (* , /) is embedded for each t.

This extends Theorem 3.2.1 in [G-H] to surfaces. The ideas are essentially the same,
but the details of the proof are more complicated for surfaces.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



240 M. E. GAGE

The intuition behind the theorem comes from considering the "first" time to when the
curve has a self intersection point. The two portions of the curve are tangent at such a
point and we assume that their curvatures are not equal. Consider the position of the
curve just prior to the time of first contact, because the curvature of the "inner" curve
segment is greater, the curve must have had a transversal intersection for times
t<to. This contradicts the fact that IQ was the first time of self intersection. We will
use the minimum principle to give a rigorous version of this argument.

Ones first thought is to attempt to apply the minimum principle to the function
F(MI, u^ t) defined by the square of the distance from X(M^, t) to X(M^ 0 on the entire
secant set ^=S1 x S1 x [0, T]. This doesn't work however because F equals zero when
MI = u^ even though there is no self-intersection. In addition F is not differentiable when
X(^2, t) lies in the cut locus of X(u^ t). Instead we restrict the set by removing a set
^ which contains a neighborhood of the cut locus and of the diagonal and show that no
self-intersections occur which correspond to points in <f. In the neighborhood of the
diagonal we use the fact that the situation is nearly Euclidean to obtain a crude, but
uniformly positive lower bound on F. On the remaining set Q) — <f we use the minimum
principle to show that F is strictly positive and therefore there are no self-intersections.

Let DI be the infimum of the convexity radii over the smallest compact region of M2

in which the family of curves { X( •, t) ] lies. [Since 0 ̂  t ̂  T < oo and we have a uniform
bound on the curvature the family of curves cannot travel too far from the original
curve (| Xj = | k N | < B); therefore the family lies in a compact set and the infimum of
the convexity radius exists and is positive]. The convexity radius at a point is the radius
of the largest convex geodesic disk about the point. It is smaller than the injectivity
radius.

DEFINITION 3.2. — Let

f r"2 1
^={(u^ u^ 0 |F(Mi, u^ 0^(D02} U ^ (^, u^ t) ds<S ̂

I Jui )

8 will be chosen small enough so that the curve from u^ to u^ can be represented non-
parametrically over the geodesic tangent to the curve at u^ and the metric in the Fermi
coordinate system about this geodesic is nearly Euclidean:

LEMMA 3.3. — There exists positive 8 and e depending on the bounds on \ k \ < B and on
|K|<C2 such that F^s>0 on the boundary of <f. In addition F(^, u^, t)=0 for
(Mi, ^2, t)eE. if and only ifu^=u^.

Proof. - We assume that E < D^ so we need only show that F ̂  8 on the boundary of
^ near the diagonal.

Let / be the geodesic tangent to the curve X( ' , t) at u^ and consider the Fermi
coordinate system based on /. Let y be the distance from a point X (v, t) to the nearest
point on / and let x be the distance along / of this point from u^. Then the metric has
the form ds2 = dy2 + J2 dx2 where the function J, satisfies J(x, 0)=1, J y { x , 0)=0 and
J y y == - KJ. The angle (p which the tangent to the curve X ( • , /) makes with the x
coordinate lines satisfies <9(p/^==fe-cos(pJy/J (see Appendix A for details.)
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If (Mi, v, t) e S then the distance of X (v, t) from / is less than the arclength of the curve
from MI to v which is in turn less than 5. It follows that if 8 is small enough then the
curve lies in a well defined coordinate neighborhood of / where

|JJ<1,|J-1|^1/2 and |(p(z0|^ | |(pj&^(B+2)8<7t/4.
Jui

This choice of 5 can be made independent of the initial point on the curve u^.
Restricting the metric to the curve X give us J dx= \ cos (p | ds from which we calculate

that rfx^(cos(p)/J^(/273)&. This is enough to prove the second statement of the
lemma since X(u^, t) and X(u^ t) will have different x coordinates in this system unless
Mi=M2.

^2
If ds =8 the x coordinate of the point X(u^ t) is given by

vU\vu\
u!

x(u^)= 2 rfx^(/2/3) 2 d s = ( / 2 / 3 ) 6 . The distance on the surface M between the
Ju\ Jui

point X(u^) and X(u^) is the infimum of the length of curves connecting the first point
to the second. Let y be such a curve. Then the length of y is

\ds^ [ j r fx^l /2 [
JY JY ^Y

ds^. Jrfx^l/2 dx=x(u^)12^( /2/6)8, provided that it stays within the coordinate
JY ^Y •'V
neighborhood. If the curve y leaves the coordinate neighborhood then its
length is greater than 8>(/2/6)8. From this we conclude that
F(Mi, u^ 0=(dist(X(^), XO^))2^2/^. Let £=82/18.

