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UNITARY REPRESENTATIONS
OF SOLVABLE LIE GROUPS ( l)

By L. PUKANSZKY.

Du kennst doch das Schillersche Gedicht " Spruch
des Konfucius " und weisst, dass ich da besonders
die Zeilen liebe : Nur die Fulle fuhrt zur Klarheit
und im Abgrund wohnt die Wahrheit.

N. BOHR, quoted in W. HEISENBEBG,
Der Teil und das Game

(R. Piper Co., Munchen, 1969, p. 284).
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INTRODUCTION (2).

The investigations of the present paper started with an examination
by the present author, through special examples, of the possibility to
extend the recent theory of type I solvable Lie groups by L. Auslander
and B. Kostant (c/*. [1]) to arbitrary Lie groups. These authors, carrying
forward by an essential step the line of research started by A. A. Kiril-
lov [22] and continued by P. Bernat [3], using results by G. C. Moore,
gave a neccessary and sufficient condition in order that a connected and
simply connected solvable Lie group be of type I. Furthermore they
provided in this case a complete description, by aid of the orbit space
of the coadjoint representation, of the dual. Thus, in particular, if G
is such a group and fl is its Lie algebra, then G is of type I if and only
if : (1) Any orbit of G on fl' (== dual of the underlying space of g) is locally

(•2) The Introduction and the Summary, in front of each chapter, intends to give only
an outline of the results of this paper. For a precise formulation of these as well as for
complete references to the literature we refer to the corresponding point of the detailed
discussion.
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closed and (2) The de Rham class of the canonical 2-form is always integral
(and hence zero; cf. Th. V. 3.2, loc. cit.). Two examples, due to J. Dixmier
{cf. [10]) and F. I. Mautner resp., of solvable groups which are not of
type I, are particularly well known in the literature (for the definition
of these cf. the Summary of Chapters I and II). From among these
Dixmier's group satisfies the first of the above conditions but not the
second, Mautner's violates the first, but satisfies the second. A closer
inspection of Dixmier's example led us to the conclusion, that by aid
of a natural extension of the procedure of Auslander and Kostant one
can associate to each orbit in the general position a well determined factor
representation of type 11 .̂ More importantly it turned out, that this
relationship admits a description modelled after Kirillov's theory of
characters of a connected and simply connected nilpotent group. Let G
be such a group and g its Lie algebra. We can identify the underlying
manifold of G to that of % by means of the exponential map. The measure,
corresponding on G to a translation invariant measure dl on g is biinva-
riant. Let T be an irreducible unitary representation of G, y an element
of C^ (fl) and let us form the operator T (y) = fcp (;) T (?) dl. It is of

^Q

trace class, and Kirillov's formula, which is the natural analogue {cf. [30],
p. 258-264) of the character formula of H. Weyl for compact semi-simple
groups, provides the following expression for its trace. Let us write
<^,r)> (^€f l , ^ 'Gfl ' ) for the canonical bilinear form of the underlying
abelian group of g. We define the Fourier transform of <p by

^(o-r^xu^ (^/).
^Q

Then there is a uniquely determined orbit 0 of G on g' such that

(1) T^TCp))^^)^
^o

where dv is an appropriately normalized invariant measure on 0. Let us
observe, incidentally, that in the case envisaged here, the proof of the abso-
lute convergence of the right hand side is relatively simple. Conversely,
to each orbit 0 there is a unitary equivalence class, corresponding to 0
by virtue of formula (1). In other words (1) can be used to define a
bisection between elements of the orbit space and of the dual of G resp.
{cf. for all these e. g. [29]). Returning to the example of Dixmier we
found, that with the factor representations we constructed (1) substan-
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tially retains its validity, provided on the left hand side by Tr (T (y))
we mean the value on T (y) of an appropiately normalized trace in the
sense of the 11^ factor generated by T. We obtained similar conclusion
for the group of Mautner with the difference, that in place of 0 we had
to substitute closures of orbits of the coadjoint representation of G.

The main consequence of the above observation for us was a concrete
suggestion, that perhaps for all connected solvable Lie groups the left
(or right) regular representation is a continuous direct sum of semi-
finite factor representations, or what amounts to the same, the left (or
right) ring, that is the von Neumann algebra generated by the left (or
right) regular representation is semifinite. Let us recall, that this was
shown by I. E. Segal to be the case for any separable locally compact
unimodular group (c/*. [34]) but was disproved by R. Godement in the
general case. This conclusion, in fact, imposes itself by assuming, that
for any connected solvable group, too, sufficiently many semifinite factor
representations can be constructed, such that the essential features of (1)
be preserved, and by observing the mechanism of the Plancherel formula
in the nilpotent case. In fact, let us write A = g'/G, and let us set T>.,
0\ and dv\ resp. for the objects, as in (1), corresponding to XeA. Then
to show, that the representations { T ^ A e A } provide a central conti-
nuous direct sum decomposition of the left regular representation, one
has to prove, that the value 9 (0) of y at zero can be reconstructed from
the values Tr (T), (y)) by aid of a formula of the type

(2) cp(0)=fTr(T,(cp))d^).
^ \A

But if dV is an appropriately normalized translation invariant measure
on g', we have

^=^(l')dl\

From this we conclude, that to obtain a formula as (2), it suffices to repre-
sent dV as a continuous direct sum of the measures dv\ by aid of a measure
dy. on A.

Although much progress has recently been made toward a clarification
of the possibilities of a formula as (1) for type I groups (cf. [15]), unfor-
tunately already in this case any attempt to obtain a theory as for the
nilpotent groups is confronted with great difficulties. Their reasons,
among others are, that a bijection along Kirillov's lines is limited to
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groups with simply connected orbits, and that it seems to be exceedingly
difficult to establish the convergence of integrals as in (1) for a suffi-
ciently ample family of functions. We wish to observe, incidentally,
that these problems do not at all appear to increase by abandoning the
assumption, that our group be of type I. In this fashion, to follow up
the indications carried out above, we had to look for a different tool
which we found in the theory of quasi unitary algebras due to J. Dixmier
(c/- [7])- ^s a ^^l^ we succeeded in establishing the purely global
result, that the left (or right) ring of any connected but not necessarily
simply connected Lie group carries a faithful trace (3) , such that the
corresponding family of generalized Hilbert-Schmidt operators generates
the whole ring (c/*. Theorem 4, Chapter IV of this paper). Hence, in
particular, the left (or right) ring of any group of the said sort is semi-
finite. This conclusion has been shown in the mean time by J. Dixmier
to retain its force for an arbitrary connected topological group (c/*. [14]).

This result of ours, however, leaves open the problem of the possibility
of an « orbitwise » theory of factor, representations. One can namely
raise the question, if the procedure of Auslander and Kostant, through
an appropriate modification, leads to a class of factor representations,
which can claim some special interest. In this paper we show, that
this is indeed the case as already suggested, incidentally, by the examples
of Dixmier and Mautner discussed above. Our main result concerning
this point {cf. Theorems 2 and 3, Chapter III) provides a family of factor
representations parametrized by certain geometrical objects, genera-
lizing the orbits of the coad joint representation in such a fashion, that
the regular representation admits a central continuous direct sum decom-
position involving only these representations. The necessity to consider
more than one representation for one orbit, and thus to go beyond these
in a search for objects parametrizing the dual, arises already in the case
of the universal covering group of the motion group of the Euclidean
plane. For the general type I group, according to the algorithm of
Auslander and Kostant, the irreducible representations, belonging to
the same orbit, can be parametrized by a torus, the dimension of which
is equal to the first Betti number this orbit. Our construction proceeds
in two major steps. First (c/*. Chapter I) we associate with any orbit
a family of semifinite factor representations, the members of which are
in a one to one correspondence with the underlying set of a torus. The
dimension of the latter, however, is in general different from that of the

(3) For our definition of the trace c/. e. g. Section 7 in Chapter IV.
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type I theory. Example for this situation is given by an orbit in the
general position of Dixmier's group. Here our torus is zerodimensional,
while the Betti number in question is 2. If all orbits are locally closed,
as is the case, in particular, for the type I groups, the collection of all
these representations already provides a central decomposition of the
regular representation. For a type I group this step essentially repro-
duces the algorithm, defining the orbit-representation relation, of Auslander
and Kostant. The only difference is, that our representations are not
necessarily irreducible ones, but one or 4- oo fold multiples of such repre-
sentations. If, however, there are orbits, which are not locally closed,
as in the case of the group of Mautner, to obtain the « central components »
of the regular representation a more involved construction is necessary.
In Chapter II we introduce a generalization of the orbit concept leading
to certain sol vmanif olds, which are transformation spaces of our group,
such that any orbit of the latter is dense. Also, these spaces carry inva-
riant Borel measures. From here, by virtue of a classical principle (c/*.
Lemma 2.3.1, Chapter III) we obtain our « central factors »in Chapter III
by forming continuous direct sums over the said manifolds of appropriate
subcollections of the representations of Chapter I. Groups, violating
simultaneously both conditions of Auslander and Kostant, may at this
point display additional difficulties, not indicated by the examples of
Dixmier and Mautner {cf. Section 8, Chapter II). Finally, using the previous
theory we show, that if our group is simply connected, the left (or right)
ring coincides with its type I or type II component {cf. Theorem 5, Chap-
ter IV). In other words, the left (or right) regular representation of any
such group admits a central-continuous direct sum decomposition into
factor representations, all of which are either of type I or of type II only.
Let us also observe, that our results imply the necessity of the conditions
of Auslander and Kostant quoted at the start. In fact, at once one
of these is not satisfied, there appears in our list a factor representation,
which is not of type I.

It is clear from the beginning, that our construction cannot aim at
a complete classification of the factor representations of these groups.
For example, in the case of the groups of Dixmier and Mautner our proce-
dure provides semifinite factor representations only. On the other hand,
since these groups are not of type I, by virtue of the results of J. Glimm
they admit type III representations. We shall say, that the unitary
representation T is of trace class, if on the von Neumann algebra R (T)
it generates there exist a faithful, normal and semifinite tra.ce (3), such
that the set of generalized Hilbert-Schmidt operators in the range of
the associated representation of the group C* algebra generates R (T)
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{cf. Section 7, Chapter IV). For instance, by what we saw above, the left
(or right) regular representation of a connected solvable Lie group always
has this property. Our results imply, that an « overwhelming » majority
of the representations appearing in our list are trace class representations
and hence, in particular, generate semifinite factors. But we leave in
this paper the problem of an individual characterization of these repre-
sentation open. While admitting, that certain points of the following
programm, at the present stage of the research, might appear overly
ambitious, we still believe, that ultimately it turn out, that our represen-
tations, up to quasi-equivalence, give precisely the collection of all trace
class representations. In addition we conjecture, that the factors they
generate are always approximately finite. The significance of the last
point is, that in this fashion one could show, that by considering factor
representations, which are not of type I, one does not get involved in
the algebraic type problem of factors. Or, to put it more succintly,
this widening of the view point should not place one in a situation worse,
than in the type I theory. The author is indebted to C. C. Moore for
the following suggestion of a collective characterization of our represen-
tations. One could try to show, that upon forming the kernels of the
associated representations of the group C* algebra, one obtains precisely
once each primitive ideal of the latter. Let us observe, that recently
R. Howe obtained results along these lines for a class of discrete nilpotent
groups {cf. [21]).

As far as the prerequisites for the reading of the present paper are
concerned, our exposition of the necessary results of the geometry
of orbits of linear solvable groups is self contained. On the other
hand, we assume a relatively advanced knowledge of the theory
of induced representations by G. W. Mackey. In fact, we shall use
the basic results of [23] and [25] often without special reference. For
a summary we refer to [2], Sections 9-10 (p. 50-63). Also, some
preliminary familiarity with the notion of holomorphic induction is
necessary {cf. the references of Section 4, Chapter I). The reader is
advised to consult carefully the list of notational conventions at the
end of the paper.

The results of Chapter IV, Sections 1-7 were announced in [33], those
of the rest of this paper in the author's conference at the International
Conference of Mathematicians, Nice, September 1970.

The author is much indebted to B. Kostant for introduction in his
joint work with L. Auslander, and also for discussion in his seminair
at the Massachusets Institute of Technology, Fall 1968, of several parts
of Chapter IV,
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CHAPTER I.

THE TRANSITIVE THEORY.

SUMMARY. — Let G be a connected and simply connected solvable Lie group with
the Lie algebra $. As already stated in the Introduction, in this chapter we assign
to each orbit of the coadjoint representation of G on g' a family of semifinite factor
representations. Our discussion follows at many points the treatment of the type I
case by Auslander and Kostant in [1]. One of the major differences appears, however,
already at the start. The purpose of Sections 1-2 is to discuss certain factor represen-
tations of a group, which is central extension by a one dimensional torus T of a direct
product of a free abelian group of finite rank with a vector group. The necessity to
consider such groups arises in the following fashion. We denote by L the first derived
group of G (or L = [G, G]); L is nilpotent and thus of type I. Let ^ be an irreducible
unitary representation of L; then the corresponding Mackey group M^ (c/. the begin of
Section 3 for the definition) has the indicated structure. Let r be a group of this class,
U the centralizer of the connected center and U^ the center of U. The main result of
this part (cf. Proposition 2.1) states, that if 7, is a character of U', such that its restriction
to TcU ' is not trivial, then the unitary representation, induced by ^ in r, is a semifinite
factor representation, and gives a necessary and sufficient condition that it be of type I.
Let TC be as above, Gn its stabilizer in G, ^e an appropriately chosen projective extension
of ^ to Gn, and G^ the corresponding central extension of G by a one dimensional torus.
The collection of the factor representations of this chapter coincides with the family
of all representations of the form ind (V®^), where V is a representation, arising by

G^G
lifting to G$ a representation of M^ (== r) obtained as above by aid of a ^c, which on
TcU^ coincides with the conjugate of the identity map of T onto itself, for all possible

A
choice of T: in the dual L of L and /^. In order, that G be of type I, in particular, M^

A
has to be of type I for all ^ e L. In this case our procedure yields one or infinite fold
multiples of the collection of all irreductible representations of G. Section 3 gives a
description, not directly involving the Mackey group, of our representations. It is shown

A
(c/. Lemma 3.5) that each ^eL uniquely determines a closed subgroup K-n^L, such
that ^ admits a proper extension p to K-rc, and that our representations coincide with the
collection of all representations of the form ind p (for all possible choice of ^ e L and of

A ^ ^G

p e KTT, p | L = ^ ) . We give a necessary and sufficient condition that such a represen-
tation be of type I, and that two of them be quasi-equivalent (in which case they are
also unitarily equivalent; cf. for all this Lemmas 3.7, 3.8 and Remark 3.3). These
considerations do not at all depend on the assumption, that G be solvable, provided L
is appropriately chosen. In an effort to bring this to expression, in this section (but
only here) we allow G to be an arbitrary simply connected Lie group and take in place
of [G, G] a closed, connected, invariant and type I subgroup L, such that G/L abelian.
In Section 4, beside summarizing the necessary prerequisites of holomorphic induction
and of the Kirillov theory (this we take for granted), we present the definition of the
reduced stabilizer. Let g be an element of g', Gg the stabilizer of g in G with respect
to the coadjoint representations, (Gg)o the connected component of the identity and
8^ eg the Lie algebra of the latter. Since G is solvable and simply connected, (G^)o,
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too, is simply connected, whence we conclude, that there is a well determined character /^
on (G^)o such that d^g (I) === i (I, g) (/e<^). Let us put G^ = ker (/.^ | (Gg)o); this is an
invariant subgroup of G^, and the reduced stabilizer G^ of g is the complete inverse image,
in Gff, of the center of G g l G g . Section 5 reproduces the proof of an important result
of Auslander and Kostant establishing a relation between the obstruction cocycle belon-

A
ging to T: e L and the Kirillov orbit of ^ in the dual ti' of the underlying space of the Lie

A
algebra t« = [9, 9] of L. Using this in Section 6 we show, that if ^eL corresponds to
the Kirillov orbit L/ct*' (/et^), and g is any element of 9' such that g \ ti = /, then
we have Kn = LGr^» an(^ ln(^ P (p€ ^71, p [ L = ^) is of type I if and only if the group

K^ .̂ G

Ggf Gg is finite. This condition can be shown (but we do not carry out this point) to be
equivalent to the rationality of the de Rham class of the canonical 2-from on Gg (for a
definition of the latter cf. e. g. [30], p. 256). The integrality of this form means, that
G^ = Gg and conversely; in order, that G be of type I in particular, this must be valid
for all ge.^. The results of this section are used in an essential fashion, among others,
in Chapter IV to estimate the «size » of the totality of type I representations in the central
decomposition of the regular representation (cf. in particular Proposition 8.1, Chapter IV).
Finally Section 7 brings the construction, along the lines laid down by Auslander and
Kostant, of our representations as (in general) holomorphically induced representations.

A .

For a ge.^ let us denote by Gg the collection of all characters of Gg restricting on (Gy)o
A

to /^ (cf. above). Let us put (^ ===^€9 ^r^ ^ ls a transformation space of G. One
of our main conclusions is, that there is a bijection between the set of all unitary equi-
valence classes of our representations and points of ^l/G. Orbits, lying over Gg (g fix in ^ /) ,

A
in CH are parametrized by points of G^. The underlying set of the latter admits a natural
identification with the dual of G^/(Gg.)o, which is a free abelian group of finite rank. In
the case of a type I group, since here Gg = Gg, Gg/(Gg)o is just the fundamental group
of Gg. But, for instance, in the case of the group of Dixmier quoted in the Introduction,
the situation is already completely different. This group belongs to the Lie algebra,
spanned over the reals by the elements { e/;,l ̂  /' ̂  7 } with the nonvanishing brackets

[ei, ^2] = ^7, [ei, 63] == ^4, [ei, 64] == — e.3, [^2, es] = Ce, [^2, Cc,] = — Co.

For a general ge^ we have Gg = (Gg)o, while the rank of Ggl(Gg)o is two. Thus the
dimension of the torus, parametrizing the representations belonging to the same G orbit
in ig7, is in general different from the first Betti number of the latter.

1. PROPOSITION 1.1. — Let Z be a free abelian group of finite ranky
and let us consider a central extension Z of Z by a one dimensional torus T.
Let y be a character of the center Z^ of Z, which, when restricted to T, reduces
to the identity map of the circle group onto itself. The unitary represen-
tation

ind ^= U
z^z

of Z is a factor representation of finite class which, on T, equals to a multiple
of /. U is of type I if and only if the index of 7^ in Z is finite.

Ann. EC. Norm., (4), IV. — FASC. 4. 59
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Proof. — a. We recall first {cf. [2],. p. 188), that there exist a skew-
symmetric bilinear form a from Z x Z into T (identified with the group
of all complex numbers of absolute value one), such that Z is isomorphic
to the group of all pairs {z, u) (^€Z), u€T) with the law of multiplication

(z, u) (z', u') == (z + z\ u.u'.a (z, z')).

Given a subgroup F of Z, we shall write T for the subgroup { ( y , u); y e F, u € T}
of Z. Let us form now the subgroup Zo == { x\ x^Z, (a (a;, y))2 = for all
yeZ } of Z; one verifies easily, that Zo coincides with the center Z^ of Z.
We denote by Zi the subgroup of all elements { x\ a [x, y) = 1 for all y
in Z }, and by %i the restriction of % to Zi. Finally, we write ^ for the
set of all characters of Zo, which on Zi restrict to %i.

LEMMA 1.1. — Putting

V = md^i and Ucp = ind cp (? e ̂ )
Zi+Z Zo+Z

we have

v=^©u,
t?€^

aM6? Uq,, W/I^M restricted to Zo, equals to a multiple of <p.

Proo/*. — Let us observe first, that Zo/Zi is finite; in fact, it is isomor-
phic to Zo/Zi, which is of a finite rank and any element in it has the order 2.
We have thus

ind î = V © 9
Z^Zo ~©e^

whence, through induction by stages we conclude, that

V = ind %i = ind / ind %i\ = Y © ind cp = V © U..
Z,+Z Zo+Z\Z^Zo / '"'" Zo-hz ~

ye^ cpe^

Finally, since Zo is the center of Z, Uy on Zo restricts to a multiple of y.

Q. E. D.

b. Let (SL be a countable abelian group and ^ a skew symmetric bili-
near form, with values in T (== circle group), on (StxcX. Similarly as
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above, we write (Sl for the group defined on the set of all pairs
{ (a, u); aGdl, u€T } by the law of multiplication

(a, u) (b,u) == (a + b, u.y.(3 (a, b)).

We denote by )^o the character of TCOL defined by %o ((0, u)) = u.

LEMMA 1.2. — With the above notations^ the unitary representation
W == ind /o can be described as follows. There is a unitary map from the

T+d

representation space H (W) of W onto L2 (d) (0L being taken with the
discrete topology), such that the van Neumann algebra R (W) generated
by W goes over into the set of all bounded operators on L2 ((ft) which, with
respect to the natural basis can be expressed in matrix form as

{ay-^ P (x, y); x, ye a } (areC, xe a).

The commutant of R (W) goes over into the set of all bounded operators^
which can be written as

{ b y - ^ ^ ( y , x ) ; x,yea\.

Proof. — In the following we shall write a and u in place of (a, 1) and
(0, u) resp. (a€^l, u€T) whenever convenient.

1° Choosing an invariant measure on (9L, by virtue of our definition
of 0L, there is a natural isomorphism between the Hilbert spaces L2 (<St)
and L2 (T) (g) L2 (0L). Let L and R be the left and right regular represen-
tation resp. of 0i on L2 (<9c). Since (0, u)"1 (a, v) == (a, u .y) , writing R
for the ring, generated by the regular representation of T on L2 (T),
we see at once, that R (L T) == R(g) Ic(R (L))^, from which, taking
into account that R' = R, we conclude, that any operator in the left
ring R (L) of <9C can be expressed as a matrix

(1) ( A ^ y ; r K , ? / e A j

the entries taking their values in R. Similar observation applies to the
right ring.

2° For w € T and yeL^r) let us write L^ f (u) = f(wu}. Since
{z, 1) (^, u) == (z + x, up (z, a;)), we can conclude, that for feL2 (<^t),

(L (2) f) (x, u) ̂  (L^,.)). f(a: + z, u) [L (2) = L ((z, 1)-%
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In this fashion the right ring of 0L coincides with the set of all operators
in (1), which commute with any member of the family of operators
{ L (z); zed }. Similarly, putting for zed and f^L2 (d) = L^T^L^a)

(R (z) f) (x, u) === (Lp (.,,.)), f (x + z, u)

the left ring is the collection of all elements in (1) commuting with every
operator in { R [ z ) ; zGOi }.

3° Let now A be an arbitrary element of (1), and let us write out the
condition, that it belong to the right ring. According to what we have
just seen, in order that this happen, we must have for all z € Cl and /*€ L2 (dl)

(L (z) A f) (x, u) := (AL (z) f) (x, u).
But

(L (z) Af) (x, u) ̂ , (LP(,,) A,^,s). f(§, u)
0€A

and
(AL (z) f) (x, u) ̂  ̂  (A.,, s Lp (,, o)), f ̂  + z, u) == ̂  (A.,, s_ Lp (., ̂  f (^ u).

5 e A o ̂  A

Thus A belongs to the right ring if and only of we have for all z, x, Se <?t,

A;c, o-s Lp (z, S) == Lp ̂ ., x} A.y+^ o

whence, putting x = 0, and writting A^ = Ao,y (yGd) we conclude,
that a necessary condition is the existence of a sequence { Ay; y€^l }CR,
such that
(2) Aa,, y = Ay-a; Lp (a-, y).

One sees, however, at once, that this condition is also sufficient provided,
of course, { A a ; $ r r € C l } is such, that (2) defines a bounded operator on
L2 (a).

Similarly one finds, that the operators in the left ring are representable
as { Ky_x L p ( y , ^ ) $ x, y€<Sl) }, and conversely.

4° We recall, that the representation space H (W) of W = ind ^o
T^a

consists of the collection of all complex-valued measurable functions,
satisfying f(u. d) = uf {a) for all u€T and rt€^, for which

2l^(ol'2<+(x)

provided a runs through a residue system of Cl mod T.
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On any such function the action of W (d) (a€<?L) is obtained by trans-
lation on the right by ft. Assume, as we can, that the total measure
of Te^l, with respect to the invariant measure dr, equals 1, and let us
form the central projection

p = fuR(u)d^(u).
Jrp

From what we have just said it is clear, that we have a natural identi-
fication of H (W) with PL2 (<?t), such that W corresponds to the component
of the right regular representation in PL2 ((ft). On the other hand,

PL2 ((9l) is canonically identifiable with L2 ((Sl). Putting Pi = ^ uL«ch(u),
^T

we have, that P = {Pi S,̂ .; x, ?/€<Sl}. Since for any AeR, Pi A is a
scalar multiple of Pi, bearing in mind what we have just seen in 3° we
conclude, that the von Neumann algebra R (W) generated by W coincides
in L2 (0L) with the collection of all operators having a matrix expression
of the form

j ay-x P (x, y); x, ye a j (ay^C for all yea).

The commutant of R (W), corresponding to the component of the left
ring of dl in PL2 ((fl)^L2 (dl) is given by the family of all bounded ope-
rators, which can be written as

[ay^^(y,x); x,yea}.
Q. E. D.

REMARK 1.1. — Observe, that the reasoning employed above implies,
that ind /o is the largest subrepresentation of the right regular represen-

T+a _ _
tation of d with the property, that on TC^I it restricts to a multiple
of the identity map of T into itself. Analogous statement holds true
upon replacing 5^0 by /o.

c. LEMMA 1.3. — With the previous notations, R (W) is a von Neumann
algebra of a finite class.

Proof. — For A = { ay_sc P (^3 y); x^y^Gi} let us put / (A) = Oo. Evi-
dently, f defines a linear form on R (W). To prove our lemma, it is
enough to show, that Tr (AA*) == 0 implies, that A = 0, and that
Tr (AA*) = Tr (A*A) for all A in R (W). One sees at once, that
A* = { by_sc P (^, y) }, where bsc = a-x (^€<?l) and thus

AA* == j ̂  a^ d.-y P (x, z) P (z, y) \ and A*A = j ̂  d^ ay-. (3 (z, x) (3 (z, y) \
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from which we infer, that

/•(AA*)=^|^p=/-(A*A)
z,

proving our lemma.

d. We recall {cf. the list of notational conventions at the end of this
paper), that given a family of operators J on a Hilbert space, we shall
write R (J) for the von Neumann algebra generated by the elements of J.

Let us form the subgroup <9Lo = {x\ (? [x, y)Y = 1 for all y in 0. \
of (9L. Similarly as in (a) we write <9Lo for the corresponding subgroup
of el. Observe, that (flo coincides with the center Cl^ of (X.

LEMMA 1.4. — We have (R (W))^ = R (W do).

Proof. — 1° By virtue of Lemma 1.2, if A belongs to

(R (W))^ = R (W) n (R (W))'
we have

A = { ay-^ (3 (x, y ) } = { by-^ (3 (y, x)

from which we conclude at once, that a^. == b^ (^€ d) and that a^ = ^{x, z^a^
for all x and z in (fl. This implies, that if a^ is nonzero, z is an element
of 0io.

2° To obtain the identity claimed in our lemma, it is now sufficient
to observe, that by virtue of what we saw in the proof of lemma 1.2,
we have for any z€CX,

W ((z, 1)) = R (z) | H(W) = {^-.P (x, y); x, y^a { .

These two observations imply, that (R (W))^ = R (W [do). The oppo-
site inclusion being trivial, our lemma is proved.

Q. E. D.

From now on we shall assume, that (9Lo is finite, in which case do is
compact. We write E for the collection of all characters of (5Lo? which,
when restricted to Tc^o coincide with /o [cf. (&)]. With this notation
we have

COROLLARY OF LEMMA 1.4. — Writing W 0Lo = ̂  •%.Py? ^d Wy for
y e E

the part of W in Py H (W), W^ is a factor representation of finite class,
and

w==2©w,.
% € E
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Proof. — To obtain the desired conclusion, it is enough to remark,
that by virtue of lemma 1.4 the center of R (W) is identical with the
collection of all linear combinations of the family { P y ; ^ € E { . R (Wy)
is a factor of finite class since, by Lemma 1.3, R (W) is of finite class.

Q. E. D.

e. LEMMA 1.5. — With the previous notations we have dim Py == m
(^CE), where m is the (finite or infinite) index of do in d.

Proof. — We recall [cf. 4°) in (6) above], that W do is just the part
of R [ do in PL2 (d). We write Ro for the regular representation of do
and recall, that R do is unitarily equivalent to mRo, where m equals
the (finite or infinite) index of do in d, which is the same as the index
of do in d. From here to obtain, that dim Py = m (7.6=^) lt suffices
to observe, that do is isomorphic to the direct product of the circle group
and of a finite abelian group.

Q. E. D.

f. LEMMA 1.6. — R (Wy) is a factor of type I or II according to whether d
is finite or infinite resp. (%€:E).

Proof. — Let us consider the involution S of L2 fd) == H (W) defined
by (S/*) {x) =Ef{—x) [/€H(W)]. One sees at once, that if

R (W)3A = { ay-^ (3 (x, y); x, y^a j,

we have
SAS={by-^(y,x);x,yea

where &, = a_, [x^ d), and thus SR (W)S == (R (W))'. If A lies, in (R (W))^
Ou 7^ 0 implies, that u belongs to do {cf. 1° in Lemma 1.4). But since
x = y (do) entails P (re, y) = ̂  (y, x), we can conclude, that now SAS = A*.
Therefore, in particular, S leaves invariant the subspace Py H (W) (%€SE),
and denoting its part in the latter by Sy, we have

SyR(Wy)Sy=(R(Wy)y.

In this fashion we obtain, that R (Wy) is of type (L, In) or (Hi, Hi),
according to whether m = dim Py is finite or infinite. But since m is
the index of do in d, and do is assumed to be finite, we get the conclusion
of our lemma.

Q. E. D.
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LEMMA 1.7. — For each element o/E there is a factor representation Wy
(X^E), such that Wy | (9Lo = %. I, an^

md^o==S®Wy.
T+ct ^,

r/i<0 factors R (Wy) ar^ o/ type \n if ̂  is finite; otherwise they are all of
type Hi.

Proof. — We have, similarly as in Lemma 1.1,

ind %o = ̂  ® %,
T+do y^E

and thus

md_xo = ̂  © ^nd_x = ̂  ® Wy,
T^CZ ^ ^^ y,€E

whence the desired conclusion follows by virtue of lemma 1.6.
Q. E. D.

REMARK 1.2. — Similar result holds true if we replace %o by %o.
g. Using the previous considerations, we can complete the proof of

Proposition 1.1 in the following fashion.

1° Let us consider again the character /i of Zi [cf. (a)]. The function,
assigning to rceZi the complex number /i ((.r, 1)), on Zi is obviously
a character of the latter; we denote it by y^. Let ^ be an arbitrary cha-
racter of Z extending 7^, and let us define a. function ^ on Z by ^ (a) ==.^(^). u
if a = {x, u) €Z. One verifies easily, that ^ (a) ^ (b) = ̂  (a, fc) ^p (a, &),
where co (a, &) = a (rr, y) if a == (n;, u), & = (y, u). We have evidently
co (aao, bbo} = co (a, &) if Oo and fco are arbitrary elements in Zi.

2° We denote by Tf the group defined on the set \ (a, u); a€Z, u G T J
by the law of composition

(a, u) (b, u)= (a. b, uu GO (a, &)).

The subset \ (a, 1); a€ Zi ^ is a central subgroup of Z6, to be denoted again
by Zi. We put M = Z^/Zi and write $ for the canonical homomorphism
from Z^ onto M.

Let us define the function We on Z6 by ^Fe ((^, ^)) == ̂  ( a ) . u$ ^Fe is a
character of Z6. Denoting by R the right regular representation of M,
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we write Ri for the part or R in the subspace; having the projection

fu.R(u)d-(u)
JT

[cf. 4°) in (&)], of L^M). The representation (Rio$)(g)^, of V is
identically one on the subgroup { {e, u); u€T } = T^ of 7f and, by virtue
of Lemma 1, [26] (p. 325), the corresponding representation on Z = V/Te
is unitarily equivalent to ind /i.

Zi^Z

3° Let us put cX == Z/Zi; we denote by [̂ . the canonical homomorphism
of Z onto el. There is a function ^ on cX X cX, such that for all x, y , in Z
we have ^ ([J. (rr), [J- (y)) == a (^, y). We form CX as at the start of (&)
with the p just defined. Define the map ^ : Z — Cl by ^ ((rr, u)) = [J- (rr);
^ is a homomorphism, and (c/. 1°) above) oj (a, b) = ̂  (C, (a), ^ (&)) . Let us
put for (a, u) € Z" : A ((a ?^)) = (^ (a), u) € Cl. By virtue of what we have
just said, A is a homomorphism of V onto d, and its kernel coincides
with Z^CZ 6 (c/1. 2°). Let £ be the isomorphism from CX onto M = Z^/Zi
such that the diagramm

is commutative. Then Ri o £ is the largest subrepresentation of the
right regular representation of CX with the property, that on TC<^ it
coincides with a multiple of /o [tor the latter c/*. (&)], and hence, by virtue
of Remark 1.1, we have R, o £ == ind /o. Upon forming, as in {d) above,

T f - C l ^

the subgroup cXo of cX, we find, that do == ^ (Zo) = Zo/Zi, and thus do
is of finite order. In this fashion, using Lemma 1.7 and Remark 1.2,

with notations as loc. cit. we get, that R i o £ === V © Wy and thus also
% G E

(Rl o <I») (g) W, == ̂  © (Wy o 7) 0 We.

% € E

The representation, corresponding to (Wy o X) 0 We, of Z == Z^/T,, is a
factor representation of the type of Wy; when restricted to Zo === 2?,
it coincides with a multiple of a character 9 in ^ [cf. (a)]. Denoting it

Ann. EC. Norm., (4), IV. — FASC. 4. 60
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by U^, and by ^i the subset of 37 formed by the ^s so obtained, we get,
that in the sense of unitary equivalence V = ind /i = ̂  Q) U^. On

Zi^Z1 1 ^E^

the other hand, we have [cf. Lemma 1.1), V == ^ © U^, and U^ is identical
_ pe^i

on TcZ" to a multiple of 9. Hence we conclude finally, that ^\ -= 37

and Up == U^. By Lemma 1.7 and by what we have just said U^ is
a factor representation of finite class. It is of type I if and only if eX == Z/Zi
is of finite order. Since Zo/Zj is finite, this is the case if and only if Z/Zo
is finite, or, since Z/Zo is isomorphic to Z/Zo, U^ is of type I if and only
if the index of Z^ in Z is finite.

To complete the proof of Proposition 1.1, it is enough to observe, that y
as loc. cit. is contained in 37.

Q. E. D.

REMARK 1.3. — Analogous statement holds true for a character ^
of Z' , which on T coincides with the conjugate of the identity map of
the circle group onto itself.

2. PROPOSITION 2.1. — Let Z be direct product of a sector group and
of a free abelian group of finite rank, and let us consider a central extension T
of Z by a one dimensional torus T. We denote by U the centralizer of the
center of the connected component of F. Let ^ be a character of the center U^
of U which, when restricted to TCU^, reduces to the identity map of the
circle group onto itself. Let us put ind ̂  === V (yj. With these notations,

u ^ t r
the unitary representation V (yj ofF is a factor representation of type I or II.
It is of type I if and only of the subgroup Vs To (To = connected component
of the identity in F) is of a finite index in U. Finally, we have V (%J === V (%/)
if and only if ̂  and %/ lie on the same orbit of F in the dual of U^.

Proof. — a. We recall first (c/*. [2], p. 188), that there exist a skew
symmetric bilinear form B on Z x Z with values in R, such that, putting
^ [x, y} = exp [(^/2) B (x, y)] {x, y^ Z), F is isomorphic to the group, defined
on the set of all pairs (z, u) (^€Z, u€T) by the law of multiplication

(x, u) (y, v) == (x+ y , u . y . p (x, y)).

b. Given a in F, let us put ( a ' / ) (g)^^{a~^ ga) (gGU^). We claim,
that we have a y ='/ if and only of a belongs to U. To this end let us
note, that

(x, u) (y, v) (x, u)-1 == (y, ((3 (x, y)Y. u) = (y, u) (0, (P (x, y))2)
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for any pair of elements (^, u) and (y, v) in T. In particular, they commute,
if and only if, (^ (^, ^/))2 == 1. Let us assume now, that a = (x, u) and
that a y = = y . Then, since 1̂  C U^ and y [ T == identity map of T onto
itself (T = { (0, u ) } ) , we must have, in particular, (p (x, y))2 = 1 whenever
(^/; ^) belongs to Fg; in other words, a must lie in U, proving our assertion.

Let us put U (y) == ind /; we have V (7) = ind U (y), and U (/) | L^ is
u ^ t u ^ lJ^^

a multiple of y. We observe next, that to prove Proposition 2.1 it is
enough to establish, that U (y) is a factor representation of type I or II, and
that we have the first case if and only if U/U^ To is finite. In fact, since,
as we saw above, U is the stable group of y in F, ind U (y) = V (7) is a

u^r
factor representation of the type of U (y). Thus to complete the proof
of our proposition it suffices to show, that V (y) = V (y') (in the sense
of unitary equivalence) if and only if y and y' differ by an action of T.
Since V (y) U^ is a multiple of the direct sum of members of the (coun-
table) subset Fy of the dual of U'1, the condition is evidently necessary.
If, on the other hand, y ' :=ay(a€T), then V (y') = a V (y) = V (y)
[a V (y) {g) == V (y) {a~1 go)', g^T] completing the proof of our statement.

c. If W is some subset of Z, we shall write sometimes also W for the
subset { ( w , l ) ; w e W } of r. On the other hand, W^- will stand for
{ j s ; ze Z, B (z, w) == 0 for all w in W } C Z.

Let us put Pi for the centralizer of To in T. Writting Zo for the connected
component of zero in Z, and using the above notations we get easily
I\ = (Zo)^.T. If Zi is the radical of the restriction of B to Z o X Z o ,
that is Zi = (Zo^nZo, we obtain in the same fashion U === (Zi)^.T.
Since (Zi)i1 = Zo + (Zo)i1, we have

i\.ro-((Zo)iKZo).T=u.

Clearly, Zi is the connected component of zero in (Zo)i1. Let 2 be a closed
subgroup, such thet (Zo)i1 is the direct sum of Zi and of 2. Then we have
also (Zi)j^ == Zo + S (direct sum). Let ^ : (Zi)]1- -> S be the projection
onto 2. Then the map W : U -> 2 defined by ^V ((^, u)) == ^ (x) is a
homomorphism. Let us define the map oo : U X U -> T by

c.) (a, b) = P (<F (a), W (b)) (a, beV).

The law of composition (a, u) (&, u) = (ab, co (a, b).uu) defines a group IP
on the set of all pairs { (a, u); u€T, a€ U } (topologized in the obvious
fashion).
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Given a subgroup V of U, we shall write V'1 for its complete inverse
image in LK Given a subset ScU, we shall often use the same notation
for { {s, 1); 6-eS {CU 6 . We denote by T^ the central subgroup {{e, u);
u€T} of V6.

By virtue of the definition of co, we have

co (a. Go, b. 60) === co (a, b) (a, b e U; a,., 60 e Fo),

) [= { (a, 1); aero ^CU 6 ] is an invariant {
fies at once, that for aeFo and (&, u) € L

implying that Fo [= { (a, 1); aCFo }cVe] is an invariant subgroup of U6.
In fact, one verifies at once, that for aeFo and (&, u) € U6 :

(b,u)(a,l)(b,u)-^=(bab-^l).

d. Let us consider the subgroup P^ C IX Since 1̂  === Z i . T, we have

r^ == T, T, == ir^ T,,
and the map, assigning to the triple (o-, a, u) (^G^. aeFi? ^€T,,) the
element cr au of 1 ,̂ is a bijection between the set lxrf,xT,, and r,.
[Observe, that here (T stands for ((cr, 1), 1) e U6' if c^eScZ, etc.] We
write now %o tor the restriction of / (the latter as in the proposition)
to Ff, C V\ and define a map y6' : T^ -> T by /'' (o- ai^) = /o (a). u. We
claim, that yf is a character of 1 .̂ In fact, we have

o- au. T to = v a T 6uy = O-T (r-1 a r) buu (o-, T e I-; a, b € 1 ;̂ u, v € T^),

and by what we saw above, T~1 a T = a. On the other hand

^ = (( ,̂ 1), 1) ((T, 1), 1) = ((<7 + T, P (̂  T)), p~(^T))

and thus, writing a (o-, r) == ((0, ^ (o-, r)), 1) we can conclude, that

v au.r bv = v' a' i/,
where

( 7 ' = o - + T € ^ , a' == a (o-, T).a.beT^ and ^ == p (o-, r).uy.

In this fashion, since /o T is the identity map, we get, that

^ (f7 GU.T ^) = %o (a (cr, T) a. b ).u.p.(5((7, T) == 7^0 (a) u.y.o (6) y = ̂  (cr au).^ (r^)

proving our statement.

e. Let us denote by y the Lie algebra of 1\ == Zo. T C U. Denoting
by u the element of 7, such that exp (lu) =EE (0, exp (^)) (^€R), we can
identify y with Zo + R^ , such that [z + cv, z + c'y] = B (z, z') y, and
that exp {z + cu) == (s;, exp (ic))ero.
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Let t) be a maximal abelian subalgebra of 7, and let us put H for the
corresponding connected subgroup of Fo. If d is any element of the dual
Y of Y, there is a well determined character /,/ of H satisfying
jd (exp I ) = exp [i (7, d)'} (^€t) ) . We recall finally, that ind jd is an

H /^ 1 o
irreducible representation of To., which we denote by V^.

Let us consider now the unitary representation W •=== ind ' / e of LK Our
r^u-

next objective is to show, that if d^Y is such, that y^ / ] rf ,=yo (==y 1^),
then W is multiple of a representation p of U6, such that p | To is unitarily
equivalent to V,/. To prove this, let us put K = T^ H = 2 HT,, and
let us observe, that there is a character %^ of K, such that ^\T^ == j°
and y^ H == '/rf. In fact, to this end it is enough to take into conside-
ration, that l°if ae.T\ and &eH, then ab = ba, 2° 1̂  = P;nH, 3° by
virtue of our choice of d, y^i TI = yf T^ We put L = K/I^ and denote
by A the canonical homomorphism from K onto L. Observe, that we
have

L - K/n == r? H/r? = H/r? nH - H/rf;,

and thus L is isomorphic to a vector group. The unitary representation
ind 'f of K is of the form (S o A) (g)/^, where S is a continous direct sum

F f ^ K /'

of all characters of L with respect to the absolutely continous measure

on L (c/*. [26], Lemma 1, p. 325). Let co be an element in L, and let us
put 9== coo A. We claim, that there is an element meFo, such
that 97^=EEm%^. In fact, since K = 2 H T^, and since elements of 2
and Fo commute with each other (both in T and IP) it is enough to find
an element m in Fo, such that m^ == y^ (y [ H). We can write the right
hand side, by an appropriate choice of rf'e^'? as X^'? an(! thus n ^ffi^8

to show, that d and d' are on the same orbit of Fo in y'. But since
y [ r;; FEE 1, we have ja \ T^ == ̂  | 1̂  and thus d ^ = d! -{\ Since
[y^ y] == R u, we have the desired conclusion. Let us put p = ind %^.