This completes the proof of lemma 3.3.
To calculate the equation satisfied by F on the set Q) - ̂  we need to calculate the first

and second variation for a 3 parameter family of geodesies. Let y be the unique geodesic
segment connecting X(u^ t) to X(u^ t). We parameterize y proportionally to arclength
with parameter a running from 0 to 1 that y maps (^-^) x [0, 1] into M.

We define the following vector fields on Q)-^ with values in TM. Let y=y^(3/3a)
and let T=y/ |y | while v is the unit vector perpendicular to T such that the orientation of
T, v agrees with that of M. Let /= | y | be the length of gamma.

Let Uf=y^ (8/8ui). When restricted to the geodesic segment y, U^ is the unique Jacobi
field which is 0 at X(u^ t) and agrees with X^(818u^) at X(u^ t). U^ is the Jacobi
field which is 0 at X(u^ t) and agrees with X^(8/Su^ at X(u^ t). Dividing each of
these Jacobi fields by a constant yields the Jacobi fields 'T\.=U^(Mp t) which agree with
the unit tangent vectors of the curve X at the endpoints of gamma.

Finally let W=y^(5/3Q. When restricted to y, W is the unique Jacobi field agreeing
with X^(81St)==k(Ui, QN(^, t) at each endpoint X(M,, r). We'll use the short hand
notation y,, k^ N .̂ to represent vectors and quantifies at X(^., t).

Proof of theorem (3.1). - To calculate the t derivative of F we use V^y=0 and
[y,W]=0 where V is the Levi-Cevita connection on M. From
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a1 • \2

F 0/i, u^ f) = | y | rfa ) = /2 we calculate
3 /

F<=2/ r|y[^a==2/ f1 wwy> d^=2 ['(y, V,W)>^a
Jo Jo M Jo

= 2 J ^ < ^ W > r f a = 2 ( Y , W > | o = 2 < y „ ^ N , > - 2 ( y „ ^ N , > .

The same calculation yields

F M i = 2^£< Y 9 u l >^=~2 < Y 1 9 u l ( o ) > ? F^^^O)).

We have written Ui(0) to emphasize that the vector field is evaluated at X(u^, t)
where a==0.

Changing to the arclength differentiation operators simplifies these equations to

(3 > 1) F^^y^T,)!^,
(3<2) F^=2<y,,T,>|^^,.

Now calculate the second derivatives:

(F^=-2^«y,,T,>|x^,,))=-2<V^yi,T,>-2<y,,V^T,>

=-2z.(^0<V^T,,T,>|x^,)-2z;(^,r)<y, ,V^T,>|^^^

which becomes

F^=-2<V, ,T , ,Ti>[x^ , , ) -2<y, ,^N,>

when the arclength operators are used.
The Jacobi field T^ agrees with the unit tangent of the curve at X(u^ t) and is 0 at

X(^2, t) so it is given by

(3.3) Tl((x)=<Tl(^,aT,>(l-a)T+<T,(^,0,v,>Jl^)v
J\ (0)

where J^ is defined on [0, 1] by J^ (1)=0, J\ (1)= -/and Ji+^KJ^.

V.TJ^-^T^T+^V^^V.
J i (0)

and

^^(T^^^V^^^Y^N,)
J! W
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In the same way one derives

F^l^^^y+l^^v.y^+l^k^)
^ l ^ 1 )

and therefore

(3.4) F^F^+F^^T^T^+l^Vi)2^
J l W

- 2 < T,, ̂  Y - 2 < T,, v, >2 J2(l) = F,̂  + F,̂  + A («„ u,, t).
*»2 V1)

We will not be able to show that the minimum of F increases, but we will show that
the minimum decreases exponentially, at worst, which is enough to prove the lemma. To
do this let F^^F so that

(3.5) F,=P^+F^+PF+^A(^, ̂  0-

We know that F^F^s on the boundary of 2-^. Suppose that F attains a positive
value less than 8 on the interior of ^-^then let (u^ u^ t) be the first time that this
occurs. At this point

(3.6) F^O

(3.7) F^P^0

and

(3.8) F^+F^^2^/F^,F^^2|F^J

since it is a minimum point in the space variable. From (3.7) we see that < T^, T^ ) = 0
and that <T,, v,)^ ±1.