K.^ U6

By what we have just seen, ind ?.y^, is unitarily equivalent to p, and thus,
R4.U6 '

by virtue of what we said above about S, W = ind y6 •==• ind (S o A) (g)^v r^u" ' K^V-
is unitarily equivalent to a multiple of p. Therefore, to complete our
proof of the above assertion, it suffices to show, that p To is unitarily
equivalent to V,/ = ind y^. To this end we shall use the following propo-

ne Po
sition, which is a trivial consequence of Theorem 12.1 in [25] (p. 127).
Assume, that G is a separable locally compact group, Gi and G^ closed
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subgroups of G, such that G = Gi .G^. Let y be a character of Gi. Then,
putting ^ = % | Gi n Ga, ̂  We

(ind ^ [ Ga = ind y'.
VGi^G ^ G,UG^G

Taking U^ for G, K for Gi, ̂  for ^ and F, for G, we get

Gi.G, - K.ro = in ro.T, = iro.T, = IP = G,
G, n G2 == H and ^ Gi n G2 =^ %,/.

Therefore
0 1^ =: (.md )̂ 1 ̂  -.̂  ̂  = vrf

which is the desired conclusion.

f. Let us put M = U^/Fo, and let us denote by <E> the canonical homo-
morphism from U" onto M. Recalling [cf. (c)J, that IP = UT^ == SFoT,,
it is easy to see, that M is identifiable to the set { (<7, u); CT e 2, u € T^
with the multiplication (a, u) (r, v) = (o + T, My ? (CT, r)), such that

< & ( ( a : , u ) , y ) ) = (y(,r),p). We show now, that $ (M") ^(U'y.r,. To
this end let us observe first, that putting 2i = { cr; cy€2 and f8 (cr, r))2 = 1
for all T in 2 }, we have

M i '=={((^,u);<7€2„U€T}.

In this fashion, to arrive at the desired conclusion it is enough to establish,
that (z, u) in U belongs to U^ if and only if z€2i + Z,. Let us write
2 = a + z" (^SS, ZoGZo) . Then for T€S and z'eZo we have

(p^T+z'))2^^^,^)^^^,^)^

and, evidently, the right hand side is identically one for all T and z' if
and only if cre^i, and ZoSZi.

We observe, that M is a central extension of a free abelian group of
finite rank by a one dimensional torus. Let (o be a character of M^
such that M ((0, u)) == u. By virtue of Proposition 1.1 (c/. also Remark 1.3)'
ind co is a factor representation of a finite class, and it is of type I if and

Ml.TM .

only if M/M" is finite. By what we saw above, we have M/M^ = U'̂ U1')" r,.
Therefore we can conclude, that

m^ (" ° «&) = / ind u\ o $ (= B, say)
W.IUU. ^AM J • • /
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is a factor representation of finite class, and it is, since U^U'/.ro is
isomorphic to U/U^.Fo, of type I if and only if U^Fo has a finite index
in U.

g. Let us consider now the representation B (^) W of U6 [W === ind y^;
L r^u6

cf. (e) above!. The yon Neumann algebra R (B (^) W) it generates is a

multiple of R (B 0 p) == R (B) (g) tl, where 0 is the full ring of the repre-
sentation space H (p) of p. Therefore, R (B (^) W) is a factor of type I
or II, and we have the first case if and only if R (B) is of type I, or if and
only if U/U^Fo is finite.

By virtue of what we saw in (&), we shall have completed the proof
of Proposition 2.1 at once we can show, that R (B (^) W) is unitarily
equivalent to R (U (7,)), for an appropriate choice of co in the character
group of M^ [such that, as before, co ((0, u)) = u; cf, (f) above]. To this
end we shall use the following assertion, which is a trivial consequence
of theorem 12.2 in [25] (p. 128). Assume, that G is a separable locally
compact groupy Gi and G^ closed subgroups of G, such that G==Gi.G^. Let
YI and ̂  be characters of Gi and Ga resp.y and let us write

X'-CxilGinG.Xx.lGmGO.

Then we have
ind ^i (g) ind %a = ind ^'.
Gi -^ G Ga ̂  G Gi n Ga ̂  G

Let us choose for G the group U6, and for Gi and Ga (U^)6 To and 1̂  resp.
We have

Gi == 1, To T, and G, = ̂  T,
and thus

Gi.Ga =iroT,=IP =G.

Also,
Gi n G, = 1, l1 T, == U^ T. = W.

Let G- be an element of 2,. Then (o-, u) (u€T) can be viewed as an element
of U ^ = 2 i r g but also as an element of U2 == ^I^. Let us define
the map o» : M^ -> T by <o ((cr, u)) = ^ ((cr, 1)). u; OD is a character of M^
such that (o ((0, u)) ===u (u€T). In fact, if reSi, and creT, we have

(a, u) (T, u ) = (cr + T, (3 (cr, r). uy),

and thus
CO ((CT, U) (T, P)) = ̂  ((CT + T, 1)) P (Or. T).l2 U.



480 L. PUKANSZKY

On the other hand, in U^ :

(^1)(T,1)==(^+T,P(^T)) ,

and hence, since ^ T == identity map,

X ((^ 1)). X ((-, 1)) = X ((^ + ̂  1)) P (^ ^)

proving our statement.

Let us suppose, that /i == <o o $ (co being chosen as above). Then
y' T,, is identically one, y' F^ ̂  ^e 1̂  = yo = 7 1^? y' 2 = co o $ Si.
and thus, by virtue of the definition of co, is the same as y lifted from
U^ to (U^y. But then, by virtue of what we said above we can conclude,
that B 0 W is unitarily equivalent to U (/) lifted to IP, and thus the
rings R (B (^) W) and R (U (y)) are spatially isomorphic.

Q. E. D.

REMARK 2.1. — Analogous conclusion holds true for a character y
of U" which, on TcU", reduces to the conjugate of the identity map of
the circle group onto itself.

REMARK 2.2. — Let us observe, that the previous reasonings imply,
that U^ = r'5, an that U/Fo U^ is isomorphic to I\/r^ (for this cf, also
Lemma 6.5 below). Hence V(y) is of type I if and only if the index of
the center of the centralizer of the connected component of the identity of
r (== r\) in r\ is finite.

3. In this section G will denote a connected and simply connected Lie
group, and L a closed, connected, type I invariant subgroup of G, such
that G/L is abelian. Let us recall, that by virtue of a recent result of
J. Dixmier, a choice, of the indicated sort, of L is always possible {cf. [14]).

In the following, given two unitary representations pi and p^, we shall
often write pi r^j p^ to express, that they are unitarily equivalent, but
not necessarily identical as concrete representations. Given a set S
of equivalence classes of unitary representations, we shall denote by Sc
the set of the corresponding concrete representations. For a summary
of the results concerning projective extensions etc. used in the sequel,
the reader is referred to Section 4 (p. 18) in [2].

Let T. be a fixed element in L; we shall denote by the same letter a
fixed concrete representation of the class TI. Let G^ be the stable group
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A
of Ti€L in G, and let us denote by T/' a projective extension of r. to G::
such that

7r'- (a) ̂  (b) == a (a, 6) T '̂ (ab) (a, b e G^) and a (a/i, &/,) == a (a, &) (Zi, Z, e L).

By virtue of our assumptions bearing on G and L, G;:/L, being a closed
subgroup of the vector group G/L, is isomorphic to R^XZ^; thus the
extension cocycle a is cohomologous to a skew symmetric bilinear form,
with values in T (== circle group, lifted from G^/L to G^ {cf. [2], p. 188)).

We denote by G^ the group defined on the set G^XT by the law of
multiplication

(a, u) (6, v) == (ab, a (a, b). uu) (a, b e Gr.; ", v e T).

We assume, as we can, that a is continuous and take G^ with the product
topology on G;:XT. One verifies at once, thet the subset { (7, 1); i l € S L }
is a closed invariant subgroup of G^; we denote it again by L. Let us

A
put M^ = G^/L; M^ is called the Mackey group belonging to TI€L. By
virtue of what proceeds, M^ satisfies the exact sequence

l^T^M^R-xZ^l.

LEMMA 3. 1. — Let A be a closed subgroup of G, such that A±!L. If p
1.9 a unitary representation of A, such that p [ L ̂  TC, ̂  1uwe G^A.

Proof. — Given a€G, let us put a p {x) = p (a^ xa) (a€A). Then
w^ have for any a in A : a r .^^ap L^p | L^^T., proving our statement.

Q. E. D.

We write 0 for the canonical homomorphism from G^ onto M^ == G^/L.
Given a subset S of Gr., we shall put S" == { {s, u); ^eS, u € T }. A being
assumed as above, we have

LEMMA 3.2. — There is pe(A^ ,<?u^ that p L^T:, i/an^ only if $ (A'')
î  abelian in M^.

Proof. — a. We show first the necessity. We can assume, that p | L == Ti,
Then there is a continuous map f: A -> T such that T^ (a) =f{a). p (a)
from where a (a, &) = /*(a) .f{b)lf{ab) ( a , & e A ) . We have furthermore
/*(al) ==f{a) (a€A, ;eL) implying, since G/L is abelian, f (ab) = f (ba)
and a (a, &) = a (&, a) (a, 6eA). But then

(a, u) (b, u) = (ab, a (a, b).uu) == (ba, a (b, a).uu) (Z, 1) = (b, u) (a, 12) (Z, 1)
(a, &eA, Z = a-1 6-1 afteL),

proving, that $ (A^) is abelian.
Ann. 'EC. Norm., (4), IV. — FASC. 4. 61
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b. Let us put ^ = G^/L, and let us denote by W the canonical homomor-
phism Gr. -> ^. We denote by ? the cocycle on ^ x ^ which, when
lifted to G^, coincides with a. Then M^ can be realized as the group
defined on the set of pairs { (c, u); c€^, u<ET} by the law of multi-
plication

(c, u) (d, v) == (cd, [3 (c, d). uv) (c, d e 9},
and we have

<P ((a, u)) = ((V (a), u) (aeG^).

c. To show the sufficiency of our condition, let us now assume, that
$(A6) is abelian. Then, writing T^ for { ( e , u); ueT^c^A 6 ) , there
is a closed subgroup B of M^, such that $ (A6) = B X T^. Let T be the
projection of $ (A6) onto B and let us put

T ((b, 1)) = (b, g (b)) (6e^(A)).

Then, writing h for 1/g we obtain

(3 (c, d) = h (c). A (a)/A (cd) (c, d e V (A))

implying, that a (a, &) = f(a). /•(&)// (a&), where f{a)=h{W (a)) (o, &€A).
Putting, finally, p (a) = TI'- (a)//•(a) (a€A), p is a representation, restric-
ting on L to Tt, of A.

Q. E. D.

Given a subgroup U of G;, such that U contains T == { ( e , u) }cG^
we shall write U/T for the canonical image of U in G^. If A is some
subgroup of M^, we denote by A-^ its centralizer in M^.

LEMMA 3.3. — Let A and p be as in the previous lemma, and Gr, the stabi-

lizer of the image of p in A. We have Gp == <& (($ (A.^^IT.

Proof. — a. Let a be some element of G^, and let us assume, that $ ((a, 1))
commutes with $ (A6). We show first, that this assumption implies,
that a belongs to G^. We denote by B the smallest closed subgroup,
containing a and A, of G^. Evidently, $ (B6) is abelian and hence, by

virtue of Lemma 3.2, there is ^(a), with a- L = TI. Also, we can
find a character y of A, such that p~y.(a A) (y ( L == 1), and therefore

a p ~ cp .a (<r |A) = c».(aa | A) == <p. (o- |A)~p,

implying, that a belongs to Gp.
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b. We assume next, that a p < ^ p ; by virtue of Lemma 3.1 this implies
aeG^. We shall show, that <t> ((a, 1)) commutes with <& (A^). We
suppose again, as in (a) of Lemma 3.2, that p - | L == ^ and Ti6 A^/ 'p
(cf. foe. c^.). Then we can conclude, that a ir 61 A ^^ ^ A. Given any
fixed a in G^, an easy computation, the details of which we leave to the
reader, shows, that

(a 0 (V) = ri (b) (^ (a))-1 ^ (^ n6 (a)

where

Y] (b) FEE a (a, a-1). a (a-1, ^). a (a-1 b, a) (b e G^).

By virtue of what we saw above we infer from this, that with a satisfying
a p^p wegetY](&)^l for all & in A, or a (a, a~1) = a (a~1, &)a(a~ 1 b, a) (&eA)
But this implies at once that (a, 1)~1 (&, i) (a, 1) == (a"1 ba, 1), and thus
the left hand side is of the form (;, !)(&, 1) (I = a~1 b~1 ab, &€A) , from
where the conclusion is clear.

Q. E. D.

LEMMA 3.4. — Let us denote by 51 the family of all those closed, connected
subgroups, containing L, of G, to which TT admits a trivial extension, inva-
riant under (G^)o (= connected component of the identity in G). Then 51
contains a well defined maximal element.

Proof. — a. Let us start by observing, that the elements of 51 are contained
in Gr, {cf. Lemma 3.1). We put F = M^, and show, that if A belongs
to 51 we have ^(A^Cl^. To this end we take into account, that
obviously $ ((G^)o) == Fo and therefore, by virtue of our definition of 51
and Lemma 3.3, $ (A6) is contained in the centralizer 1̂  of the connected
component of the identity in F. But since A, and hence also A6, is connected
we obtain, that $ (A^C^o = T^ [cf. (c) in the proof of Proposition 2.1].

&. To complete our proof of Lemma 3.4, it will now be sufficient to
establish, that the subgroup II = $ (F^/T of G^ belongs to 51. But : 1°
Evidently II is closed and connected; 2° ^ (IP) being abelian, TI extends
to 11 trivially {cf. Lemma 3.2); 3°) If p is any such extension, by Lemma 3.3,
since <& (II6) and <I> ((G^)o) commute, we have (G^)oCGp.

Q. E. D.

We denote, as in the previous section, the centralizer of the connected
/ A \

center Fg of F by U. If 11 and pe^II^ are as above, putting II == Go,
we conclude by aid of Lemma 3.3. that IX •== ^ (U)/T.
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LEMMA 3.5. — Let us denote by 0 the family of all those closed, not neces-
sarily connected subgroups, containing L, of G, to which r. admits a trivial
extension o, the stabilizer of which contains M. Then fit contains a well

defined maximal element uniquely determined by r\. € L.

Proof, — a. Let A be an element of 0; we claim, that ^ (A6) is contained
i ^\in U3. Let pe(,A^ be such, that p L = iz. Since G^Dlil, any two

element of ^ (A') and $ (11'') = U commute. Hence, in particular,
^ [A.6) is contained in the centralizer of rf,, that is in U, and therefore
^(A^CU 3 .

b. By virtue of what preceeds, to complete the proof of our lemma, it
— i

suffices to show, that the subgroup B == ̂  (U^/T of G^ is an element
of 0. But again, since ^ (B6) === U3 is abelian, T; extends trivially to B.
If p is any such extension, we have GpDXl, since the elements of ^ (B6) === U^
and of $ (M^) === U pairwise commute.

Q. E. D.

LEMMA 3.6. — Denoting by K the maximal element of the previous lemma,
and by p a trivial extension of Ti to K, we have XI = Gp. The maximal
element of Lemma 3.4 is the connected component of the identity in K.

Proof. —- The first statement is clear since, by (fc) in the proof of
-i

Lemma 3.5, we have K = ̂  (U^/T. Let II be the maximal element
-i

of Lemma 3.4 [cf. (&), loc. cit.]. Since II = $ (r;|)/T, the desired conclu-
sion follows by observing, that (U^)o = F;.

Q. E. D.

REMARK 3.1. — Observe, that upon replacing T. by a r. (a€G), K and HI
do not change.

LEMMA 3. 7. — Let K and p be as in the previous lemma. TJie unitary
representation ind p of G is a semifinite factor representation. It is of

K ^ G

type I if and only if the group lt/(G^)o K is finite.

Proof. — We write again F == M^; F, as just defined, satisfies the condi-
tions of Proposition 2.1. Let us observe immediately, that by virtue
of what we saw above, the group U/Fo U^ is isomorphic to 1^l/(G^)o K.
If y is a character of U3, such that ^ T coincides with the conjugate
of the identity map of the circle group onto itself, by virtue of Propo-
sition 2.1 {cf. also Remark 2.1) the unitary representation V (y) = ind y

u^r "
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is a semifinite factor representation. Hence the same holds true for
T (y) = ind (/ o (&), since we have ": (y) == V (/)°4>. Let us write \L

R'-^G^

for the character y o ̂  of K'1. We have

ne ® T (/) = 7r6 ® ^d ^ = ind (fJi. TT^).
R^G^ K^G^

Let us denote by cr and c7i the representations of K = K^/T and of Gj: = G^/T
arising from ;J-T/' and r^ (g) T (y) resp. We have (7i = ind cr, and cr, is

a semifinite factor representation of the type of V (y), restricting on L
to a multiple of T.. Let us form the representation T (c") === indo-j ==ind ^.

G-^ G R ^ G

It, too, is a semifinite factor representation of the type of V (y). Hence
by a remark made above T (o-) is of type I if and only if the group tl/(G^)o K
is finite.

We have evidently a" L = n. Therefore, there is a character o of K,
cp L == 1, such that p == 9^-. Then, if ^ is any character of G, such
that ^ I K = 9, we have ind p == ^ T (cr), completing the proof of our

R ̂ , G

lemma.
Q. E. D.

REMARK 3.2. — Observe, that the above proof implies, that the repre-
sentation ind p restricts on L to the transitive quasi-orbit carried by

^G ( A )
G n {cf. [2], Theorem 6.2, p. 58). More precisely, if { ri (T); E^e L f i s a Borel

measurable field of irreducible representations on L, such that r^ (^) is
A /'»

of the equivalence class of ^ € L, then ind p [ L is a multiple of / ® ̂  (C) dy. (C),
R ̂  G «^^

where rf;^ (^), is quasi-invariant under G and is carried byGr. (cf. loc. cit.,
P. 57).

We recall, that the unitary representations T\ and Tj of G are said
to be quasi-equivalent, if there is a ^-isomorphism ^ from R (Ti) onto
R(T,) such that * (T, (a)) == T, (a) (a€G) {cf. [2], 5.3.2, Definition,
p. 106 and 13.14, p. 250). In this case we shall write Ti ^ T^. Given

A
TceL and K as above, we put

(6(7T) = { p ; ? € K , p ] L = 7 T J .

LEMMA 3.8. — Assume, that for ^/e(^ (ri,)),. (T:/eL, j = 1, 2) we hwe
ind o-i ^ ind ^3, wWe K/ corresponds to r.j, (j === 1, 2) as K ^oc^ ^ T. in
Ri4.G R a ^ G

Lemma 3.6. 77î z Ki === Ks, and there is an element a of G such a c7i ^c^,.
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Proof. — a. Let us put T, = ind o-y (7 == 1, 2). We start by observing,
that our assumptions imply, that G^i=G^^. In fact, we conclude
from T\ ^ T^ that Ti | L w T'a | L. With the notations of Remark 3.2,
Ty I L is quasi-equivalent to a representation

f®7r(0d^(0
^

where d?[^/ (Q is carried by G riy (j === 1, 2). They can be quasi-equivalent
only if [^i and ̂  are equivalent ([12], Proposition 8.4.4, p. 151 and 18.7.6,
p. 325). But then we must have Gn^ == Giiy.

&. By virtue of Remark 3.1 we can now conclude, that Ki == Ka == K,
say.

A
c. For some fixed T.eL let p, K and HI be as in Lemma 3.6. We put

n
T = ind p. Let K be the set of all quasi-equivalence classes of factor

K^G

factor representations of K with its usual Borel structure [cf. ri2], 18.6.2,
n

p. 323). There is a standard measure p- on K, uniquely determined up

to equivalence, a [̂  measurable field ( T ( ^ ) $ ^ e K ) of factor represen-

tations, such that T (^) is of the quasi-equivalence class of ^€ K, and

such that T K = ^ Q) T (^) dy. (^) in the sense of unitary equivalence,
*4

the decomposition being central, that is R (T | K) contains the ring of
diagonalisable operators (c/. [12], 8.4.2, Theoreme, p. 149 and 18.7.6,
p. 325), We are going to show, that [JL is carried by GT, where T is the image

A n
of p in KcK. Let us put A = G/K; let /be a Borel cross section from A
into G and da an element of the invariant measure on A. Then we have

T | K = f Of (a)? da.
^K

Let us put B = M/KcA and A = A/B (^G/H)$ we denote by db and
d\ elements of the invariant measures on B and A resp. If o is a Borel
cross section from A into A, the map co : A x B -> A defined by
co (A, 6) = y (X) 4- b is one-to-one and Borel, and hence establishes a
Borel isomorphism between A x B and A (c/. [2], Proposition 2.5, p. 7).
The image of d\ db under co is an invariant measure on A; we can assume,
that it coincides with da. We write g == fo 9; it is a Borel cross section
from A = G/M into G. For an arbitrary (A, b) in AxB, the elements
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S (^) f W sin(^ /((jo (^? ^)) belong to the same residue class according to K,
and thus we have f ((JD (X, b)) r^ g (X) /* (&) p and hence also

T | K = f Q g W f ( b ) ^ d ^ d b
^A^Tt'AXB

in the sense of unitary equivalence. Let us put U === f ( S ) f { b ) p d b .
•A

Since /*(&) €ll == Gp, we have U ^ m p , where m = = + o o l f ^ l ? K . and
m = 1 if 11 == K. Writing T (A) = g (X) U, we obtain, that

T |K= f©T(^.
^A

Let us denote by 3 the ring of all diagonalisable operators of the last
decomposition; we are going to show, that R (T | K) 33. To this
end we denote by C the subgroup G^/UcA and put H == A/C. Let JTJ
and dc be elements of the invariant measures on H and C resp. We
denote by ^ a Borel cross section from H into A and set h == g o ^; h is a
Borel cross section from H = G/Gj; into G. Reasoning as above with H,
C and ^ in place of A, B and ® resp., we conclude, that

r©T(^=f ®/ i (YOff (c )U^dc .
^A «Aixc

Let us observe now, that if a belongs to HI = Gp, we have ay ̂ fa,
where fa is a continuous character of K, the kernel of which contains L.
Moreover we have (pa == ^h it and only if a and b belong to the same residue
class according to M. Let us put co^ == <p^) (ceC); by virtue of what
we have just said, if co^ == co^, then Ci = c^. Observing, that C == G^/Xll

is countable, we set Ti =^(3:)^c. The ring of diagonalisable operators
c(EC

of this decomposition, 3i say, is equal to R (Ti). Let us put

T< == f®^)p^,
^TT

and 3a for the ring of this decomposition. Since U ^ m p , we conclude,
that there is a unitary equivalence between T K and the m-fold multiple
of Tj (^)Ty, which makes correspond 3 and m (3i (^)3^) to each other. In
this fashion, to establish, that R(T | K) 33, it will be suflicient to show, that
R(T, (g)T,) 33, (g)3,. To this end we prove first, that R (T, ( L) == 3,. In

A
fact, the map a i-> a Ti (a€ G) is Borel from G into L (cf. [2], p. 57, top) and
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hence the correspondence TJ ^—> ]i (r\) 7-1 establishes a Borel isomorphism betwen
A . .