To estimate F^^^F,^ we return to (3.1). Observe that in (3.1) y^ changes as
u^ is varied with u^ held fixed, but it is not well defined as a vector field on the target
surface M at X(^i, t). For points on M close to X(^, 0 however this variation does
give a well defined vector field so by taking limits we can still calculate the derivative
using the Levi-Cevita connection on M in the following manner:

(F )̂u, - -i- flim 2 < y (oc), T^ > , ̂ , „.,,)) = Urn 2 8 < y, T^ >
8u^\^i ) a^l W\

-lim«2V,Ui,T2>+2<Y,Vu,T2».
Ot-^1
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Interchanging the limit and differentiation is permissible since all functions are C°°. Now
Ui =0 at a= 1 so the limit of the second term is zero. Changing to arclength differentia-
tion operators and using (3.3) yields

(3.9) F^=-2<T,, T,><T, , T ,>+2<T\ , v,><T,, v,)^.
J l W

One can also show that

(3.10) F^=-2<T„T,><T„T,>-2<T„v ,><T„v ,> J 2 ( o ) .
^ i ^ 1 )

and that J^ (O)/^ (1) = - 3\ (l)/Ji (0).
At the point (u^u^t) the left hand side of equation (3.5) is non-positive by

(3.6). Using (3.7) through (3.10) shows that the right hand side of (3.5) is greater
than or equal to

^(PF^IF.J+A)^^?^^^^^^^^' 1 2 1 V Ji(0) Ji(0) J^i) hW)
=.<PF-2 r-^K^a^ f1-/2^^

\ Jo Jl(0) Jo J2(l) /

^^^(PF-4/2C2)=^^(P-4C2)F>0.

provided that P is chosen so that P - 4 C2 is positive. (Recall that C2 > sup | K |.) We
have also used the fact that because the geodesic segment is always within the convexity
radius of its endpoints the function J^ is strictly decreasing on the interval [0, 1] while J^
is strictly increasing.

This contradiction proves that F remains greater than e on Q)—S and therefore F
remains positive.

This completes the proof of theorem (3.1).

4. Curves which converge to geodesies

In this section we determine the behavior of curves for which H^ < B on an infinite
time interval. This is the class of curves which we expect to converge to geodesies and
except for some curves which move off to infinity, this is so. (Note that if k^^B then
< ̂  /B^TC2 by lemma 2.3.)

The estimates in section 2 are inadequate because the curvature bounds increase with
T. In this section we obtain bounds which show that the curvature converges to zero;
and under additional hypotheses show that subsequences of the curves themselves also
converge. The first step is to show that the L^ norm of the curvature converges to
zero.
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PROPOSITION 4.1. — If H^ < B for t e [0, oo) then k2 ds converges to zero.

Remark. - The key to this proof is that Ly= - \k2 ds, hence k2 dsdt is finite.

Proof. - Given a positive e with s < min {(4 Lo) ~1, (4 B2 + 4 C) ~ 1} we choose T\ large
enough so that

(1) fk2ds\^<s/2

(2) f°° f^A^LCTO-L^s2.

L^ is the limit of the length as t goes to infinity. (2) holds for all large T^ and from

(2) we conclude that k1 ds goes to zero for a subsequence ^, ^, . . ., of times, so both

conditions can be simultaneously satisfied for some large T\. Calculate that

((k2ds\= f-2fc2+fc4+2A:2K&.

We now claim that when k2 ds is small the growth is at most exponential:

(4.1) if \k2 ds < £ then ( \k2 ds\ < (4 B2 + 2 C2) [k2 ds.

Using the Schwarz inequality we obtain

L(0^2A^(||^[[,-w;)2=||fe||2,-2||fc||,w;+(w?)2^||fe^

and therefore ||fe||^2L(0 ̂ k^ds+l^)2. From this it follows that

( ^k2ds\ ̂  |-2^2A+2( I^A^L^ l^&j^^B^C2) US:2 rf^ (2 B2 + 2 C2) Sk2ds

using fc2 ds < E < (4 L (0)) ~1 < (4 L (r)) ~1 so that the second term can be absorbed by the

first one. This proves the claim.