H and the Borel subset G ri of L (c/*. [2], Proposition 2.5, p. 7). Let us write
A . . .

dv (^) for the measure on L, which is carried by G TI and there coincides

with the image of d?Tj. With ( Ti (^); ^€ L ( as in Remark 3.2 let us put

T^ = (f)r^ (^) dtv (^); we write 3*j tor the ring of diagonalisable operators.
^ -_

There is a unitary correspondence between Ta | L and T^, which maps
JL onto 3s. Thus, to arrive at the desired conclusion, it is enough to
recall, that R (T,) =3, (cf\ [12], 8.6.4, Proposition, p. 155 and 18.7.6,
p. 325). Since T\>(A-)e3, , we have T, (A-)(g)IeR (T\ (g) T,) (ke K) and
hence 3i (g) ICR (Ti (g)^). On the other hand

I (g) 3.c I (g) R (T, i L) == R ((T, (g) T,) ] L)cR (T, (g) T,),

and in this fashion finally 3i 0 3,> CR (Ti (g) T^). Summing up the previous
discussion we have shown that, putting T (X) == g (A) U (X€A) , the direct

integral decomposition into factor representations T K = f (f) T (X) d?A is
•-'A

central. Let us recall, that g is a Borel cross section from A = G/M into G.
From this, using a reasoning employed above we infer, that the map
^ ̂  g (\^ ^ where T is the unitary equivalence class of p, establishes a

A
Borel isomorphism between A and the Borel subset GT of K. Let us add,

that K being Borel in K {cf. [12], 18.6.3, p. 324), GT is a Borel subset
n n . . .

of K. We denote by d^ (^) the measure on K, which is carried by GT,
and there coincides with the image of c?A. Putting

T(0=T( / ) -^ )U if K3S=^/(^,

we obtain finally, that

=f®T(S)^(0
Jo

T K =

in the sense of unitary equivalence, the direct sum decomposition being
central, and T (^) is of the quasi-equivalence class of g (X) T == ^, completing
the proof of the assertion formulated at the start of (c).

d. Using the previous considerations, we finish proving Lemma 3.8
as follows. With notations as in (a) we have by assumption Ti w Ta,
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and hence also 1\ |K^Tj | K [cf. (&)]. Let Ty be the quasi-equivalence
class of cTy (j = 1, 2). We form the central decompositions

T; | K == f® T; (?) d^ (S) (j = 1, 2).
t/O

By virtue of what we saw above in (c), the measure [i^j is carried by GT,
{j = 1, 2). On the other hand, by virtue of Ti [ K^Ta K, ^i must be
equivalent to ^-3 {cf. [12], 8.4.4, Proposition, p. 151) and hence Gri == Gra.
In this fashion there is an a€ G, such that a o"i ̂ c^, completing the proof
of Lemma 3.8.

Q. E. D.

REMARK 3.3. — Let us observe, that by what we have just seen,
ind o-i ^ind a" 2 implies, that these representations are unitarily equivalent.
K^G R^G « / A

Let us put (6 =\j^^^ ^). Given T€<6 and a concrete represen-
tation (T of the unitary equivalence class of T, we write Y] (r) for the quasi-
equivalence class of ind cr (for K cf. Lemma 3.6, with cr in place of p,

K ̂  G

loc. cit.). Writing or for the unitary equivalence class of a a (a€G),
the correspondence (a, r) ^-> ar defines d& as a transformation space of G.
With these notations we have

PROPOSITION 3.1. — The map T] just defined takes its values in G. We
have T] (Ti) = Y] (Ta) i/* and only if Ti and! ̂  lie on the same orbit of G.

Proof. — This is an immediate consequence of Lemmas 3.7 and 3.8.
Q. E. D.

4. The purpose of this section is to collect several facts concerning
real and holomorphic induction, and to present them in the manner we
shall use them in the sequel (c/*. [32], Section 3, p. 442-446). We should
like to emphasize already at the start, that although we shall employ
later in an essential fashion two deep results of [1] {cf. Lemma 11.3.1
and Theorem III. 3.1, loc. cit.), we apply the procedure of holomorphic
induction, when compared with the treatment of [I], but to relatively
special situations.

a. Let G be a separable locally compact group, A a closed subgroup
of G and ̂  a continuous homomorphism of A into T (=== group of complex
numbers of absolute value 1). Let dg and da be an element of the right
invariant Haar measure on G and A resp., and let us define the modular
functions ^ and A^ by

d (g, g) = Ac ((/o) dg and d (do a) = A^ (ffo) da resp. (go € G, flo € A).
Ann, EC, Norm,, (4), IV. — FASC. 4. 62
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Before proceeding we recall the following facts (c/*. [5], chapter VII, § 2).
Let f{x) be an element of C (G) (== continuous functions, of a compact

support, on G) and let us put F {x) = ff(ax) da. Then the corres-J^
ponding function on G/A, to be denoted by F (p) (peG/A) lies in C (G/A)
and any function of this sort can be so obtained. Next, if rfv (x) is a
positive Borel measure on G satisfying d v {ax) = ̂  {a) d!v {x) for all a
in A, there is a uniquely determined Borel measure dy. (p) on G/A such
that

W f ^(P)d^(p)= f f ( x ) d v ( x )
^G/A ^GG/A ^G

for all f in C (G). We shall sometimes denote d[f. (p) by dv/A (or a
by v/A resp.). For a in A let us set Y] (a) = A^ (a)l^ (a). If I {x) is a
non negative locally integrable function on G satisfying I (ax) == Y] (a) I (x)
(a€A, xeG), then for the Borel measure d^ {x) = I (x) dx we shall have
Jv (ax) =A^(a) d^{x). One defines the unitary representation U induced
by y, of G, in following fashion. Let & be the collection of all complex
valued Borel measurable functions on G satisfying f(ax) === (r\ (a))172 7 (a) f{x)
for all a and x in A and G resp., and for which | f (x) |2 is locally integrable
with respect to dx. By what we saw above, the measure dvf {x) = \f{x) |2 dx
satisfies d^f {ax) == A^ (a) d^f (x) and hence we can form the measure
[^/ = V//A on G/A. Let ^ be the collection of all those elements in &
for which the total mass of G/A with respect to [Lf is finite. One can
define (cf. [4], p. 80-83) on the quotient space, according to the
linear variety of elements with ^ (G/A) =0, of ^ the structure of a
Hilbert space H (U) in such a fashion, that the square of the norm of
the equivalence class containing /*€^ is equal to [J-/(G/A). Finally,
for go in G the operator U (go) on H (U) is obtained from the map
f(x) ^>f{xgo) of ^ onto itself by taking the images in the quotient
space H (U).

For later use we add the following observation. Let us assume,
that there is a continuous homomorphism k (x) of G into the
multiplicative group of positive numbers extending Y]. Then :
1° There is a positive Borel measure du {p) on G/A satisfying
dv {Pg) = k (g) du (p) for all g in G. In fact, to see this it suffices to
take du (p) = k (x) dx/A. 2° For fe ̂  the function \f{x) p/A- (x) {x^G)
is invariant under translation on the left by elements of A, and
we have

^f(p)-(\f(x)\2|k(x))du(p).
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In fact, let h be some element of C (G); then we get with the previous
notations

f H(p)d^ (p)=fh(x)\f(x)\-dx
^G/A ^G

= fh (x) ( | f(x) \^k (x)) k (x) dx
- ^G

=f H(p)(\f(x)^k(x))dv(p).
^G/A

Hence, in particular, we obtain

^(G/A)=f (\f(x)\2|k(x))du(p).
^G/A

&. Let g be a nilpotent Lie algebra over the real field, and f a nonzero
element of the dual g' of the underlying space of g (to be considered also
as an element of the dual of the complexification go of g). We put
Bf{x,y) = {[^,y~\,f) (^,2/efl) and write again B/ for the corresponding
skew symmetric bilinear form on ficXflc- ^ complex subalgebra I) of flc
will be called a polarization with respect to /*, in symbols t) === pol (/*),
provided the following conditions hold : 1° I) is maximal self orthogonal
with respect to B/; 2° (a) 1) +1) is also a subalgebra of gc? (?) tor
x + ^/€l) {x, y ^ S ) we have B/ {x, y) ̂  0 and By^ (a;, ^/) = 0 if and only
if x, 2 /€ t )nf l . Let G be the connected and simply connected Lie group
belonging to $. Assume, that K is a subgroup of Aut (g) such that
[K,K]cAd(G), and that /*€fl' is invariant under the contragredient
action of K on g'. Then there exists () == pol (/*), which is invariant under
the action of K on gc (cf. [I], Lemma 11.3.1).

c. From now on, unless stated otherwise, fi will denote a real solvable
Lie algebra and G the corresponding connected and simply connected
Lie group. Given a subalgebra gi Cg, we shall write exp gi for the connec-
ted subgroup, belonging to $1, of G. We recall, that in our case exp gi
is closed and simply connected (cf. [20], Theorem 2.2, p. 137),

In the following, given a€G and ?€f l we shall put al = Ad (a) I and
similarly, if g belongs to g', ag will stand for (Ad (a"1))'^. Let now g
be a fixed nonzero element of g', and Gg. its stabilizer in G. We denote
by (G^)o the connected component of the identity in G^, and by g^ its
Lie algebra. Thus, by virtue of the notational convention introduced
above we have (G^.)u '= exp g^. Let us observe now, that since (G^)u
is simply connected, there is a character /,. of (G,.)o uniquely determined
by

7.8 (ex? (0) == exp [i (/, g)} (I € fc) or d^ ==i(g\ ̂ ).
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o

We write G^ == ker (^ [ (G^)o). If a is some element of G^ we have
for all iGSff '-

^ (a. exp ( I ) , a-1) = ̂  (exp (al)) == exp [i (al, g)] == exp [i (/, g)] == ̂  (exp (/))

and hence 5 .̂ {aba~1) = ̂  (fc) [&€(G^)o] implying, that G^ is invariant
in Gg^. With the previous notations we introduce the following

DEFINTION 4.1. — The reduced stabilizer of g is the closed subgroup of Ger
defined as { a ; a€G^ aba^ b-^Gyfor all bin G^}. It will be denoted
by G,.

Let us observe, that G^ could also be defined as the complete inverse
image of (G^/G^ (== center of G^/Gg) in G^.

A e „
We denote by G^ the collection of all characters of G^o. which, when

restricted to (G^)o, coincide with 5 .̂. Let us put G^ for the group of
all characters of G .̂ which are identically one on (G^)o. Given a fixed

element /o of G^, any y€ G^ can uniquely be written as yXo(?€Gj.
We observe finally, that since G^/(G^)o is a free abelian group [cf. below {d)]y
so is G^/(G^)o, and hence G^ is isomorphic to a multitorus of a dimension
equal to the rank of G^/(G^)o.

d. The following lemmas are well known, but because of their role
in our subsequent considerations we include proofs for them here. Also,
the reasonings employed below will be often referred to later.

Let g and G be as above. We put & = [g, $] and L = e x p & c G ;
observe, that we have L = [G, G] {cf. [20], Theorem 3.1, p. 138).

LEMMA 4.1. — Let A be a closed subgroup of G, such that AL is closed,
and AnL is connected. Then A/Ao is free abelian.

Proof. -- By virtue of our assumption A n L = = = A o H L , and hence

AL/Ao L = A/A n L/Ao/Ao n L == A/Ao.

Let $ be the canonical homomorphism from G onto G/L^R". Then

A/Ao = AL/Ao L = €» (A)/^ (Ao).

But $ (A) == $ (AL) being closed, the right hand side is free abelian.
Q. E. D.

COROLLARY 4.1. — GW(G^)o is free abelian.
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Proof. — We show, that Gg verifies the condition imposed on A in
Lemma 4.1 . Since G is solvable, L == [G, G] is nilpotent and hence
the exponential map from ^ == [$, g] into L is onto. This implies at once,
that Gff H L is connected by virtue of the fact, that if E is a nilpotent
endomorphism of a finite dimensional real vector space, and if exp (E)
annihilates an element, then so does E. Next, (Ad (L))' is a unipotent
group on fi' and thus the orbit LgCfi' is closed {cf, Proposition 1.1, chap-
ter II). Since, however, we have

G ^ L = = ( a ; a ( L f f ) C L f f } ,
G^L is closed in G. Q. E. D.

LEMMA 4.2. — A being as in Lemma 3.1 let us assume, that M is a connec-
ted subgroup of L containing LnA. Then AM is closed in G.

Proof. — Let us put Ao == exp d. We denote by b a supplementary
subspace to r tn& in rt, and by { aj} a complete residue system in A accor-
ding to Ao. We write So for the image, under the exponential map,
of b and set S = Uj a/. So. Since d^ (a) == d^ (b), we have $ (So) = $ (Ao)
and hence $ (S) = $ (A). Since Ai = A n L is connected, $ (a;) = $ (ay)
implies ai == aj from which we conclude, that $ | S is a bijection with
$ (A). We are going to show now, that it is even a homeomorphism. To
this end let us assume, that { Sn } is a sequence of elements in S such that
$ (<^) -> ̂  (^o) (^o€S) ; we claim, that in this case Sn -> 5o in G. In
fact, since $ (A) = $ (AL) is closed in <& (G), $ (Ao) is open in $ (A) and
therefore we can assume that, for a suitable j?, { Sn }Co/.So and ^oGo/ .So.
From here to obtain the desired conclusion it is enough to take into account,
that $ | So is certainly a homeomorphism with its image. By virtue
of what we have just seen, the map 9 : SxL -^ SL (= AL) defined by
y (^ ;) = sl {s € S, I € L) is a homeomorphism. But then, if M is as in
our lemma, we have, since A = SAi, that 9 (S, M) == SM = SAiM = AM
is closed in AL and hence also in G.

Q. E. D.

e. Let us fix a g in g'; we put f = g \ ̂  (& = [g, fl]) and assume, that
f^O. Since evidently GgCG/ and [G^ GjcL, we can employ the result
quoted at the end of (&) above with K = Ad (Gg) [ & and L in place of K
and G as loc. cit. with the conclusion, that there is a complex subalgebra
l)C&c suc!1 ^at t) = pol (/*) andG^.l)Ct). Assume now, that Gi is a
closed, but not necessarily connected subgroup of G, containing G^L.

A
Given an element 5^ of Gy [cf. (c) above] we can construct a unitary repre-
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sentation ind (I),/,, g; Gi) of Gi as follows. (If Gi == G, we shall omit
indicating it.) Let us put d == l )n& and D = exp (^)cL; d being inva-
riant under G .̂, D is normalized by the latter, and hence Gg. D is a subgroup
of G. We observe next, that it is a closed subgroup of G. To prove
this we show, that Gg. and D satisfy the conditions imposed on A and
M resp. in Lemma 3.2. Since G^ L is closed {cf. the proof of Corollary 4.1),
so is G^L. We have also (cf. loc. cit.) G^nL == G^H L == exp (g^n&).
1) being maximal self orthogonal with respect to B/ [cf. (&)] we have evi-
dently Jfl^n&Cl) and hence f l^H&C^ and finally G^nLc D, which proves
our statement. Since c ? = = t ) n & is self orthogonal with respect to By,
there is a character y / of D uniquely determined by the condition, that

^ (exp (l))= exp [i, (/,/•)] (Zed).

Let us put A == Gg D and observe, that there is a character y on A, such
that y G^==^ y D FEE yj. We have, in fact, G^n D == exp (fl^fW),
and thus evidently ^ (G^nD) == ^[(G^nD). In this fashion, to arrive
at the desired conclusion it is enough to remark, that putting, for a fix
in G^, (a%j) (b) = jj {a^ ba) (&€D) , we have a^f = %/. Taking in (a)
Gi for G and y for ^ resp., let us form the representation ind y. We

A ,̂ G

denote again by jj the homomorphism of H=exp( t ) ) cLc into the
multiplicative group of nonzero complex numbers, determined by

^ (exp (/))== exp [f(Z,f)] (;€!)).

Let us put e = t) + 1)H^ and E = exp {e). Let Oo be a fixed element
in Gi and f some function in ^ fc/*. (a)]. If A, A i € H and /c, /Ci€;E are
such, that hk = hi A-i, we have

lr(h)f(ka,)=^^)f(k,a^

In fact, since H n E == exp (1)0^) = exp (d!) == D, there is an element 3
of D such that hi = h S and /fi == §~1 k, from which the conclusion follows
by virtue of f{ki Oo) = %/(^)/(A'ao). One shows easily, that t) + 6 = ^)+^) = ^c
implying, that EH is an open subset in E^. We denote by 3€ the family
of all those elements of ^, for which the map hk ^-> %j {h) f {kao), for each
fixed Oo in G, is analytic on HE. One can show, that the image H of 3€
in H (U) is a closed subspace [cf. [II], i.9); it is evidently stable under U.^ iw
We define ind (1)9 %. g; Gi) as the part of U in H.

/. Let us assume now, that fi is nilpotent. We choose a nonzero element f
in $' and a subalgebra 1) = pol (f)C$c9 Let G be the connected and
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simply connected group determined by g. We shall denote by Ind (t), f)
the unitary representation of G, which we obtain by forming first the
representation ind 7j and taking, imitating the procedure followed above

D^,G

at the end of (e), its « holomorphic part ». It can be shown, that Ind (t), f)
is irreducible and, up to unitary equivalence is independent of the particular
choice of 1) and even off, provided the latter is restricted to a fixed orbit of G
in fi'. Conversely, if Ind ( t ) i , / i ) and Ind (1)2, /a) are unitarily equivalent,
we have f^ = afi with somme a in G {cf. [22] Theorem 5.2 and [I],
Lemma III. l) . Finally, any nontrivial irreducible representation of G
is unitarily equivalent to some of the form Ind (I), f) (c/*. [22J, Theorem 5.1).
Summing up, the map, assigning to the orbit Gf(f^Q) the equivalence
class of the irreducible representation Ind (!),/'), and to the orbit of the
neutral element in fl' the trivial representation of G, establishes a bijection

between the orbit space fi'/G and the dual G of G.

g. We shall also use the fact, that

ind (ind (I), %, g; GQ) == ind (b, %. g) (cf. [II], 2.1).GI^G

h. We assume again, that G is a connected and simply connected Lie
group with the Lie algebra fi. We let Aut (G) operate on fi by setting,
for a in Aut (G) and I m $ : al == (da) I (da == differential of a at the unity
of G). If g is some element in fl', we shall put ag == [{d a)']"1 g. We
have a [ag) = a (a) a g, from which we conclude, that a (Gg) = G^ and
hence also a ((G^)o) = (Ga^)o and a (^o.) = fla,- Using the notations
of (c) above, we have %^ o a =E= ̂  on (G^)o implying first, that a (G^o.) == Ga^
and hence also a(G^) == G^. From all this we deduce, that if ^ is some

A /-i \ / — N A
element of G^ then, defining a^ by ̂  [^ {x)) (rreGaJ, a'̂  belongs to Go^,

A
and the map, assigning a^ to )^e G^ [a fix in Aut (G)] is a bijection between
A A
G^ and Ga^". If p is some representation of G, we shall put

(ap)(a;)==p(-a(rr)) (x^G).

The following lemma will be often used in the sequel.

LEMMA 4.3. — With the previous notations we have

a ind (I), 7, g) = ind (a 1), a%, a ff).
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Proof. — Let us put l)i == a 1), %i = a^, ^ === a g. We shall distin-
guish notions, associated by the construction of {e) with the triple

(*) i?Xi?^)? hy the index 1. Putting, for h in ^, ( V A ) ( x ) = h (a (.r)),
we are going to show, that V ^ = ^i, and [̂  (G/A) = p-y/z (G/Ai). To
this end we observe first, that a (A) = Ai. In fact, by definition A == GgD;
as already noted above a (G^) == Ga^, but we have also a (D) = Di,
since D = exp (d) and a (d;) == a (1)H&) = a l)n& == l)i nb = di, proving
our assertion. From here to show, that V ^ == ^i, it is enough to
estabish, that if a is some element in A and ai == a (a)eAi, we have
y (a) == <pi (ai) and YI (a) == Y]i (ai) [c/*. (a)]. The first relation being certainly
valid on G^, we can assume, that a is in D and of the form a == exp (?) (rf31).
But then

?i 00 == %A (̂ i) = ex? [l (a z. a ?)] == ^P [l (̂  y)] = %/ (fl) == ? (fl)-

As far as the second relation is concerned, we have by definition
Y) (a) = AA (^)/AG (a) and hence it suffices to show, that A^ (a) == A^ (ai)
and AG (a) === A^ (ai) [ai == a (a), a arbitrary in A], Writing Ao === exp rt
we have

AA (a) === det (Ad (a) | a) and AA, (a0 = det (Ad (fli) | a (a)),

whence the desired conclusion is obvious since, putting P === 6^ a, we
have Ad (ai) = P (Ad a) P~1 and a (a) == p (a) by definition. One proves
similarly, that A^ (a) == A^ (ai).

Let us write K == G/A, and Ki = G/Ai; we denote by y the homeomor"
phism from K onto Ki assigning to A x the coset Ai a (a). Given a Borel
measure T on K we shall write yr for its image on Ki. We show next,
that if the right invariant measures da and da^ on A and Ai resp. are
appropriately normalized, we have y^ === [J.VA for all h in ^. This clearly
implies, that [̂  (G/A) = ps-v^ (G/Ai) as claimed above. Let /*be a function
in C (G) and let us form as in (a) :

F(pi)== (f(ax)da (peKQ.
«Ai

Since [̂  = Vy/z/A [̂  (^) = | h {x} |3 ̂  cf. (a)J and (V^) (^) ̂  h (a (^)),
we have

[F(p.)d^(p,)^ff(x)\h(^(x))^dx=ff(^(x))\h(x)\^
^Ki ^G ^G
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Let c be a constant such that cdx = d a [x). Assuming, as we can, that c
is also the ratio of da and of the image, under a, of da on Ai = a (A) we can
conclude, since at the same time [JL/, = v/,/A, that

fF(pO d^k (pi) = c f( ff(a (a) a (re)) da^ d^ (p) == f( ff(a, a (x)) da,} d^ (p)
^K, ^K\yA / ^VAi /

= FF (Yp) d^ (p) = f F (pQ d (w/0 (P)
^& •>'Ri

which is what we had to prove.
From here to complete the proof of Lemma 4.3 it is enough to show,

that V<% = SCi [cf. {e)]. Let p be some element of X and let us put
Pi (^i h) = y^ (/?) V p (A-lOo) (Ai € Hi, /ci € E,; ao fixed in G) and

P ( h k ) ^ ^ ( h ) p ( k a ' , )

[AeH, /c€E; ao == a (ao)J. Since p belongs to <?C, P is analytic on HE,
and we have to show, that Pi is analytic on HiEi. But this follows
at once from the easily verifiable facts, that Hi Ei = a (HE) and
Pi o a EE= P.

Q. E. D.

REMARK 4.1. — One proves similarly, that

a ind (I), %, g; Gi) == ind (a I), a%, a ^; a Gi) [cf. (e)]

and
a lnd0) , f )==lnd(a l ) , af) [cf. (Ql.

5. The results of this section are due to L. Auslander and B. Kostant
(c/*. [I], Theorem IV. 4.1). Here we follow closely the exposition given
byB. Kostant in his course at the M. I. T., Spring, 1969.

Let neL be different from the trivial representation of L. By virtue
of 4 (/*) there is an /'€&', f^O, and 1) = pel (f)C^c ^ch that Ind (t), f)
belongs to the unitary equivalence class 11. Below we shall also write Ti
for the concrete representation Ind (t), /*).

LEMMA 5.1. — With the previous notations, we have G^= G^L.

Proof. — Given aeG we set af= (Ad (a~1) [ &)'/*, and if p is some repre-
sentation of L, we write (a p) {x) == p (a""1 xa) (.reL). By virtue of
Remark 4.1, a Ind (t), /*) is unitarily equivalent to Ind (a t), af) which,
by what we saw in 4 (/), implies, that a belongs to G^ if and only if af
belongs to the orbit L/*. But this is clearly equivalent to aeG^L.

Q. E. D.
Ann. £c. Norm^ (4). IV. — FASC. 4. 63
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Substituting G/^ in place of A in the proof of Lemma 4.2, we obtain
as loc. cit. a closed subset SCG/ such that any a^Gf can uniquely be
written as a = sl (^€S, ? € L / = = G / n L ) and the factors on the right
hand side depend continuously on a. We have also Gn == G/ L == SL;
if a^.Gr. we shall write s (a) and I (a) for the elements of S and L resp.,
with which a = s (a) I (a). We observe next, that concerning t) == pel (/*)
as above we can assume, that it is invariant with respect to G/. To see
this, it suffices to apply the last remark of 4 (6) with L, &, Ad (Gy) | D
in place of G, fl and K loc. cit.. We put, as in 4 (e), d = t ) H & ; evidently
G( ddd. The map a i-> det (Ad (a) ^fd) (a€G/) is a homomorphism
of G/ into the multiplicative group of positive numbers, containing in
its kernel L/ = G/H L. From this we conclude, that there is a homo-
morphism ^p, of the indicated sort, of G^, such that ^ (a) = det (Ad (a~1) | &/c?)
(a€G/) and ^ L = 1. We recall finally [cf. 4 (<?)], that %j is the ho1o-
morphic character of H = expl)CLc determined by

^ (exp (/)) ̂  (exp [i. (/, f)]) (I e 1)).

With a continued use of the notations of 4 {e) we have

LEMMA 5 . 2 . — For ae. G and g^9€ let us put (p (a) g) (x) == (^ {a)}^g (r1 ^a)
[(=5(a)eS]. T/^n we ha^e : a. 0(0)^0^ and pip(^(L/D) = ̂ .(L/D)
[e/1. 4 (a)]; &. Denoting by r^ (a) ̂  operator corresponding to p (a) in H^),
^ map a\-^ ^.e (a) defines a continuous projectile representation of G^,
such that ^e (a) ^e (fc) = co (a, fc) ̂  (afc) (a, fceG^) w^r^ co (a, fc) =-yj{l{rt)}
\r == s (a), < == s (6)], an6? ^ | L == ^.

Proof. — a. Let us put g' {x) = g ((-1 rra). If S€SD, we have
g'(S ^) ̂  7^ (S) g'(rr) (.r€L). In fact, since ^"^^D, we can conclude,
that g {Sx) == g (r1 S^.r1 xa) = 5C/(rl ̂ ^(^ ;but evidently^' {b^ Sb) ̂ ^(^
on D for any fixed b in G/. By what we have just seen, the expression
jj •W g ' {klo) (AeH, / c € E $ lo fix in L) depends only on the product hk\
hence we can write it as K {z) (zeHE). We claim, that the map
z \-> K (z) is holomorphic on HE. In fact,

K (hk) == %/ (/Q (/'(A-fo) = %/ (^1 ^0 ^ (f~' kt.l,), where /i == f-1 Zo L; (a)€L.

In this fashion the desired conclusion follows from the fact, implied by
g€^e, that hk ̂  yj (h) g (kli) is holomorphic, along with the observation
that the map z t-> t~~1 zt of HE into itself is also holomorphic. To establish
part 1 of our lemma it remains to be shown, that p.p(^(L/D) == p .̂ (L/D).
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Since evidently A^ =E== 1, ^ s 1, there is an L invariant measure dv (p)
on L/D, and by what we saw at the end of 4 (a), we have

^(L/D)=f l^)!2^).
^L/D

Since G/ normalizes D, G/ operates on the right on L/D; if p = Dx {x^L)
and b is some element of Gf we have pb = Db~i xb. We claim, that
dv {pb) == ^ (&) 6?y (p). In fact, let dx and dtS be elements of the invariant
measure on L and D resp., h some element of C (L) and let Us put, as in 4,
H (p) - fh (Sx) dS. We have

^D

H (pb) == fh ̂  6-1 xV) d^ == det (Ad (b-1) [ d) fh (6-1 B xb) d8.
•y]) ^U

Therefore, if dS is appropriately normalized

f H (p^) dy (p) == det (Ad (6-1) | d) fh (b-1 xb) dx
^L/D t^L

== ^ (6-1) fA (a;) dx = + (6-1) f H(p)du (p)
ty D •^I./D

proving our assertion. Thus finally, since TC (a) == 11 (^) :

^, (L/D) =^(a) f \g (t-1 xt I (a)) |2 dv(p)^ f \g (xl (a)) |2 dp (p)
^L/D ^L/D

==f l^^pd^p)^^^^)
•^L/D

proving the first part of Lemma 5.2.

fc. Let a, b elements of G^ and g as above. Putting r = s {d), m === I (a),
t == s (b), n = I {b) we have, that ab = s {rt) [7 (r^) r~1 m^n] and therefore
5 (ab) = s {rt). In this fashion

(p (ab) g) (x) ̂  (^ (s (rQ))172 g ((s ( rQ)-1 ^6) = (^ (a))1^ (^ (6))^ g (Z (rQ (rQ-1 ̂ ^

which, since l(rt) € LyC D, is the same as jj (l{rt)) (^ (a))172^^))172 g^rt^xab).
On the other hand, (p (&) g) (^) == (^ &))1/2 g (r^^fe), and thus

(P (a) (P (b) g)) (x) ̂  (^ (a))1/2 (^ (6))1/2 (^ (f-^ r^ xab),

implying

P (^) P W = %/(4^0) P (ab) and 7^ (a) 7:̂  (b) == ^(/(rQ) Tr6 (a6).

Q. E. D.
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6. Given an element g of fi' we shall denote by B^ the skewsymmetric
bilinear form defined on $Xf l by B .̂ (.r, ?/) == (f.r, y], g) (.r, yGf l ) [c/*. also
4 (fc)J. If g is specified by the context, we shall often omit indicating it.
Given a subspace a of the underlying space of $, we shall write a1 for its
orthogonal complement in $' with respect to the canonical bilinear form
on fiXfi ' , and denote by a^ its orthogonal complement, with respect to B,
in fl. Let us observe, that with these notations we have ^ = ̂  === Lie
algebra of the stabilizer of g in G [cf. 4 (c)]. Let us put / ' = = $ [ & and
(G/)o = exp ($/•); then $/ = &i1 (& = Ffl? fli)- The following three lemmas
were used by B. Kostant in his lectures referred to at the start of the
last section.

LEMMA 6.1. — Assume, that g€ $, f = g [ & and let us put ̂  ==== & 4" Sf'
If giGfl ' satisfies g ^ == gi S^ then there is an element a in L/^ such
that ag === gi.

Proof. — a. Let us observe first, that if I is any element in fl^, we have

exp(Z)<7=<7—(ad (/))'(/.
In fact, since

^ (_ (ad (l))y
exp (Z) y =2/ j l ^

to obtain the desired conclusion, it suffices to show, that f(ad (^l)']-7' == 0
for /^2. If k is an arbitrary element in g, we have

(k, [(ad (0)'p ^) = B (/ [Z, fc]) with ^ = [(ad (Z))p-^ ^;

but the right hand side vanishes, since ?€$/ = &i1, and [Z, /Ci]€&.
From this we conclude, that if a is any element in (G/)o, there is an I

in $/ such that ag = g — (ad (it))'g. If, however, a lies in Ly == (G/)oHL,
we can assume, that I belongs to &/ == fl/H^.

&. If ? and /c are elements of %f and &/ resp., we have B (I, k) = 0
implying, that (ad (^/))'gCfi/; since evidently (ad (&/))' gC&1, we conclude,
that (ad (^/))' gCfi1. In this fashion, to complete the proof of our lemma
it will be enough to show, that dim [(ad (^/))'g] = dim jj1. Evidently,
the left hand side is equal to dim &/ — dim (fi^H^). On the other hand,
we have

dim $1 = dim $ — dim ̂  = dim 9 — dim t» —dim î1 + dim ̂ f;

since, however,
dim rA === dim 0 — dim b + dim (^ n t»)
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we obtain finally, that

dim ̂  === dim b/ — dim (<^ n ̂ ) = dim [(ad O1/))'?].
Q. E. D.

The following lemma will be of much use in subsequent parts of this
paper.

LEMMA 6.2. — For g e s ' let us put k^ = & 4- g^. If gi€$' satisfies
g 1 kjc -= gi | k^, ^r^ 15 6W element a of (G/)o (/* == g 11>) such that ag == gi.

Proof. — By (a) of the previous lemma, for any a in (G/)o we have
ag = g — ( a d (i!))'g, where I is in $/. On the other hand, (adfiyVg is
orthogonal to k^. In this fashion to prove our lemma, it will be enough
to establish, that

dim [(ad (^/)Yg] == dim $/— dim ̂

is the same as dim k1; but this is clear, since

dimk1 = dim ^ — dim k^ = dim 3 — dim tf + dim ($^ n b) — dim ̂  = dim t^ — dim j^
and $/ == b^.

Q. E. D.

REMARK 6.1. — If g and gi are elements of g', such that g\^ = g^ &,
we have G.,. = G^ and G^ == G^ [c/*. 4 (c)]. In fact, by virtue of our
assumption g^= g-\-u with u€&1. On the other hand, clearly au=u
for all a in G implying G^ == G^. Let y be the character of G determined
by the condition 9 (exp (7)) = exp [i {I, u)] (7€fl). We have evidently
^ (a) = 9 (^)X^ (a) on ^i ::== ^? an^ t^lus ^or any a? &€G^ :

^(^a~1 &- l)-y,(a&a- l&~1),

completing the proof of our assertion.

LEMMA 6.3. — With the notations of Lemma 6.1 let us put

^ =={a; aeGf, ag \ $/ = g \ ̂ }.
Then ® = Gy Ly.

Proof. -— We have evidently G^ C ® and by (&) in the proof of Lemma 6.1,
L/C% and hence G^L/C®. If, on the other hand, a in Gy is such, that
ag I 9f == 8 I fi./? ^i^0 ^g I ^ ̂  8 ^? we have also ag ^ = g\ fir. and
thus, by Lemma 6.1, there is an element b in Lf with ag === &g implying
aGG^L/ and therefore ®CG^L/.

Q. E. D.
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Let /j be the character of Ly determined by

%/(exp(0)==exp[i(/J)] (f€^).

We denote by L/ the kernel of %/. Since for any a in Gy we have

(fl X /) (^) ̂  X./ (^ 3 «) = %/ (§) (3 € Ly).

Ly is invariant in Gy.

LEMMA 6.4. — Le^ M5 put^ ====| a$ aG®, a6a~1 fe^eL/- for all & in % { .
Then % == G^ L/.

Proof. — Let us form A == G//L/; we shall denote by a the canonical
homomorphism from G/ onto A. Since ayj == jj on L/ for all a€G^,
we have o'(L/)cA^ and thus L/C®. In this fashion the element
bl (&€G^5 ^eLy) of © will belong to % if and only if aba~^ b~1 lies in Ly
for all a in Gg-. Hence to complete the proof of our lemma it is enough
to show, that if for a, &€G^ the element aba~1 b~~1 belongs to L/, then it
lies in G^ too, and conversely. But we have [G^,, G^JcG^nL/, the right
hand side being the connected subgroup exp (fl^n&y) C(G^)o H L^-, and
evidently 5^ | G,o n L^ == j^ \ G^n L^.

Q. E. D.

In the followi.ng, for the convenience of the reader, we repeat several
things already touched upon in Section 2 (cf. in particular Remark 2.2).
Let us assume, that F is a central extension, through the circle group T,
of Z, itself isomorphic to R°XZ6 . We denote by Fi and U the centralizer
of the connected component Fo of r and of the center 1̂  of Fo resp.

LEMMA 6.5. — With the previous notations we have T\ ==U^ and
u/roU^r/r^.

Proof. — a. We observe {cf. [2], p. 188), that there is a continuous
realvalued bilinear form B on ZxZ such that, putting

a (z, z ' ) == exp [(i/2) B (z, z')} (z, z1 e Z),

r is isomorphic to the group defined on the set of pairs (;s, u) (^eZ, u€T)
by the law of multiplication (z, u) (w, v) = (z 4- ty? a (^? ^) >uu). We shall
denote by T also the subgroup { (0, u); u^T} of F. Given a subset S
of Z, S will also stand for { ( ^ , 1 ) ; 5 € S } . We write SjS" for the subset
{ t'y < € Z , B (^, ^) = 0 for all 5 in S }. Let us put Zi === ZoO (Zo)i1', where Zo
is the connected component of the neutral element in Z. Since
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(z, u) (w, u) (yu)-1 = (w, (a (z, w))\v), we find readily, that U = (Zi^.T.
On the other hand we have (Zi)a = Zo + (Zo)i- and therefore, since
FI == (Zo)i: .T, we conclude that U === Fo Fi and hence also F^ C IX Finally,
i fa i s s some element in U^CFoFi we can write a = be (&eFo, c€l\). Since
a commutes, in particular, with Fo, we have fceF^cFi , and thus a€Fi
and even a € F^, proving U^ == F^.

&. To establish U/FolP = Fi/F^ we observe that, by what proceeds,
the left hand side is the same as FoFi/Fo.F^. From here the desired
conclusion follows by noting, that F% == Fo H Fi === Fo n F^.

Q. E. D.

LEMMA 6.6. — With the previous notations let us put Fo == exp y. Let v
be an element of 7 such that exp(Ry) = TcFo, and assume^ that rfey'
is such, that {u, d) ̂  0. Then Fi == F^.

Proof. — We can identify the underlying space of y to R. v + Zo such
that

exp (zo + cu) = (zo, exp (ic)) (zo e Zo, c e R).

We have then for any {z, u) € F :

(z, u) (zo + c.u) === 2-0 + (c + B ( ,̂ Zo)) y.

In order, that (js, u) belong to F^, the expression

(zo + c.y, (z, u)-1 d) == (zo + cy, d) + B (z, Zo) (v, d)

must be the same as {zo + ̂ , d) for all Zo + cu which, by virtue of our assum-
ption (v, d) ̂  0 means, that ze (Zo)]1. In this fashion F^ == (Zo)^ .T == Fi,
proving our lemma.

Q. E. D.

Let us observe, that [G, G] = L is a closed, connected and invariant
subgroup of G (cf. [20], Theorem 3.1, p. 138). It belongs to the subalge-
bra b == [g, j] which, since g is solvable, is nilpotent and thus L is of
type I (c/*. [8], Theoreme 3, p. 161). From this we conclude, that we
can substitute [G, G] in place of L in Section 3.

PROPOSITION 6.1. — -Let Ti be an element of L, which belongs to the
orbit Lfcd' [cf, 4 (/*)]. Let K and 1L be as in Lemma 3.6 and assume,
that g is an arbitrary element of $' such that g &' = f. Then K = G^ L
and ^/(G^o K is isomorphic to G^/G^.
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Proof. — a. The statements made being clear if f = 0, in the following
we shall assume, that f^O. By Lemma 5.1, G^==GyL. Let us form,
as at the start of Section 3, the groups G^ and M^ = G^/L by using in
place of the cocycle a loc. cit.y the cocycle GO of Lemma 5.2. Employing
the notations of the latter one verifies easily, that M^ can be realized
as the group defined on the set of pairs { (r, u); r€S, u€T } by the law
of multiplication (r, u) (t, v) = {s {rt), oo (r, t).uu) and if $ is the canonical
homomorphism from G^ onto M^, we have

^((a,u))=(s(d),u) (aeG.).

&. Let us put r == M^ and assume, that Vs1 is as in Lemma 6.5. We
denote by S the subset of ScGy (cf. Lemma 5.2) such that G^L/ = SL/.
With these notations we claim, that

U^={( r , u ) ; s eS , ueT}.
In tact,

1° Let us define the map W from Gy into F by

W(a)==(s(a),^(l(a))) (aeGy).

We claim, that W is a surjective homomorphism, the kernel of which
coincides with L/. In fact, if r, t€S, and m, n^Lf we have

rm.tn == s (rt)[l(rt).f-1 mt.n]
and hence, since

;C/(<-lmO=^(m),

W(rm.^) = (s (rO,%/(Z(rO)^(m)^(n))= (r, %7(̂ )) ̂  z7^)) = ̂  (rm) T (/n).

In order to establish, that W is surjective, it is enough to show, that //-^ 1
on L/ == exp (&/), or that j f j by •7^ Q. We have &1 == (ad^)7/* and hence
it f\^f= 0 there is an ^ in & such that f= (ad (<))'/*. This, however,
is impossible, if f^ 0, since ad (?) is nilpotent. Finally it is clear, that
ker W = ker {jj- \ L^) = 4.

2° Let us form, as in the proof of Lemma 6.4, the group A == G//L/.
We denote by o- the canonical homomorphism from G/ onto A, and by /
the isomorphism from F onto A such that the diagramm
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be commutative. Let Ai be the centralize? of Ao in A. We have by
Lemma 6.5, U^ == T\ and hence / (U^) = A^.

3° We denote by X the Lie algebra of Ao, and by d the element of V such
that &7 (c?) = g\ jg^. We observe, that if w € ^ is such, that exp (Rw) =j(T),
we have (w, d) ̂  0. In fact, evidently j (T) = a- (Ly). Let i? be an element
of &y such that dta" (?) == w. Then

(w, d) = (d^ (/), d) = (I, 0^ (d)) == (Z, f) ̂  0.

Applying Lemma 6.6 with A in place of T loc. cit. we conclude, that Ai = A^.

4° Let us observe next, that with the above choice of d we have
(T (A^) = Gf Lf. To this end we note, that if % and S are as in Lemmas 6.3
and 6.4 resp., we have clearly ® = ^(A^); thus cr (S) == A^ and % ==^(A^).
In this fashion the desired conclusion follows from Lemma 6.4.

5° Summing up, we have j (U^) = A^ and hence W (Gg. L^) = U^, from
where it is clear, if we put G^L/= SL^- (S C S) that LP = ^ ( r , u ) ; r e S , u € T J
as stated at the start of (&).

c. Given a subset M of G^ let us write, as in Section 3, M6 for

{ {m, u); m € M, u € T } C G^. By what we saw above we have$ (U^) == G !̂ L.
But, by the proof of Lemma 3.5, the left hand side is the same as K^
proving, that K = Gg. L.

d. To establish the second assertion of our proposition we recall (c/*. Lem-

ma 3.3), that U6 =~^ (U) and (G^)o = ̂  (Fo). In this fashion Ol/(G^)o K
is isomorphic to U/Fo U^ and hence, by Lemma 6.5, to Fi/r^. By 3° and 4°
in (&) above the last group is isomorphic to Gg-Lf/Gg-Lf, Since
G^nLy == G^nL/ this implies finally, that ^L/(G^)o K is isomorphic to
Gg./Gg., completing the proof of our proposition.