Suppose now that A:2^^ for some te[T^ oo). Since \k2 ds is a continuous

function of time there will be a first time T^T^ at which A^rf^e with A^&^e on
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[TI, T2]. Integrating equation (4.1) from T^ to T^ and using (1) and (2) we have

^< ̂ k2ds T,- f^A ^^(2B2+2C2) r2 !k2dsdt^(2B2-^2C2)Q2

hence (4 B2 + 4 C2)"1 ̂  e which contradicts our choice of E. This proves the proposition.

COROLLARY 4.2. — If the curve continues to evolve for an infinite time then | k \ ds

converges to zero.

Proof. — Using the Schwarz inequality the square of the L^ norm is less than the L^
norm times the length of the curve.

Once the L^ norm of k goes to zero we can prove that the L^ norm of k^ remains
bounded:

PROPOSITION 4.3. — If k2 ds -> 0 on [0, oo) then k2 ds remains bounded.

Proof.

( ^k2ds\= \-lk^Jf^k2k^-lkk^Kds^ |-2^-2^K+7(sup[^|)2^2^.

Since ^=0 at some point on the curve we have (sup | ̂  [ )2 ̂ ( ( f e^ f i b jL using the
\ v /

Schwartz inequality. Now applying lab<a2-}-b2 to the second term and taking IQ large

enough so that (k 2 ds < 1/(7 L (0)) we have

( Sk^ds) ̂  f-~2^+^+fe2K2&+MO f^ds^C4 (k2ds=-C^L,(t)
\J / t J L(^)J J

Now integrate to prove that j kjds remains bounded for te[Q, oo).

If the length decreases to a positive lower limit, L^ then we can probe that the
maximum curvature converges to zero. This assumption on the length is necessary.

LEMMA 4.4. — The following inequality holds:

f / r r v/3 7 r )
PMmax^ 8 ^A t^) - [^ .

( . \ J J / LJ }

Proof. - Let [ fe (^=mm{ \k(s)\}. If }k\^ 1/2||A:[[^ then there is an interval
I = [a,b}, \k (b) [ = |[ k \\ ̂  and j k (a) | = j j k \\ J2 and | k \ ̂  |[ k \\ J2 on I. Using the Schwarz
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inequality, it is clear that:

(iNoo-11^)2^ [k^ds [ds where l=[u\\k\>\\k\\Jl}.
\ / v •/I

On the interval I

^[^[\k\ds
2 Ji J

holds hence

r r
9 P ^ | iL | Jw^r r^

4 - Moo

and

llfell^gf^fiA:!^.

If||^||,^2|A;|^then

llfcll^l^^JifelA^-jl^.

This proves the lemma.

COROLLARY 4.5. — If L^ > 0 wzrf H^ < B on [0, oo) ^/z [| k [| ̂  ^5- /o 0.

Proof. — From Lemma 4.3 we see that kj ds is bounded and from Lemma 4.2 that

| k | A goes to 0. The result now follows from Lemma 4.4.

PROPOSITION 4.6. — 7/*L^>0, ̂  higher covariant derivatives ofk are uniformly boun-
ded and w^<B/or all t then all of the derivatives ofk with respect to s converge uniformly
to 0 as t approaches infinity.

Proof. - The proof is by induction. We will let/^0 stand for the rth derivative of/
with respect to s. Let S(n) be the statement: lim H^ 0 11^=0 ^'=0,1, . . . ,»-! and

t-»'oo

II^H^N^oo for ^€=[0,oo). S(l) is proved by Proposition 4.3 and Corollary
4.5. Assuming that S (n - 1) has been proven, we prove S (n). The first step is to show

^ \
that for all large t (A^)2 ds ) is negative and therefore || k^ || 2 remains bounded. This

) t
involves the same tricks of balancing terms which are potentially positive by terms which
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are negative definite ( ^(-Ik^^)2 ds in this case] and integrable terms

( \k2 ds= - Lj. The following observations will be useful:

Remark 4.7. - By applying the Wirtinger inequality repeatedly we obtain

r / ].\^-2m r
{(Wds^ — \(k^Yds with n>m^\.
J VTC/ J

The length of the curve L is always less than the initial length.

Remark 4.8. - Using integration by parts and aA^e<32+62/4e repeatedly as well as
remark 4.7 we obtain an interpolation formula for m^n:

^k^yds^e ^k^^ds-^-D (k2ds

where e>0 is arbitrarily small and D is some large constant, which depends on e.