Q. E. D.

REMARK 6.2. — For later use we note, that the above reasonings imply
easily, that OL = (G^)o G,. L.

7. Let g be an element of fl' such that f == g \ TSf ̂  0. We assume,
that t) = pol (/*) [cf. 4 (&)] is such, that Gg l)Ct) [c/. 4 (e)]. Let us form the
representation TC = Ind (1), /) of L = [G, G] [cf. 4 (/*)]; we shall denote
also by n its image in L. If ri and K are related as in Lemma 3.6, by

Ann. J?c. Norm,, (4), IV. — FASC. 4. 64
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Proposition 6.1 we have K = G^ L. Putting d = 1) n&, we have G^dcd,
and the homomorphism a -> det (Ad (a-1) &/^) of G .̂ admits an extension
^ to K such that ^ L = 1. Let us denote by 9€-o the linear variety of
function on L, formed as 9€ in Lemma 5.2, but with t) = pel (/*) as specified
above. Given e {x) € ̂ o and a€ K, we set (r' (a) e) {x) == (^ (a))172 e (r1 xa)
[t=s (a)]. We show as loc. cit. that : 1° T' (a) transforms <^o into itself
and gives rise on H(7i) to a unitary operator T (a) $ 2° the map
a \-> T (a) (a€K) is a continuous projective representation of K, such that

T (a) T (b) = %/ (7 (rt)) r (ab) [a, b e K; r == s (a), t = s (6)].

A

Let 5^ be some element of G .̂ FC/*. 4 (c)], and let us put

^(^X^))^) (aeK).

TVe claim, that T^ 15 a unitary representation of K. on H (n). To this end,
with the notations just used let us note, that

T/ (^) T/ (^) = % (^) ^ (^ ^ (b) = % (rQ x/ (I (rf)) T (a6) = ^ (s (rt)) T (a^),

whence the desired conclusion follows by observing, that s {ab) = s {rt).

LEMMA 7.1. — With the above notations the representations Ty and
ind (1), % g; K) [c/. 4 (e)] are unitarily equivalent.

Proof. — For notations unexplained below the reader is referred to 4 {a)
and 4 (e) resp..

a. Putting A =: G^ D we get Ao = exp {^ + d ) ; also Ko = exp (^ + b).
In this fashion, if a belongs to A we have

AA (a) = det (Ad (a) \ (^ + d)) and AK (a) = det (Ad (a) \ (^ + b))

and thus
n (a) = AA (O)/AK (a) = det (Ad (a-1) [ b/d) == ^ (a).

Hence there is a Borel measure dw {q) on K/A satisfying^ {qk) = ̂  {k) dw {q),
apd if h is some element of S€ we have

^ (K/A) = f (| A (x) |2/^ (a;)) dw (g).
^K/A

&. We write again Gg. Lf = SL^ [c/. {b) in the proof of Proposition 6.1].
Let dv {p) be an element of the invariant measure on L/D.
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For g in S€o we define the function G (x) on K by

G (x) = (^ (Q)1/2 % (0 g (y) (x = ty; teS, yeL).

To establish our Lemma, it will be enough to prove, that : A. G belongs
to 9i and, if dw {q) is properly normalized, ^ (K/A) = ̂  (L/D) for all g
in z^o; B. If a == rn (r€S, n€ L) is a fixed element of K and we put

9' W = % (̂ ) (^ '(a) <7) (y) = Z (r) ̂  (a))1/2 ^ (r-1 yd) (y e L),

thenG'(^) == G (xa) (^eK). •

c. Let us prove first assertion (A) formulated above.

1° We claim, that if a is some element of A, we have

G(ax)==(^(a))i/^(a)G(x)

on K. In fact, if a = rm^ x = ty (r, <eS; m€D, y€L) then
ax ==- s (rt) [l(rt)t~1 mt.y\\ in this fashion

G (ax) == ̂  (s (rf)))1/2 ^ (s (rt)) g (I (rt) t-1 mt.y).

Since g belongs to ff€o we have

g (I (rt) t-1 mi. y) = ̂  (/ (r/)) ̂  (m) g (y)

and thus
G (ax) = (^ (r))1/2 % (r) X/ (̂ ) (^ (O)172 X (0 <7 (y).

Since ^ (r) = ^ (a) and ^ (r) /j (m) = 9 (a) [cf. 4 (e)] we conclude finally,
that

G (ax) == (^ (a))1/2 9 (a) G (x).

2° We show next that if, for given dv (p), the measure dw {q) on K/A
is appropriately normalized, then we have

^ (K/A) = f ( G (x) |2/^ (x)) dw (q) == f \g (y) p dv (p) = ̂  (L/D).
17 K/A ^L/D

Since G^ normalizes D, Gg. operates on L/D by the rule

pb = Db-1 xb == b-1 Dxb (p = Dx, b^Gg).

Reasoning as in (a) of the proof of Lemma 5.2 we show, that
dv (pb) = ̂  {b) dv (p) (&eG^). Let us denote by 7 the homeomophism
from L/D onto K/A which assigns A x to D x (o;eL). One sees at once,



508 L. PUKANSZKY

that if b and I are elements of Gg. and L resp., we have

Y (pb) = Y (p) & and y (pZ) = y (p) Z.

Therefore the image (fo' (^) of <fo (p) under y satisfies rfy' (^/c) = ̂  (/c) rfp' (^)
for all k in K, and hence we can assume, that it coincides with dw {q). To
obtain the desired conclusion it is enough to remark that, writing H (q)
and h (p) for the functions | G {x) 2/^ {x) and [ g (y) |2 on K/A and L/D
resp., we have H (y p) == h (p) (p € L/D).

3° To complete the proof of assertion (A) in (&), it suffices now to show
that, for any fixed Oo in K the map hk ^-> jj (h) G {kao) (A€H, /cSE) is
holomorphic on HEcEc. Assuming Oo = rm (r€S, m^L) we get

kao = krm = r (r-1 kr) m,
and thus

and
G (ka,) == (^ (r))1/2 ̂  (r) G (r-1 kr.m)

V (h) G (too) = (+ (r))1/9- ̂  (r) ̂  (r-1 Tir) G (r-1 kr.m)

from where the conclusion follows as in (a), Lemma 5.2.

d!. We complete our proof of Lemma 7.1 by establishing assertion (B)
in (&) above. If a == rm and x == ty (r, ^eS; w, 2/GL) we have

xa^sW^Wt^ya};
hence

G (xd) = (+ (5 (fr)))1/2 ̂  (5 (̂ )) ^ (/ (tr) r-^ yd)
= (^ (O)172 (^ (o))172 % (5 (tr)) ̂  (I (tr)) g (r-^ yd)
= (^ (O)172 Z (0 [% (̂  (^ (a))^ 9 (r-1 yd)] = (+ (f))1/2 ̂  (Q ^/ (y) == G' (a:).

Q. E. D.

LEMMA 7.2. — With the above notations assume^ that \\j = pel (/*) is such

that G^ t)yCl)y {j = 1, 2). rA^TZ the unitary representations ind (t)i, %, g; K)
an^ ind (1)2, ^5 g; K) ar^ unitarily equivalent.

Proof. — Let us denotes by M the Lie group defined on the set
| (6, Z ) ; &€ G .̂, Ze L j by the law of multiplication

(b, 1) (b,, h) = (bb,, b-,1 Ib, I,).

We assume first, that S€o and r\. are as in the proof of Lemma 7.1. For s
in 3€o and w = (&, ? )€M let us write (U' (w) g) (a;) = (^ (fe))172 g (6-1 ^M).
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Proceeding as in (a) of the proof of Lemma 5.2 one shows easily, that
(U' (m) g) {x) lies again in 3€o such that its norm is equal to that of g.
Denoting by U (m) the corresponding unitary operator on H (n), a simple
computation proves, that the map m ̂  U {m) is a continuous unitary
representation of M. We observe finally, that if T is as at the start of this
section we have for a = rm (r€S, m€:L) that T (a) = U (r, m).

Let us repeat the above construction by substituting in place of 1) the
subalgebras l)y (j = 1, 2) of our lemma; we denote by U/ {j = 1, 2) the
representations of M arising in this fashion. Next we make use of the
crucial fact, established in [1] {cf. Theorem III. 3.1, loc. cit.) that Ui and Ua
are unitarily equivalent. Bearing in mind the connection, just pointed
out, between T and U we conclude from this, that the unitary equivalence
class of the projective representation T of K is not affected by a change
of 1) == pel (/) employed in its construction. Since by definition
T/ (a) = X W T (a) [t == s (a)] t^le S8ime observation applies to T.^, and hence
the assertion of our lemma is implied by Lemma 7.1.

Q. E. D.

COROLLARY 7.1. — With the previous notations, the representations
ind (l)i, 5 ,̂ g) and ind (t^a, 5 ,̂ g) are unitarily equivalent.

Proof. — By virtue of Lemma 7.2, it suffices to observe, that

ind (by, x, 9) = ind (ind ft/, x, <7; K)) (j = 1, 2) [cf.4 (^)].
K 4-"

REMARK 7.1. — Before proceeding we summarize some notations and
results of Section 3. As above (cjf. the observations proceeding Propo-

sition 6.1) we assume, that loc. cit. we have L = [G, G], Given TI€L we
denote by K^ and "U^ the group K and 1L resp. as in Lemma 3.6. We set

<& {^) = ( p $ p€ K^, p | K^ == 7i [; (6 (ii) is nonempty and if ^ is a concrete

representation of the class p€ K^, ind C is a semifinite factor representation,
RTC-^G

the type of which is I if and only if the group ^/(G^o K is finite {cf. Lem-

ma 3.7). We put (6 = U r.fEL ® (7l) and define the map T] : (& h^ G (== set
of all quasi-equivalence classes of factor representations of G; cf. [12],
18.6.2, p. 323) by r, (p) == quasi-equivalence class of ind ^ [ ^ € ( { p } ) c ,

K^G
pe<& (^)]. ® is a transformation space of G and we have Y] (pi) == YJ (pa)
(py€®, j = 1, 2) if and only if there is an element a in G such that
a pi == pa (c/*. Proposition 3.1).
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If ^ is the unitary equivalence class of Ind (t), f) [cf. 4 (/)] then, by Propo-
sition 6.1, if g is an arbitrary element of g' with $ & == /*, we have
K^ == G^ L and ^/(G^o K^ === G^/G^. Given g€fl ' , unless specified
otherwise, ^ will stand for the unitary equivalence class corresponding
to L/ [cf. 4(/); f= g &]; in particular usually we shall not explicitly
indicate the relation between g and TI.

LEMMA 7.3. — Let g be an element of g' with f = g ^^0 ,1 )= pol (/*)
_ A

satisfying G^ l)Ct) and y,€G^. Then ind (I), /, g) is a semi finite factor
representation. It is of type I if and only if the group G^/Gg. is finite.

Proof. — Since, if ind (1), y, g; K^) = C, we have ind ^ = ind (t), y, g)
KTC/^G

[c/. 4 (g)], by virtue of Remark 7.1 it is enough to establish, that
^ | L€ ( { it } )<,. This, however, is implied at once by Lemma 7.1.

Q. E. D.
A

REMARK 7.2. — Let us write (Ji for set U^eg' G^; an element p in (?l is
/ A \ '

determined by a pair (g, %) (^gGfl ' , %eG^. For a complex subalgebra t)
of be we put 1) = pol (p), if t) = pol (g | It) and G^ t)Cl). Also; we shall
write, with such an 1), ind (1), p) and ind (t), p; K^) in place of ind (t), /^, g)
and ind (1), %, g; K^) resp.. By virtue of Corollary 7.1 and Lemma 7.3,
the quasi-equivalence class of ind ((), p) is an element, well determined

by p€^; of G; we shall denote it by ^ (p). Similarly, ind (1), p; K^) is
/ A \

an element of \K^)c, the unitary equivalence class of which belongs to
© (n) and depends on p only (cf. the proof of Lemma 7.3); we denote
it by X (p). If g [ & == 0; K^ = G and we define X (p) as the element,
corresponding to %^, of G. For p == (g, %)€^ and a€G we put

r A _
ap=(ag, a^) L^X^0^ is defined by (a yj ( & ) = = % (a-1 &a), &eG^;

c/*. 4 ( / i ) j ; we have obviously a {bp) = {ab) p (a, &eG). With these nota-
tions we have X (ap) = a X (p). In fact, this follows at once from Remark
4.1 substituting the inner automorphism b ^->a.ba~1 ( & € G ) in place of a
loc. cit. Let us observe finally; that by what we saw above, the diagramm

is commutative,
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LEMMA 7.4. — For p€<6 (ix), the set \ (p) is an orbit of ̂ ^

Proof, — Suppose, that pj = (gj, ^-) are elements in X (p) {j = 1; 2); we
are going to show the existence of an element u in "U^ such that upi == pa.
Let us assume first; that gi [ & == ga [ & (=== /*, say). Since, if /* = 0 our
statement is trivial, we shall assume, that f ̂  0. We claim, that in this
case ^i = %2. In fact, we have G^ = G^ (== B, say; c/*. Remark 6.1).
Let co' be a character of B such that 5^2 = (JL)' )C1* ^e have then
co' | (LnG^) =1; let us denote by OD the character of K^ == BL such that
co [ B = co' and (o | L == 1. We infer easily from the proof of Lemma 7.1,
that if 1) = pol (p^-) (7 == 1, 2) then ind (1), p2; K^) is unitarily equivalent
to <o.ind (1), p i $ K^). Since however; by X (pi) == X (pa), it is also unitarily
equivalent to ind (1), p i$ K^) we conclude, that CD' = 1 and thus /i == ^2.
We write k^ == & + fc = ^ + fl^ and observe, that (K^)o = exp (k^).
We have gi k^ == g ^ \ k^ since

f (^ | k,) = d fo ] (K,)o) = d (^ | (K,)o) = i (^ | k.).

Hence, by virtue of Lemma 6.2, there is an element b of (G/)o with
bgi == ga. Let us add, that in this case also b ̂  = %i == ^3. In fact,
we have first b G^ b~1 = G^ == G^ == G^. In this fashion it is enough
to establish, that for all S in G^ : b S&~1 S"1 €G^ = ker (^ | (G^-)o), which
is true, if we can show b Sb~1 S"1 € L^- = ker (^[L^) (c/*. the proof
of Lemma 6.4). But with notations as in (b) of the proof of Propo-
sition 6.1 we have cr (G^.) = Ao, and o-(G^)c o-(G^Ly) ==== Ai whence we
conlude, that[(G/)o, Gjckera= Ly. We recall {cf. Remark 6.2), that
^^ === (G/)o G^ L, Hence, summing up, we have shown, if gi [ b === ga | ^?
that pi and pa lie on the same "U^ orbit. From here we settle the general
case as follows. Writing again ̂  to indicate unitary equivalence, if
l)y = pol {pj) {j == 1, 2) we have by assumption Ind (l)i, /i) ̂  ind (l)i,
pi ; K^) | L ̂  ind (l)a, p 2 ; K^) | L r>u Ind (1)3, /*2), and thus Ind (l)i, /i)
^^^ Ind (1)2, /'2). Hence, by 4 (/), there is an element I of L such that
replacing, if necessary, pi by Zpi, we have gi | & = g 2 | & and therefore we
can complete our proof as above.

Q. E. D.

LEMMA 7.5. — With the previous notations we have ^ (pi) = ^ (?2) if and
only if pi and p^ lie on the same orbit of (%.

Proof. — The condition being evidently sufficient, let us prove its
necessity. If ^ (pi) == ^ (p^) we have Y] (X (pi)) = Y) (X (?2)) and hence,
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by Propositon 3.1, there is an element a of G with a X (pi) == X (pa) in ©
But a X (pi) = X (api) and thus our statement is implied by lemma 7.4.

Q. E. D.

We sum up the main conclusions of the previous considerations as
follows.

THEOREM 1. — Let G be a connected and simply connected solvable Lie
group with the Lie algebra g. Let p = (g, )<) be an element offfi {cf. Remark
7.2) such that g & ̂  0 (^ = [$, g]). Then the unitary representation ind (1), p)
of G, for any choice oft}== pol (p) (cf. loc. cit.) is a semi finite factor represen-
tation. It is of type I if and only if the index of the reduced stabilizer Gg^
[cf. 4 (c)] in the stabilizer Gy of g is finite. For pj^ifi and l)y == pol (py)
(j = i, 2) the representation ind (t)i, pi) is quasi-equivalent to ind (t)2, p^)
if and only if pi and p^ lie on the same orbit in 0^\ in this case they are also
unitarily equivalent. Finally.^ ind (1), p) on L = [G, G] restricts to the

i . A

transitive quasi-orbit corresponding to L (g | o) in L.

CHAPTER II.

GENERALIZED ORBITS OF THE COADJOINT REPRESENTATION.

SUMMARY. — The factor representations obtained in Chapter I provide a central decom-
position of the regular representation only if sufficiently many orbits of G on 9' are locally
closed. This is certainly so, if G is of type I, but the group of Dixmier (cf. Summary,
Chapter I) shows, that this can very well be the case even if the representation, belonging
to an element of ^ / in the general position, of the transitive theory is not of type I. On
the other hand, for the group of Mautner, which is the connected and simply connected
solvable Lie group corresponding to the Lie algebra spanned over the reals by the elements
{ Cj\ 1 ̂ ] ^ 5 i with the monvanishing brackets

[d, €2] == ^3, [ei, e^] = — €2, [ci, €4] = 0 e&, [d, e,] = — 0 e^ (6 == irrational).

all representations as in Chapter I are irreducible, but, disregarding a variety of lower
dimension in ^', no orbit is locally closed. A closer inspection of the central decomposition
of the regular representation for this group strongly suggests, that in the general case
one might obtain the (< central components " by forming continuous direct sums of appro-
priate groups of the representations of the transitive theory. The purpose of this and the
next chapter is the verification of this conjecture. More specifically, in the present chapter
we define the geometrical principles of this grouping, which will be done by introducing

A
an appropriate G invariant equivalence relation on (R == ^^^9' Gr^(for the latter cf. loc. cit.
or Section 7, Chapter I). We recall, incidentally, that the factor representations of the
previous chapter are parametrized by ^-/G. In Section 2 we establish the existence of
an equivalence relation % on ^/, uniquely determined by the conditions, that any of its
orbit be G invariant and locally closed, and that any G orbit be dense in it. For a type I
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group the M orbits are simply the orbits of the coadjoint representations. In the case of
the group of Mautner, the orbits of M are the closures of the orbits of the coadjoint repre-

A
sentation. Let (D be an orbit of 11 and let us put ^ ((D) = ^e®^* In Section 5 we
show, that 0 (0) can in a natural fashion be endowed with a topology, which makes it
a principal bundle, with a structure group isomorphic to a torus of the dimension of the
rank of G^/(G^)o (g arbitrary in (D), over (D, and G acts on 0 ((D) as a group, the action
of which commutes with that of the structure group. We also show, that the torus bundle
0 ((D) is trivial. Let po (g) : (D -> 13 (0) be a cross section. If a is some element in G,
there is an element p. (a, g) of the structure group, such that we have apo (g) == ^ (a, g)po (ag)
for all </e(D. In Section 6 we show, that for an appropriate choice of our cross section
p. (a, g) is independent of g. We use this in Section 7 to prove, that the collection of
the closures of G orbits defines an equivalence relation ̂  on 0 (dD). It will be the purpose

^
of the next chapter to establish, that the equivalence relation ̂  defined on (R, == u g^ 9' Qg by
the union of all '$ orbits for all possible choice of (D in 97%, will have the property indicated
before. Let us observe, incidentally, that the 0 orbits are homogeneous spaces of connected
solvable Lie groups. Let T be the canonical projection from 0 (©) onto (D. If (3D is acted
upon transitively by G, which is always the case if G is of type I, then for any *$ orbit 0
in 0 (<D), (0, T) is a simple convering of (D. (This is so also for the group of Mautner,
but has for reason the triviality of the structure groups) In Section 8 we show on the
example of a group of twelve dimensions, that in the general case the situation is completely
different. We construct examples of 0 ((D), such that the structure group is onedimensional
and that either 0 ((D) itself is a '$ orbit or, for any "Si orbit 0 in 0 ((D), (0, r) is a finite
covering of (D, and the degree of the covering can be prescribed.

1. In the following V will denote a finite dimensional vector space over
the field of the real or complex numbers. We shall write g for a nilpotent
Lie algebra over the same ground field; G = exp g will stand for the
corresponding connected and simply connected Lie group.

We recall, that a linear representation of G on V is called unipotent,
if the range of its differential is composed of nilpotent operators only.
Let F be a subset of V and a (p) some compex valued function on F. We
shall say, that a (p) is locally rational on F, if for any point po of F there
are polynonials P (.r, po) and Q {x, po) on V, such that Q (po, po) 7^ 0, and
for some neighborhood U of po in V, where Q [ U 7^ 0, on U n F a (p)
coincides with the rational function P (.r; po)/Q (^; po). Note that, in
particular, a locally rational function on F is continuous in the relative
topology of the latter.

With the previous terminology we have

PROPOSITION 1 . 1 . — Suppose^ that G acts via a unipotent representation
on V. Let V == Vo 3 Vi 3 . . . D V^ == (0) be a Jordan-Holder sequence
for G, and assume, that p / e Y / _ _ i — V y (1^7'^w). Then there is a
sequence of subsets V == FoDFi 3 . . . D F^ ̂ z (0) with the following proper-
ties. For any j (1 ^j' ̂  M) Fy is G invariant and the dimension of any

Ann. EC. Norm., (4), IV. — FASC. 4. 65
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G orbit in Fy_i — ¥ j is constant; F,i is the collection of all fixed points of G.
Let j be fixed as abo^e, and let us denote by d the (positive) dimension of some
G orbit in Fy_i — Fy. There is a subset 0 <j, <. . . <j^ < m of {1 , 2, ..., m}
and a system of m functions { P j { z ' , x); l^j'^m} on Kdx{'F/-l — Fy)
(K being the ground field under consideration) with the following
properties : 1° For any fixed x in Fj_, — F,, Pj {z, x) is a polymonial in
z == (^i, ^2, . . ., ^)€K^ and the coefficients are locally rational functions
on Fy^-Fy; 2o We have P,, (z; x) = z, (1 ̂  /c ̂  rf); 3o J/ j ^ 5ome
integer between 1 and; w an^ ( == sup /c, Py (2;, ^) depends on { z/,; h ̂  t }

Jk^J

only; 4° For any x in Fy_i — ¥ j we have

( m ^

G x = j u; v =^Py (z; x).u,, ze K< .u;u ==^P^(z;x).u^z^
7=1

For each x^ the functions { Pj {z; x}; 1 ̂ j ̂  m } are uniquely determined by
the condition, that they be polynonials in z€K^ satisfying conditions 2°, 3°
and 4°.

R E M A R K . — We are going to make the description of the above situation
much more precise in the case, when the representation in question is
the coadjoint representation of G {cf. Section 4 below).

Proof. — Given a in G and v in V; we shall write au for the action of a on y.
In the following, to take a definite case, we shall assume, that K = R;
the case K = Q can be settled similarly.

a. Given I in fl, let us put lu = dfdt [exp {tl)] v |^o (>€V). We denote
by Tiy the canonical projection from V onto V/V/ (O^j r^m) . Let us
write jg^ for the Lie algebra of the stable group of ^j {x) (r^eV) with
respect to the action of G on V/V/. We have

^/(^ ' Z$ IX FEE 0 (V,) ), 9 = ̂ (.Z-)3^^ . . . 2^,nW = }» 9 = ^o(,r) 3^(^:3 . . . ^.^,n{x) = ̂

and dim g^_^)/fl^ == 1 or 0.
We denote by f' {x) the function from V into the collection of all subsets

of I 1, 2, . . ., m } (empty subset included) defined in the following fashion :
j belongs to f {x) if and only if fl^^Dfl^,). Let & be the range of /.
For e€@, we shall write d {e) for the number of elements (^0) in e.
Observe, that d (f {x)) = dim (fl/Jfl^), and thus we have d {f(x)) = dim o {x),
where we set o {x) = G x. Let us put; for some e in 6, ©e = { x ' , f { x ) == e };
then ©g is invariant under G. In fact, if we write, for a in G and I in g,
al = Ad (a) .1, then a exp {1) a-1 = exp (a;), and g^.^ == a$^, proving our
statement.
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fc. Let us fix an element e of 6. Our next objective will be to establish
the existence of a joint parametrization for the G orbits in ©„, as indi-
cated in the above proposition for Fy_i — Fy. Evidently, we can assume
d {e) > 0.

Let {lj\ 1 ̂ - j ̂  L = dim $ } be a basis in g, { v-\ 1 ̂ j ̂  m j a basis
in V, such that [u^ v ' ^ ) == S^- (1 ̂  i, j ̂  m). Let us put a^ (x) = {l/,x, i^),
and Ay {x) for theJxL matrix { a ^ ( ^ ) ; 1 ̂ i^j, i^k^L} (^€©c fixed).
We have by definition j^e = f (x) if and only if there is I in g such that
Ix = Vj (V/) implying, that j belongs to e if and only if

rank Ay (x) == rank (Ay-i (x)) +1.

Assuming e == [ 0 < ji < j^<.. . . < j^ ̂  m ] [d == d (e) > 0] we have in
this fashion rank (Ay (^)) = r (1 ̂  r ̂  d). Let

M r ( r ) = { b ^ ( x ) ; l ^ i , k ^ r }

be an rXr nonsingular submatrix of Ay^ (a;), { y^ (y) ; 1 ̂ j ̂  r } be

rational functions on V such that ̂ "b^ {u) y^ {u) = S.r (^eV), and let

us put

^(x)=^yr(x)l^

where we have denoted by 0 < ai < < . . . < < a,. ̂  L the coloumn indices
of A^ (.r), corresponding to Mr (rr). Observe, that by virtue of our cons-
truction, L,. (x) x = u^ (Vy) and | L,.+i (^), . . ., L^ (re) } is a supplementary
basis in jg .̂ (^) to ^.

c. Let us put

g, (I-, x) == exp (t L/ (a;)) [ f€R; l ̂ j ̂  d],
T = (fi, t,, ..., ̂ )e R^ and g (T; ̂  = g, (t,;x) ̂  (^2; .r)... ga (tci; x).

With these notations we have

G x == o (x) == { y ; y == g (T, x) x, Te R1}.

To this end it is enough to show, that if g is a subalgebra of codimension 1
of g, and if ?€g — fl ^d G = exp y. the map 3> : R X G -> G defined by
(D (^ g) = exp (tl) g is a homeomorphism. Through a repeated application
of the said assertion we can then conclude, thet the map <&i : R^xGi ->• G
(Gi = exp ga;) defined by $1 (T, g) = g (T ; x) g is a homeomorphism.
Let g == $L^$L-I 3 • * . 3$o := 0 be a Jordan-Holder sequence for g
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such that JJL-I = 8, and assume, that ^€fl./ — $/-, (^ = ^). Writing
^ = log (exp^.expy),

m
^==y^.;^ ... (x, y<=$),

a simple inspection of the Hausdorff-Campbell formula yields that

(xy)L ==XL+ VL

(xy)/ == x, + yj + ̂  (.K/-M, ..., XL; y;-M, . . . , yi) (1 ̂ j ̂  L — 1)

where the functions { ̂ j} are polymonials. Therefore, to obtain the desired
conclusion it is enough to observe, that for a given system { gy; 1 ̂  j ̂  L }
in R, the set of equations

9L == XL + 0, ^L-I = 0 + l/L-l + +L-1 (rCL; 0).

^L-2 = 0 + yL_2 + k-2 (0, a-L; ?/L-1, 0),

admits a unique solution in x^ and f i//; 1 ^y ̂  L — 1 { .

rf. Let us write (^€©^ fixed) :
fn

g(T;x)x==^Q,(T,x)u,.

Evidently, the functions { Q ^ ( T ; ^ ) | are polynomials in TeR< For
a / (1 -= 1^=. ̂ ) let us put h = sup A. We have

fk^f
j

7r/ (g (T; x) x) == g, (t,; x) ... gn (tk\ x) n, (x) =^ Q^ (T; x) TT; (̂ -).

Hence Q y ( < ; . r ) depends only on [t^t^ . . . , ^ ) . If / = //„ we observe,
that since L/c (rr) ^ ̂  v^ (VyJ we obtain

^ (̂  )̂ ^A (̂ ) = h ̂ n (vu) + ̂  (x);

thus Q,,(T;.r) is of the form ^+ R/, (^, ^, . . . ,^_ , ;o ; ) , where R/, is a
polynomial. Let us set ^ = = Q ^ ( T ; ^ ) (1^/c^rf); there is a system
of polynomials { ̂  (^, ̂ , . . . . z/,_i; x) ; 1 ̂  /c ̂  ̂  } such that

tk = Zk + ̂ k (Zl, ^2, . . ., Zk-l; X)

and the coefficients of ^/, are polynomials in those of { Q^ }. Substitu-
ting these expressions for t / , in the remaining members of the family { Qy },
we obtain a system of functions { P, (z; x) ; 1 ̂  / ̂  m} having the follo-
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wing properties : 1° For each /, Pj[z^x) is a polynomial in z===(^i,Z2?-. . ^d) € R^;
2° We have Py, (z; x) = ̂  ( i ^ k ^ d ) ; 3° If ^ == sup /c, Pj (z; ^) depends

y'A.^/
on { 7,k\ 1 ̂  k ̂  t } only; 4° We have

( m }
0 (X) == y; U =^ Py (Z; )̂ Py, 2€ R^ .

( 7=1 )

In addition, it is clear from our construction, that any coefficient of a
product of powers of the z^s in Py, as function of the components of x^
is of the form P/Q, where P and Q are polynomials on V fQ {x) 7^ OJ.
If U is a neighborhood of x in V, such that on U all denominators are
different from zero, then we have analogous statements, with the same P/5,
for any other element x in Un®e.

e. Let us assume now, that for a given element x of V there are two
sets of polynomials { Py {z) ; 1 ̂  j' ̂  m } and { Qy ( z ) ; 1 ̂  / ̂  m } - leading
to a parametrization of o {x) as above and such that P^ {z) =. z/,,
Q^ (z) = z/, (1 ̂  k ̂  d). We claim, that Py = Qy (1 ̂  / ̂  m). To this
end it evidently suffices to show, that /^ == lk ( l^=A:^rf) . But this
follows at once from the observation, that if ( == sup /c, we have

Jk^J

t = dim Try (o (x)) (0 ̂ j ̂  m).

To complete the proof of Proposition 1.1, let us assume, that the
number of elements in <^ [cf. (a)] is M+ 1. To obtain the sets { Fy; 1^/^M}
it will be enough to take FM = ®eo? eo being the empty set in &\ other-
wise let { ©A; 1 ̂  /c^ M } be the family of sets { ©e; e 7^ eo } arranged
in some order, and let us define

F; = (u^>y €^)u FM (0 ̂ j ̂  M — 1).
Q. E. D.

REMARK 1.1. — Let us assume, that G as in Proposition 1.1 is given
as an invariant subgroup of the group A, such that the representation
of G considered above arises by resticting to G a representation of A on V.
Let us suppose in addition, that we have AV/^V/ (0^/^m). Then
we have also AFy^Fy (0^ /^M). In fact, to prove this it suffices
to establish, that f {ax) == f (x) for all x in V and a in A. For a€A and
?€f l we define al by a exp {I) a~1 == exp (aZ). Then the desired conclusion
is implied by the observation, that Sr.-(ax) = aS^•{x) [0 ^z J ^m'7 c^ (a)].

REMARK 1.2. — Given a Jordan-Holder sequence { V/}, a sequence
of elements { Vj', l^/^ m }, satisfying ^€Vy-i — V/, will be referred
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to as a Jordan-Holder basis in the sequel. This, by virtue of Propo-
sition 1.1, determines a unique parametrization, with the properties as
specified loc. cit., of any orbit G x ' , we shall call it simply the canonical
parametrization and the indices in f {x) [cf. (a)] the indices of this para-
metrization.

Assertions, similar to the following Proposition 1.2 have been widely
used in the literature but, as far as the present author can ascertain it,
these have never been proved.

PROPOSITION 1.2. — Let V be a finite dimensional real vector space, A
a closed connected subgroup of GL (V). Assume, that A can be written
as LM, where M is an invariant unipotent subgroup, L a closed abelian
subgroup of the form HT, where H and T are connected groups of semisimple
endomorphism having real and complex eigenvalues of absolute value one
resp.. Let x be a fixed element of V, Aa; the stabilizer of x in A, and { On }
a sequence of elements in A such that On x -> ax {a € A). Then On -> a mod (Aa,)

Proof, — a . LEMMA 1.1. — The assertion of Proposition 1.2 is valid,
if A itself is a unipotent group (that is A == M).

Proof. — With the notations of (c) in the proof of Proposition 1.1,
if y is in A x, we have y = g (T, x) x (TeR^), and by what we saw
in {d) loc. cit., T is uniquely determined by y and depends continuously
on it.

Q. E. D.

b. LEMMA 1.2. — Let Me be the complexification of M acting on Vc.
Then we have (Me x) 0 V = M x.

Proof. — Let V = V o D V i D . . . DV^ = (0) be a Jordan-Holder sequence
for M and ^€Vy_i - Vy (1^/^m). Then [(Vy)c; 0 ^ / ^ m } is
a Jordan-Holder sequence for Me in Vc. Let

( ^ \ /
M x == y; y =^ P, (z) y,, ze R1 [ and Me x == j u; v =^ Q; (u) v^ ueC

( 7=1 ) ( /=l

be the corresponding canonical parametrizations (cf. Remark 1.2 above).
To establish our lemma, it evidently suffices to show, that Pj (u) = Qy (u)
for all ^eC^ and /. To this end it is enough to prove that the indices
of these two parametrizations (cf. loc. cit.) coincide. Let Tiy be the cano-
nical projection from V onto V/V/; we denote by the same symbol the
canonical projection from Vc onto Vc/(V/)c. To obtain the desired
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conclusion, writing M = exp m and remembering what we saw in (a) of
the proof of Proposition 1.1 it suffices to observe, that evidently

("^w = ("^(^c (0 ̂ J ̂  m).
Q. E. D.

c. Let Vc == WoDWiD . . . DW^z = (0) be a Jordan-Holder sequence
for LMc. Since, by assumption, L consists of semisimple endomorphisms
for each / (1 ̂  j'^ m) we can determine w / e W ^ - i — W / such that
lWj==(fj(t)Wj (ZeL) . Let ©/, = FA_I — F/, be as in Proposition 1.1,
belonging to Me and Vc in place of G and V loc. cit.; we recall {cf.
Remark 1.1), that A®/fC®/ , . We consider the corresponding cano-

)
nical parametrization Me x -==. ^ Pj (u; x ) Wj\ u€ C^ \ for ;r€®/c with

7=1 )

the indices 0 < j\ < 72 < . . . < ja ^=. m. Let E be the complement of
this set in { 1 , 2 , . . . , / n } and for / in E let us put Xy {x) = Py (0; x).
With these notations we have

LEMMA 1 .3 . — For any I in L and m in Me we have \j (linx) =. <py (t) \j [x)
(a;€®,,/eE).

Proof. — Since Me Tnx = Me x, we have by the uniqueness of the cano-
nical parametrization Pj (z; x) = Pj (z; mx) and thus, in particular,
Xy {mx) == \j {x) {xe ©/,, / € E). On the other hand, we have Me Ix = I Me x
and in this fashion for each u€C^ there is a u '€=C^ such that

Py (u; x) <py (/) ̂  P; (i^; Z.,) (1 ̂ j ̂  m)

from where, putting / = /'/, (1 ̂  /c ̂  rf) we get, that u\ = Qj (?) u/,. There-
fore finally

^ (Z^) == Py (0; Za;) ̂  cpy (Z) P, (0; ̂  ̂  cp; (Z) ̂  ^),

completing the proof of our lemma.
Q. E. D.

d. Using the preceeding observations, we can establish Proposition 1.2
in the following fashion. Let us put LM = { I ' , l^ L, lx^ M x } {x as in
the statement of our proposition); since M x is closed in V, LM is a closed
subgroup of L. Assuming { On }, a in A such that On x --> ax in V, we write
ctn == In Tnn, a = lm {rUn, m € M ; In, ^ € L ) and observe, that to obtain
the conclusion On -> a (mod Aa;) it suffices to prove, that In -> I (mod L^).
In fact, if this is the case we can write In = kn r^ I == kr with /^, k in L
and r^ r in LM. There are elements pn and p in M such that Yn mnX== pnX
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and rmx = px and we have pnX->px in V. Therefore to arrive at the
desired conclusion it is enough to observe, that by Lemma 1.1
pn -> p (mod Mo;).

Assuming, that with the notations of (c) above, ©/, contains x, let us
denote by E' the subset of E for which \j {x) ̂  0; we are going to prove,

that LM = ̂  ker <py. If Z € L M we have Ix = mx . ( m € M ) and thus
7€E'

by Lemma 1.3, X y (Ix) == <py (?) Xy (;r) == Aj {x) implying Xy (;) =1 (/e E').
Conversely, if I satisfies the last condition we have ^j{lx)=(fJ{l)'^j{x)='^j{x)
for all / i n E. On the other hand, if y is arbitrary in ©/,, the orbit M^y

intersects the hyperptane ^ ̂  Uj wj \ in the single point \ V Xy (y) wj\.
( y e E ) (/eE j

Therefore if Xy (2/1) == Xy (2/2) (/e E) for a pair of elements yi and 2/2 in ©/.,
they must lie on the same Me orbit. Hence, in particular, there is an m
in Me such that Ix = mx. But by virtue of Lemma 1.2 m can be chosen
in M, proving ?€LM. Let / be a fixed element in E'. Since A y (u) is
locally rational on ©/(DA x (c/*. the begin of this section and Proposition 1.1)
we have

?/ (̂ ) ̂  (̂ ) = ?7 (in) ̂  (^n X) == ̂  (an X) -> ̂  (dX) == Cp; (Z) ̂  (̂

and hence (pj (In) -> fj {1) if n -> + oo. If ^ == /^ ^, I == ht (hn, AG H;
tn, t €T) we have also fj (hn) — ^j (h) and (py (^) -^ yy {t) for all / in E'.
But then also hn -> h (mod HnL^i) and tn-> t (mod TuL^i) proving,
that In = hn tn — I = ht (mod L^i).

Q. E. D.

COROLLARY 1.1. — Let A, V and x be as in Proposition 1.2. Then
0 = A. xC.V is locally closed.

Proof. — We define the map $ from A onto 0 by <& (a) = ax (a€A).
Let n be the canonical map from A onto A/Aa;; then there is a bijection y
between A/Aa; and 0 such that

be commutative. To prove our statement it suffices to establish, that o
is a homeomorphism between A/Ao; and 0, the latter being taken in the
topology it inherits from V. We infer from Proposition 1.2, that y' is
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continuous. On the other hand, if U is open in 0, ^ (y U)) ==$ (U) is
open in A and hence so is y (U) in A/Aa;.

Q. E. D.

COROLLARY 1.2. — Let V be a finite dimensional real vector space and B
a linear solvable algebraic group in V. Then each orbit o/*B is locally, closed
in V.

Proof. — It suffices to take into consideration, that the connected
component Bo of B satisfies the conditions of A in Proposition 1.1 and
tKat B/Bo is finite {cf. [30], p. 439).

Q. E. D.

2. Let g be a real solvable Lie algebra and G = exp fl the correspon-
ding connected and simply connected Lie group. We denote by § a
fixed Lie algebra with the following properties : flC§, [g, fl] = [§,§],
and § admits a faithful linear representation p, such that p (§) is an alge-
braic Lie algebra. To obtain § with the indicated properties we can
take, for instance, a faithful linear representation of fl, and take the
algebraic closure of its image {cf. [6 a], Theorem. 13, p. 173). Let us
consider the connected and simply connected solvable group G determined
by §. G acts on fi by inner automorphisms, and its range through this
representation is the connected component of a linear algebraic group
C GL (g); the same observation applies to the contragredient represen-
tation of G on g'. Therefore, if x is any element in fl', by virtue of Corol-
lary 1.2 above, G x is locally closed in $'. We are going to make use
of these observations to prove the following

PROPOSITION 2.1. — Let % be a real solvable Lie algebra, G the corres-
ponding connected and simply connected group; we assume, that G acts
on $' through the coadjoint representation. There exists an equivalence
relation M on fi', uniquely determined by the following properties : 1° Any
orbit (D of M is locally closed in g' and is G invariant', 2° For any p€®,
Gp is dense in ®. In addition we have, that (a) G p = ® if and only
if G p is locally closed, (^) For each orbit ® of It there is a connected and
simply connected Lie group Gi such that GcGi, [Gi, Gi] = [G, G] and,
for any p in ®, ® == Gi p.

Proof. — a. Let x be a fixed element of fl' and let us write ® = Gx.
We denote by 3> the map from G onto ® defined by $ (a) = ax (a€G),
by IT, or, T and p the canonical maps from ® onto E = ®/L, from G onto

Ann. Sc. Norm., (4), IV. — FASC. 4. 66
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G/Gx, from G/Ga; onto J == G/Gx L and from G onto J resp. (we recall,
that L = [G, G] = [G, 6]). We put W = ̂  o $ and define y and ^ such
that the following diagramm be commutative

E=®/L

&. Using the above notations we prove first, that ^ is a homeomorphims
between J and E. If U is an open set in E, W being evidently continuous,

W (U) = p (^ (U)) is open in G and hence ^ (U) is open in J. On the
other hand, we know from Proposition 1.2, that <p is continuous and
therefore, if W is open in J, ^ (W) = ̂  (y ( r (W))) is open in E = ®/L,
completing the proof of our statement.

c. Let us denote by ® the relative closure of Gx in ©. Our next
objective is to show the existence of a closed, connected subgroup Gi
of G, containing G, such that Gi x = ®. To this end we write B for
the closure of the connected subgroup p (G) in the connected abelian group
J = G/Gx L and show, that the connected component of the identity Gi
in p (B) satisfies the requirement. Since both G x and ® are L invariant,
it is enough to establish, that

TT (Gi x) = TT (€» (GQ) = TT (©).