Remark 4.9. - Assuming S(n- 1) with n^2, then terms of the form k^^k^k^k^

with O^a^b^c and a^-b^-c^n- 1 can be bounded by p, (A:(n+l))2& for any a>0 if

t is sufficiently large. Observe that since n^2 we have b<c^n- 1 and therefore

f^^^^^^A^II^II.II^II.Cll^llJ+ll^^ forlarger

follows from the inductive hypothesis and remark 4.7.
Assume S (n - 1). Using lemmas 1.1 and 1.2 we calculate

(4.2) ( f^)2 ds\ = [2 k^ (k^-1)),, + k2 (k^)2

\J A J

=S-2k(n+l)(k(n-l)\-^k2(k(n))2

= ]-2A:(n+l)((^)(w- l)+P(^ . . ., ^-l)))+A;2(fc(n))2

The polynomial P arises from the interchange of the operators / and s; each term is
of the form k^k^k^ with a-^-b-^c=n- 1. After multiplying through by ^(n+l) in (4.2)

the terms arising from the polynomial can be bound by [i \(k(n+l))2ds according to

r
remark 4.9. The last term can also be bounded by ^ (k(n+l))2ds using remark 4.7
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and the inductive hypothesis. We are left with

( ^Wds} = f-2fe (n+ l )(^+fe3+Kfe)n- l+^i(^+l ))2

= f-2(A:(n+l))2+Dl((Kfe)n-l)2+3^(fe(n+l))2.

where the k^^ (k3)^'^ terms are bounded as in remark 3 and the third term is split
using ab ̂  £ a2 + b2|4 e.

Finally ((K k)^ ~1))2 ̂  C^ 2: (K^)2 (^(b))2 with a + & = w - 1. The derivatives with respect
to s of K are polynomials in P(fe, . . ., k^'^) with bounded coefficients (see proof of
proposition 2.11) hence the K^'s are bounded in the supremum norm. Further
\\k^ || j can be bounded by e || k^1) || j + D || k \\ j according to remark 4.8. This proves
that for sufficiently large t and small \JL and s

( [(W^A^ f(-2+3^l+£)(A: (n+ l ))2+D2A:2&^-CL,

hence (k^)2 ds is bounded. This proves the first part of S (n).

Since H^l^ ls bounded k^'^ is equicontinuous and converges uniformly to some
function/. The antiderivative of/ is 0 since by the induction hypothesis A^'^-^O;
therefore / is also 0. The proposition now follows from the principle of mathematical
induction.

THEOREM 4.10. — If wf remains bounded for infinite time and if all the curves meet a
fixed compact set on the complete surface M then a subsequence of the one parameter
family of curves which solves the evolution equation converges to a geodesic.

Proof. — If the curves intersect a compact region on the surface, then they lie inside a
slightly larger compact region since the length (which is bounded) is greater than twice
the diameter of the curves. Since z;=|Xj decreases we can apply the Arzela-Ascoli
theorem to conclude that a subsequence converges to a limit curve y^.

The length cannot decrease to zero, for if it did a subsequence would converge to a
point, each curve in the subsequence would bound a disk, and from the Gauss-Bonnet
theorem we could estimate the total curvature by

27i= [KrfA+ p&^C2A+ \\k\ds.

Since both the area and | k \ ds converge to zero we have a contradiction.

From Corollary 4.5 we have that k and its derivatives converge uniformly to zero
hence Yoo ls a geodesic.
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Remark 4.11. — Surfaces of revolution with negative curvature can be constructed
which show that the hypotheses in Corollary 4.5 and Theorem 4.10 are necessary.

THEOREM 4.12. — If the surface M is oriented then the limiting geodesic is embedded,
and the subsequence of curves converges to a single covering of the limiting geodesic.

Proof. — The image set of the limiting curve is embedded for if it had transversal self
intersections then the sequence converging to it would have transversal self-
intersections. Neither can it have tangential intersections because as a geodesic, it
satisfies a second order differential equation and two closed geodesies with a common
point and tangent direction must be identical or one must be a multiple covering of the
other.

From lemma A. 1 we see that once the curvature of the curves is uniformly small and
the converging subsequence of curves is uniformly close to the limiting closed geodesic
then the curves can be written non-parametrically over the geodesic and converge to a
single covering of the geodesic.

5. An application to curves on round spheres

THEOREM 5.1. — A simple closed curve y on the sphere of radius 1/C which divides the
r

sphere into two pieces of equal area and whose total space curvature (T^-^C2)112 ds is
j

less than 3 n converges to a great circle under the evolution X, = k N.

Remark. — It is interesting that in this case we can show that the entire one parameter
family, not just a subsequence, converges to a single geodesic. In particular, this means
the flow of the curve can not approach a slowly rotating geodesic.

Proof. — From the Gauss-Bonnet theorem we have kds = 0 for the initial curve and

a \ f
this is preserved by the flow since kds j == A;K<& according to Lemma 1.3. From

) t J
the isoperimetric inequality, we have L2^A(47l—KA)=47C2C - 2 for any curve dividing

the area of the sphere in half. Let I be an interval on which k>k^—e. and |A:|ffe=7i.

Then the length of I is less than n(k^—£)~1 and the length of the rest of the curve is
greater than 2 n C'"1 — n (k^ — e) ~1. We, therefore, have the inequality

[wds^ [wds+ f wds^K+c(2n--n—\^3n--c^-
Jy Ji Jy-i ^ \C ^-e/~ ^*-£
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which after rearrangement yields:

00>————Kc————+8^.

(37i- wds)
Jy

The quantity wds decreases by Corollary 1.6 so from Theorem 4.10 we conclude that

the maximum of the curvature of the curves converges to zero and that a subsequence
of the curves in the evolution converges to a fixed geodesic.

To show that the evolution converges to a single great circle, consider the set G(t) of
great circles which intersect the curve at time t in 4 or more points.

LEMMA 5.2. — Let Y be a closed geodesic on an oriented surface M and let X (u, t) be
a one parameter family of curves following the curve shortening flow then the number of
intersections z(t) o/X(', t) with y is a non-increasing function of time.

COROLLARY 5.3. — The set G(t) decreases with time, i.e. ift^>t^ then G(^)sG(^).

Proof of corollary. — Follows immediately from Lemma 5.2.
The lemma follows from a theorem due to Sigur Angenent on the zero sets of parabolic

partial differential equations. (See [An I], Theorem C for the proof and [An 2] for further
applications of this result to the curve shortening flow.) We state a slightly restricted
version of Angemenfs theorem:

THEOREM 5.4 (Angenent). — Let u'. [0,1] x [0, T] -> R be a bounded solution to

u^a(x, t)u^-\-b(x, t)u^c(x, t)u

with periodic boundary conditions. The assumptions on the coefficients are that a is
positive and that a, a~1, a^ a^, a^, b, by, and c are all bounded periodic functions. Let
z(t) denote the number of zeros of u ( ' , t) in [0,1]. Then

(1) for t>0 z ( t ) is well defined and is finite;
(2) if(xQ, to) is a multiple zero ofu (i.e. u and u^ are both zero) then for all t^<to<t^

we have z(t^>z(t^).

Proof of lemma 5.2. — We observe that i f X ( - , f) and y intersect transversally at time
to, then they intersect transversally on some small time interval (to — 8, to + 8). Using the
implicit function theorem the intersection points x^ can each be described by a continuous
function x^(t) and in particular the number of intersection points does not change in
this interval, z {t) is constant on (to — 8, IQ + 8).

If X (•, to) intersects y tangentially at some point and the geodesic curvature of X is
uniformly small then by lemma A. 3 X can be written non-parametrically over y for all t in
some interval (^o~5? ^o4"^). In local coordinates Xsatisfies (A. 5) to which Angenent's
theorem applies. Hence z(t^)>z (^) for to - 8 < ̂  < to < t^ < to + 8.

This completes the proof that z (t) is a decreasing function.
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Remark 5.5. - Observe that this part of the proof of theorem 5.1 works for any
complete C00 surface with bounded curvature.

LEMMA 5.6. — The 'diameter' of the set G(t) decreases to zero.
Proof. - We associate each great circle in G (t) with its polar point and let G (t) stand

also for this set of polar points. Let H (t) be the set of polar points associated with the
tangents to the curve X (u, t). Assume that the evolution has continued for a sufficiently

long time so that | k \ ds is small and the curve lies close to an equatorial great circle

and the polar curve of X lies in a small region of the north pole. The length of the

polar curve is given by the total curvature of X, namely [ k \ ds. We claim that G (t) is

contained in the convex hull ofH(Q together with the convex hull of -H(Q.
If a great circle intersects X in 4 or more points, choose antipodal points on the great

circle so that at least two points of intersection lie in each arc between the antipodal
points. Now rotate the great circle through the antipodal points until two intersections
points come together in a point of tangency. Do the same in the other direction. Keep

in mind that if [ k \ ds is small, the curve X lies in a small tubular method of some

geodesic and is even non-parametrically represented over that geodesic. This shows that
the polar point to the original great circle lies on a (short) geodesic between two points
of H(Q [or -H(Q] and therefore lies in the convex hull of H(Y) or -H(Q. Since the
diameter of H (f) decreases to zero the diameter of G (t) must also decrease to zero.

From these lemmas it is clear that a curve satisfying the hypotheses converges to a
single great circle. This completes the proof of Theorem 5.1.

A. APPENDIX

Here we summarize the local differential geometric formulae we need to describe the
curve shortening flow in the neighborhood of a geodesic.

We construct a coordinate system for the collar neighborhood of a geodesic y in
M. This is a local construction and holds for either a closed geodesic or a geodesic
segment. Let F: [0, Lo] x (-e, e) -^ M give the normal coordinate system. The image
of F (x, 0) is the geodesic y and for fixed x, F (x, y) is geodesic segment which meets y
perpendicularly at F(x, 0). Lg is the length of the geodesic segment. The metric on
M is expressed in these coordinates by ds2 = J2 dx2 + dy2 where J (x, y) satisfies J y = - KJ
(K is the Gauss curvature of the surface) with initial conditions J(^,0)=l and
J^(x, O)==K==O (K is the geodesic curvature ofy).

E can be chosen small enough so that the map F is a diffeomorphism. In the case of
a closed geodesic on an oriented manifold M the map F becomes a diffeomorphism
from the cylinder obtained by identifying the endpoints of [0, LJ.
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We define an orthonormal frame field in this neighborhood by ^i=(l/J)F^(3/3x) and
e2=¥^(8/8y)- If a curve X(u) lies within the collar neighborhood then it can be
expressed parametrically in polar coordinates by F~1 °X=(x(u), y(u)).

The Levi-Cevita covariant derivative satisfies V^i = - (Jy/J) e^ V^ e^ = (Jy/J) e^
V^i=0, and V^e^=0. Let (p be the angle between the unit tangent T to the curve
and the vector e^. Then expressing A:==<VTT, N) in terms of e^ and e^ and (p and
simplifying yields the expression

(A.I) A^q^—coscp-^

where s is the arclength parameter along the curve.
In addition we observe that tan ^ ) = d y / ( J d x ) and differentiating this yields.

(A.2) cp =-J2-(yx}
" J'+^UA

Finally we have ds = /J2 dx2 + rf^2 = /J2 dx2 + J2 tan2 (p dx2 = [ sec (p | J dx and from
this, using the chain rule, we derive (p^ = (p^ ds/dx = J sec (pep,.

Changing the independent variable from s to x in equation (A.I) and using (A.2)
gives us

(A.3) k-^^-^l^-^^} -cos^.

The equation of motion of the curve under the curve shortening flow can now be
derived for those portions of the curve lying non-parametrically in the coordinate
neighborhood by writing Xy=A:N in the local coordinates x and y and then changing
variables so that the differentiation with respect to / is taken while keeping x fixed rather
than u (see [G-H], p. 79 or [E-H], p. 22 for more details). The equation is

(A.4) ^=^=la^-J.=-^^-_l_J^ -J.
coscp J 8 x J J^2 J^y2,] J '

Which we rewrite as

Vxx _ 1 J.(A.5) .=_^"L_-—-—^y -cy
• • l ^ 7 t 7 • r ' ) l ' J • r ' • x 'V^-yi J^j^J

with c = J y / ( y J ) . Notice that limJy/^==limJyy/l== -K so the function c is well defined
y->0 y-^0

and bounded.
We now proceed to derive the estimates needed in the paper:

LEMMA A.I . — Let B > sup | K [ then

hanf/B^^-yBtan(yB^^yBtanh^BA
\ / J \ /
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hold for y ' ^ 0 and the reverse inequalities hold when y^O. Hence for any 8 and B it is
possible to choose an £ collar neighborhood of a geodesic so that | Jy/J | < 8 in the entire
neighborhood.

Proof. - Let \|/==Jy/J and observe that \|/ satisfies \|/y ̂  - K - \|/2 with \|/(0)==0. We
choose comparison functions which correspond to surfaces with constant

curvature B. Let J = c o s ( / B ^ ] , and let (p=Jy/J so that (py= -B-(p2 with (p(0)=0.

Similarly let J^ cosh [ / B ^ ] , and let (p==Jy/J so that (py^B-cp2 with (p(0)=0. It

follows from a standard comparison theorem for ordinary differential equations [A], p. 17
that (p^\|/^(p for y^O. For example, suppose that yo is the first y for which
(POO^OO- Then (py (yo) ̂  v|/y (yo), but from the equation it follows that
(py == " B - (p2 < - K - \J/2 = \|/y. This contradiction shows that (p ̂  \|/ for ^ ̂  0. A similar
argument proves the other half of the inequality. For y^O the comparison theorem
yields (p^\|/^(p. This completes the proof.

LEMMA A. 2. — If the surface M is oriented and the curve X lies completely in an £
neighborhood of a closed geodesic y and if the geodesic curvature satisfies \ k \ ̂  8 where 8
and £ depend only on B and y then the curve can be described non-parametrically over y.

Proof, - Choose £ small enough so that the normal coordinate system of y is one-to-
one and so that |Jy/J|^7i/(8Lo). Let 8=7i/(8Lo). From (A.I). We see that
| (p, | ̂  | k | + sup | Jy/J I ̂  7i/(4 Lo). At the point where X is furthest from y, (p equals 0 or
71. (If (p^Ti reverse the orientation of X so that (p==0.) Integrating this inequality
proves that | (p (s) | ̂  n/4 hence locally the curve is represented non-parametrically in the
normal coordinate system.

Because X has no self-intersections restricting the projection map (x, y) -> (x, 0) to X
yields a differentiable covering map n from X to y. The covering is finite because X is
compact. Since M is oriented the local coordinate system near y is homeomorphic to a
cylinder and it makes sense to define / (;c, 0) ̂  (x, y) where y is the supremum of the y
coordinates of points ofX whose x coordinate is x. Locally/equals the local homeomor-
phism (7c|u)^1 so/is a continuous and open function. X has only one component
hence the image of/is all ofX. Since 7T°/==id,/is one to one with inverse n. f gives
the non-parametric representation of X.

LEMMA A. 3. — If the curve X intersects y in an angle less than 8 and if \ k \ ̂  T| where
8 and r\ depend only on B, £ and Lo then X lies entirely within the £ neighborhood of y
and by the previous lemma can be written non'parametrically over y.

Remark A. 4. - The intuition behind this is that geodesies close to y diverge from y
more slowly than similar geodesies on a surface with large negative curvature
B. Furthermore a curve with small geodesic curvature should behave approximately
like a geodesic. In this lemma we prove an easier and weaker result which is sufficient
for our present purposes.

4eSERIE - TOME 23 - 1990 - N° 2



CURVE SHORTENING ON SURFACES 255

Proof. — We use the comparison function

w(^)=r|(cosh[^/C^-l)+8//Csmh[/C^

which satisfies w(0)=0, w,(0)=8>0 and H^=CW+T|. Given C, L() and s it is clearly
possible to choose 6 and T| sufficiently small so that Q^w(s)^s for se[0, L()]. Let
\v= —w.

Choose C so t h a t - C ^ ^ / B t a n [ / B ^ ^ / B t a n h [ / B ^ ^ C ^ for £>^0. Then

from equation (A. 6) it is clear that | Jy/J | ̂  C y \.

We now prove a comparison theorem similar to the one in [A], p. 17. Let v|/==H^
and ^=-^=^5. Let ^ i=sup{^ |^e[0 , LJ and for all ore[0, ^]\|/(<7)<(p(a)<vl/(a)}.

Since ^==T[y]=cos(p^i |j] + sin (p ̂  M== sm (? we have \|/^-(p^^^cp^vj/ for
se[0, s^] and therefore w^y^w on the same interval. Suppose now that S^<LQ then
by continuity we have either \[/(^i)=(p(5i) or v|^(^i)==(p(^i). Assuming the former we
see that (ps^i)^^^!) on A6 other hand

(p,(^)=^+cos(p(J,/J)<Ti+C|^(^)|<Ti+Cw(^)=v|/,(^)

which is a contradiction. A similar contradiction with inequalities in the opposite
direction is obtained if \|/ (s^) = (p (s^). It follows that ^ = Lo and that w (s) <y (s) <w(s)
for se[0, L()]. This completes the proof.
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