But by the diagramm of (a) we have

TT (0 (GQ) = W (GO = ̂  (p (GO) = + (p"(G)) = ̂  (P (G))

since, by (fc) above, ^ is a homeomorphism, and thus 11 (Gi x) = ̂ (G).
Let F be a subset of © ; we shall denote by F its relative closure in ®. If F
is such, that LF = F, we have TI (F) = TI (F), and hence

7: (©) = TT (~Gx) = TT:(GX) = n (^ (G)) == ̂ HG),

proving, that 11 (Gi x) = ̂  (®) and thus also Gi x = ® (= G^C^).
rf. Let us observe now, that, if we replace x by another element y of ®,

the construction of (c) leads to the same group Gi, and thus, in parti-
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cular, Gy= dy. From this we conclude, that defining y r ^ x provided
y ^ G x , we obtain on g' an equivalence relation of the desired sort.

e. To show uniqueness, it will suffice to establish the following statement.
Let Oi and Oa be G invariant, locally closed subsets in $', such that any G
orbit contained in them is dense. Then, if O i H O a ̂  0, we have Oi = 02.
Let us put Oo = O i H O a ; Oo is locally closed in Oi, and therefore there is
an open set U and a closed set F in Oi, such that Oo == FnU. If p is
some point in Oo, we have G p C O o C F c O i , but since G p is dense in Oi,
F = Oi and thus Oo is open in Oi. But if OoCOi and q lies in Oi — Oo,
evidently Gq cannot be dense in Oi. In this fashion Oi^Os, and thus
by symmetry Oi = Oa.

f. To complete the proof of Proposition 2.1, it is now enough to show,
that if G x is locally closed in fl', then G x == ® [cf. (c)]. For this, however,
it suffices to repeat the above reasoning with Oo == G x and Oi == ®.

Q. E. D.

3. The purpose of this section is to collect a few elementary facts,
which will be employed in an essential fashion in Section 5.

a. In the following G = exp fl and G = exp § will have the meaning
as in the previous section.

6. Let x be a nonzero element of g', which we shall keep fixed. Let
us put ® = G.rCfl' .

If g is some element of g' and f = g | &, the subgroup G/CG norma-
lizes (Lc)/CGc and hence, since G^CG/ [for Gg., cf. 1.4 (c)], Gg. (Lc)/
is a subgroup, to be denoted by H^, of Gc = exp $c- Since

G^(Lc)f== ^PO^^)

is connected, H^ is closed in Gc (cf. Lemma 4.2, Chapter I).

If g and gi are elements in $', such that g & = gi & = /*, we have
Gg. === G^ (cf. Remark 6.1, Chapter I) and hence also H .̂ == H^.

c. If I and li are elements in (&c)/? we have ([I, Zi], f) == 0, and hence,
since (Lc)/ is connected, there is a continuous homomorphism <py of (Lc)/
into the group C* of nonzero complex numbers uniquely determined

A
by rfy/ == i (f\ (&c)/). If % is arbitrary in Gg. [cf. 1.4 (c)], there is a
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)C'eHom(H^ C*), uniquely determined by ^ G^ = ̂  %' (Lc)^ == y,,
In fact, any element of G/ leaves 9^ invariant, and in addition since

% I (G^)o = ^r fc = ̂  I ^)] and G,. n (L^ == (G^) o n Ly = exp (^ n b),

we have evidently
x[(G,n(Lc^)=cp/|(G,n(Lc^).

Let us put

A,-{^;^eHom(H,,C*)^|G,e^,+|(Lc)^-9/(.

We also write

§, = | ̂ €Hom (H,, T), ^ | (H,)o ̂  1}.
9 ^ _ _ _
H^ is isomorphic to the dual of the free abelian group H^/(H^)o = G^/(G^)o,

e A.
and H^o. acts, through multiplication, simply transitively on the set H^o..

d. Let g and gi be elements of ® = G ^ and assume, that gi == ag (a€ G-).
We are going to show, that H^ = aH^a-1. We put (0,, (&) == abcT1 (&€ Gc).
The indicated assertion is implied by the following series of observations,
the verification of which we leave to the reader [cf. also 1.4 (/i)].
1° ( oa(G^)=G^, whence also co^ ((G^)o) = (G^)o; 2° ^0^=^ on
(G^.)o$ 3° From 1° and 2° we conclude easily, that ^(G^.)==G^;
4° co,, ((Lc)/) = (Lc)a/. By aid of 3° and 40 we obtain finally'

a^a-1 =c^(H^)==H^.

From this relation we derive at once, that if g, gi € ®, we have G^-LQ = G^Lc.
Let us observe, incidentally, that by virtue of what we saw in (&) above,
the same conclusion holds true if we only know, that g \ tr and gi | & lie
on the same G orbit in V.

In the following we shall denote by H the closed subgroup Gg. LQ of GQ
(g == arbitrary element in ©).

Let us observe also, that the above remarks, along with ^af°^a = y/,
A A

imply, that H^ o co^ = H^.

e. We set J = H/(H)o, and write $ for the canonical homomorphism
of H onto J. Let us put

§ = Jo <D = [^ ^eHom (H, T), ^| (H)o ̂  1 }.
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^ e _
Given g€® and ^eH write ^=^ H^; we observe, that the map

/ Q \ 0 (^
^ -> 4^ (^eH) is an isomorphism of H onto H^ [cf. (c)].

/'. We denote by 0 (®) the set U ^ H^. We let the group H act on
( - A \

0 (®) according to the following rule : if p = (g, ^) t ^gG®, ^GH^ is

some element of 0 (®), and <p€H, we put y p == (g,9^%J- If we define
the map T from 0 (®) onto ® by T p = g we have ry p = T p. Also,

9 . . . -iby what we saw in (c) and (^), H acts simply transitively on T (g) for each g
in ®. We let G, too, act on j0 (®) by setting ap = (ag, a %j [p == (g, %j]

[cf. the end of (6?) above]. We observe, that if <p is some element of H
we have evidently a y == <p, and thus a (<p p) === <p (ap), or the actions of G

e
and H commute with each other.

4. The purpose of this section is to complete Proposition 1.1 in the
special case, when V = g' and G acts on g' via the coadjoint representation.

PROPOSITION 4.1. — Let us assume^ that g is a nilpotent Lie algebra
over the real or complex field (denoted by K). Then, assuming in Propo-
sition 1 .1 that V == g' and that G acts on V via the coadjoint representation^
there is a collection of homogeneous polynomials [ Q -̂ [x}; 1 ^- j ^- M }
on V, such that Fj = { x', x^ V, Q/c (rr) == 0 for k ̂  j } and that for a suffi-
ciently large integer N, (Qy (^^ P/c (^; x) (l^/c^m) î  ̂  restriction of
a polynomial function on K^xV to Krix(Fy_l — Fy).

Proof. — a. We can obviously assume, that the Jordan-Holder sequence
{ Y / ; 0 ^ / ^ m } of loc. cit. arises by considering a Jordan-Holder
sequence g = flm3flm-i3 . . . D go = (0) in g and by taking V/ = g^Cg'.
Let ^ e g y — f l / - i ( l ^ J ' ^ m ) and (^-, ^.) = S,y; then ^•Gfl1.! — g1 and
we can suppose, that Vj = l ' ^ .

b. Given an element x of g', we denote again by Ba; the skew-symmetric
bilinear form B^ (?i, ^) == ([^., l^, x} (7i, ^Gf l ) on f i X g [c/*. 1.4 (&)].
Given a subspace t) of g, we write 1)̂  for its orthogonal complement in g
with respect to Ba;.

Let us put R {x} = (g)^ and gy (.r) == gy + R (.r) (0 ̂  / ̂  m). Since
obviously fi^.^ == (gy {x))^ [cf. (a) in the proof of Proposition 1.1] we
have jef(x) if and only if $y_i (x)C$j(x).

c. Let e and g be different elements of & (cf. ?oc. c^.); we shall define
an order relation between them as follows. We set g <; e if e = 0 (empty
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set); otherwise we define g < e if either d {g) > d (e), or

d(e) == d(g) == d, e == [ 0 <j\ <j, <.. . <j^m},
g =={0<ki <A-2 < . . .< fo^m}

and a === sup P with /p = /cp implies, that /Ca+i < /a+i.

We set Q, [x) == 1 if e = 0; otherwise let us define

Qe(x)==det{([h,l,],x);iJ^e}.

With the above notations we shall now prove the following assertion.
Assume e=f{x)^ then e is the smallest element in S, for which Q^)^0.
To this end let us observe first, that Q^ (x) ̂  0. In fact, since obviously
h^Sj {x) — Sj-i [x} ( /€^) , the system { ;y; j ^ e } is a basis in fi mod (R {x)).
Hence to complete the proof of the above statement it is enough to esta-
blish, that Q^ (x) = 0 if g < e. This is obvious if d {g) > d (e). Other-
wise, with notations as above we have, that { ^, ^, . . . , 4JCg^(^);
since dim ($^ {x)IR {x)) = a, this implies at once, that the system
{lj\ / € g } is linearly dependent in $ mod (R (x)) and thus Q^ (x) == 0.

Note, that in this fashion we can conclude, that

^e == { x; Q^ (x) = 0 for g < e and Q, (x) ̂  0 j .

c?. Let 6 be an element of & different from 0. Assuming

e = { 0 <ji <j.2 <...<jd^m\
we put

^ = ZA (1 ̂  k ̂  d).

For ^ in ©„ let us define the system { h:{x}; 1 ̂  /c ̂  d } by the condition,
that

d

B^ (^, Z^ (x)) = 3^ and ^ (x) =^ a^ (re) e,.
1=1

Then evidently ;, (^)e(fi;,_, {x))i - (^ (^))^ and Q, {x) I, {x) (i^k^d)
is the restriction to ©^ of a polynomial map $' -> g. Therefore, to complete
the proof or Proposition 4.1, it suffices to substitute the system
{ l k (^); 1 ̂ /c^ c?}, constructed above, in place of the system denoted
in the same fashion at the end of (&) in the proof of Proposition 1.1, and
carry out the construction of the canonical parametrization of G x as
loc. cit,

Q. E. D.
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COROLLARY 4.1. — With the assumptions of Proposition 4.1, putting
®y = Fj_i — ¥ j for each j (1 ̂  / ̂  M) there is a map h of ®y into itself,
such that, for a sufficiently large integer N, (Q^- (x))^ h {x) is the restriction
to ®y of a polynomial map of g' into itself, such that for any x in ©^ :
lo h {ax) = h {x) (a€ G); 2° h {x) € G x.

Proof. — We assume, that ®y = ®e (e^S) and write E for the com-
plement of e in { 1, 2, . . ., m }. Then, by virtue of Lemma 1.3, and of
the above proposition it suffices to define

h(x)^^(x)V, (xe^e).

Q. E. D.

REMARK 4.1. — For later use we observe the following. Assuming
d {e) > 0, let us write Pe for the hyperplane { V \ (Ij, V) = 0, / € < ? } in fl'.
Then, putting Ve = PeH ©e, we have evidently \/ {x) = Xj if x^ Ve (/€ E).

In particular, as V yj l'^. describes the Zariski relatively open set Vc,
7€E

we obtain each orbit in ®e precisely once by considering the varieties
of the form { x ' , rcGfl ' , \/ {x) = yj, / € E { .

PROPOSITION 4.2. — L^t ©^ &e as in Corollary 4.1, and let us assume,
that d == dim o (x) for x^ ®y [o {x) == G x]. Then there exists a positive
integer N, a map I from K^x ®y into g, and a map R from ®yX ®y mto K^
6-uc/i ^ot (Qy (^))N I (T, rc) [(Qy (n;))1^ R (y, ^) resp.1 15 the restriction to
K ^ X ® / [to ® y X ® y resp.] o/a polynomial map on K^xg' (on f l 'Xg ' resp.)
such that : 1° J^or each fixed x in ®y, the map [T -^ exp [I (T, rr)] rr] 1.9 a
bijection between K^ azzd G rr; 2° If y^G x and y == exp [7 (T, r^)] x, we
have T ==R(y,x).

Proof. — We suppose again, that ®y == ®e. By virtue of (c) in the
proof of Proposition 1.1, to obtain I (T, x) it suffices to consider the
system { ?/c {x); 1 ̂  k ̂  d } determined in (d) above, and write down
the product exp \t^ li (x}] exp [^2 (^)J . . . exp [tald (^)], through a repeated
application of the Hausdorff-Campbell formula, as

exp [/ (T, x)] [T = (t,, ̂  ..., fc) e K^].

Let us assume, that
e== [ 0 <ji <J'2 <...<jrf^m{.
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Putting for ^e3y =^yjl'^

Rk (y, x) = yy, + ̂  O/A, y^ ..., yu^, x)

[cf. (c?), proof of Proposition I.I], to obtain the map R with the properties
specified above, it is enough to define

R (y, x) = (Ri (y, x), ..., Rrf (y, x)) (x, z/e Oe).
Q. E. D.

The following result will be used in Chapter IV only.

LEMMA 4.1. — There is a bound K (m) depending on the dimension m
of Q only such that, with the notations of Proposition 1 .1 and 4.1, N can
be chosen not to exceed K (m), and then the degree in x of (Qe (x))^ Pj (^; x)
does not exceed (2 m 4" 1) K (m).

Proof. — Given a polynomial P in the groups of variables x, y , . . .,
we shall write dega; P, etc. for its degree in the components of x, y , etc. resp.
We fix e in & such that d = d [e) > 0. Let us observe, that this implies
m = dim g > 2.

a. We observe, that by virtue of {d) in the proof of Proposition 1.1,
for each /, 1^/^m, there is a polynomial F^ (T ;a ,^ ) on K^xK^Xfl ' ,
such that degr Fj, d e g ^ F ^ ^ m — 1, dega;Fy^l, an that putting

a (x) === { dik (x); 1 ̂  i, k ̂  d ] €K^

[cf. (rf), Proposition 4.1], we have

Q,(T;x)^F,(T;a(x),x).

b. Let us set z/, == F^ (T; a, x). Then we get 4 =^ G/, {z; a, x) (1 ̂  k^ d),
where GA is a polynomial on K^xK^Xfi ' . Let us show, that for each /c,
degrt G/( ̂  m7". To this end we observe first, that if LA is such, that
deg<, Gj ̂  Lh for 1 ̂  / ̂  /c, then deg^ G/,+i ̂  (m -- 1) (L/c +1). In fact,
we can write ^+1 = ^+1 + H/,+i (T; a, x) where, by virtue of (a) above
dega H/,+i ̂  m — 1 and degj HA^ m — 1. The desired conclusion follows
by taking into account, that G/, arises upon replacing the variable tj
( l^ /^^) w ^A+I — H/,+1 (T; a, x) through Gy. Next we note, that
dego Gi = 0 < m — 1. Hence we obtain, that dega G/c ̂  m7'1 (1 ̂  k ̂  d)
by observing, that if we set Li = m — 1 and Lj+i •===• [m — 1) (Ly 4- 1)?
then Ly^ mj (/ =1, 2, . . .). Since d < m we get finally, that
L/,^ Lrf < L^ == m772 (1 ̂ k^,d). One proves similarly, that deg^ GA^ m7".
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c. Upon replacing in Fj [cf. (a)] 4 through G/c, we obtain a polynomial
Pj {z', a, x) such that Pj (z; a \x), x) = Pj (z; x). Since

deg^Fy = 1 < m — l , degaF/^m—1, and degiF/^m—l,

using (&) we conclude, that degaPj, deg^Py^ (m — 1) (m771 + 1).

rf. Let F (a, x) be the coefficient of some power of z in P j ( z ' , a , x ) .
By (c) it is a sum of terms cf Xs with r , | s ^ K (m), where we put
K (m) = (m — 1) (^ + 1). We recall, that we have cm, (x) == b,k (x)IQ_e {x),
where bn, (x) and Q<, (^) are homogeneous of degree < m (1 ̂  i, k^m),
Taking a = a (.r) [c/1. (a)] we conclude therefore, that a7 Xs is of the form
h {x)l(Q_e (^l)^^, where A (^) is a polynomial, the degree of which is not
larger than | s | + m | r + m (K (m) — [ r [ ) < (2 m + 1) K (m) thus we
get, that (Qc (.r))^ Py (z; a;) is a polynomial in x, the degree of which
does not exceed (2 m + 1) K (m) (1 ̂  / ̂  m).

Q. E. D.

5. The purpose of this section is to define on 0 (®) \cf, 3 (/*)] the struc-
ture of a differentiable manifold, which turns it into a principal bundle

-^ . -6- ^

over ©, with the structure group H, acted upon smoothly by G, such that
the actions of these groups commute.

In the following we shall assume, that for g€ ® : G^3(G^)o, and write m

for the rank of G^/(G^)o. Observe, that H is isomorphic to ^!m. By
a smooth map from a 6°° manifold into another we shall mean a C00 map.

5.1. PROPOSITION 5.1. — Let a be a fixed element of J [cf. 3 (e)]. There
is a smooth map a" from ® into H such that : 1°.3> (<7 (g)) FEE a; 2° For any g
in ©, o- (g) lies in HL.

Proof. — a. We denote by TC the canonical projection from fi' onto
^'C^c)'- Let us choose a Jordan-Holder sequence for the action of G
on (&c)'- By virtue of Remark 1.1, replacing G loc. cit by L^ and V
by (&c)'? we can conclude, that there is a / ( 1 ^ / ^ M ) such that
7i(®)c®y=F,_,- -F, .

b. Let & be a fixed element of H such that <& (&) = a. We have for
any f€ Ti (®) C ©yC (&c)' : b-'f^Lcf. With the notations of Propo-
sition 4.2 (with G == Lc, K = C) let us form the function

Z(0=Z(R(6-^,f ) , f ) ;
Ann. EC. Norm., (4), IV. — FASC. 4. 67
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for a sufficiently large integer N (Qy {f))^ I (/*) is the restriction of a poly-
nomial map, from (&c)' "Tto ^c? to 7l (^)- Putting ^ (/*) = exp [?(/')]
we have d (/*) = b~1 /, and therefore setting o- (/*) == fcrf (f), the smooth
map o' (/*) from TI (®) into H will have the following two properties :
lo $ (a (/•)) ̂  a; 2° c7 (/•)/•= /•for all /'in ^ (®).

c. Let us define now the smooth map o- from ® into H by o" (g) = o- (/*)
if f = g | ̂  and o' (/*) as in (&) above; we show next, that it satisfies the
conditions of Proposition 5.1. We have evidently $ (cr (g)) == a on ^.
On the other hand, since cr (g) e H == Lc Gg. and o-(g) /*=/*, we have
also a ( g ) € = m = G ^ ( L c ) / .

Q. E. D.

REMARK 5.1. — Observe, that we have actually proved, that cr (g) in
Proposition 5.1 can be chosen in such a fashion, that it depend only on
the projection of g onto &'.

5.2. a. Let { ay; 1 ̂  /^ m ] \m = rank of Gg./(G^)o for g€®] be a basis
in J = H/(H)o ~ G^/(G^)o. For each / we denote by ^j a smooth map
from ® into H, related to aj as is o- to a in Proposition 5.1. Putting,
for (o in C*, arg co = (JD/| 00 |, we define a map a from 0 (®) into © XT"1

by setting, for p = (g, %) € 0 (®) :

a p == (^; arg (% (cr, (^))), arg (% (cr, (^))), . . . , arg (% (cr,/, (^)))).

We observe, that a is a bijection between the underlying sets of 0 (®)
and ©XT772 resp. In fact, if we have forp == (g, %), p = (g', %') in 0 (®) :

A
a (p) == a (p'), then, by definition, g = g', %, X'€H^ and

arg (x (cry (^))) = arg (%' (cr, ^))) (1 ̂ j ̂  m).

By 3 (/*) there is a 9 in J such that y/ == (y o $) y ; since $ (o-y (g)) ̂  ay,
this implies at once, that y (a/) = 1 for all /, and hence y = 1, ^ ̂  y'
and finally p == p'. In this fashion, to establish, that a is a bijection,
it is enough to show, that it is surjective. But with the above notations

arg (((9 o 0) yj (or, (̂ ))) = cp (a,) arg (% (or, (^))) (1 ̂ j ̂  m)

and hence the desired conclusion follows from the fact, that 9 (a/), for each /,
can arbitrarily be prescribed in T.

b. Let { d j ; 1 ̂  ] ' ^=_ m } be a second basis in J. Distinguishing notions,
introduced above, relative to this new basis, by a prime, we show, that the
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map a'o~a is a diffeomorphism of ©XT'71 with itself. To this end let us
write for each / : dj = a^'.a^'. . .a^7. Then we have also

^ (9) = (^ (g)Y^(^ {g)Y^. .(^ (g)Y^^ (g),

where hj (g) is a smooth map from ® into H, such that, for each g, its
value lies in (H^)o = (G^o.)o (Lc)y. Let us write ^ for the element of
Horn ((Hjo, C*) determined by ̂  (G^)o = 5^ and y^, [ (Lc)/ = ?/ (cf. 3o).
Putting

?/ (3) ̂  Yls (̂  (̂ )) and u = (coi, c^, ..., w,n) € T7",

we conclude, that

(a1 o "a) (g, w) = (g, w'), where c .̂ = c*)7^/. . .Go7,^/ arg (cp; (^)).

In this fashion, to complete our proof, it suffices to prove, that for each /',
the function yy is smooth. Let go be a fixed element of ® and let us
choose a basis { I j • ; 1 ̂  / ̂  N } which is supplementary to §^ in §. We set

g, (0 = exp (tlj\ T = (fi, ^, ..., t^) e RN and ^ (T) = ̂  (/Q ̂  (/,)... ̂  (̂ ).

There is an open sphere 0 around the neutral element in R^ such that
the map [T ^-> a (T) go] is a diffeomorphism between 0 and some neigh-
borhood of go on ©. In this fashion it is enough to establish, that
<fj {g (T) go) is smooth on 0. But this is clear from the observation,
that

?/ (9 (T) </o) = x.(i).o (h, (g (T) g,)) = ̂  ((g (T))- h, (g (T) g,) g (T)).

c. Using the above remarks, we can now define the structure of a diffe-
rentiable manifold on j0 (©) by the condition, that the map a \cf. (a)]
be a diffeomorphism between 0 (©) and ©XT^

rf. Let us show finally, the the map from Gx0 (©) onto 0 (©), which
assigns ap to (a, p), is smooth. To this end it is enough to establish, that
the map (a, q) M. a (a~a (g)) (^©XT^ from Gx^XT7 7 2 onto ©X^ is

A

smooth. If q == (g, co) we have a (gr) = (g, %J, where ^€ H .̂ is determined
by coy === arg -y (cr^• (g)) (1 ̂  / ̂  m). We have then

a (cTa) (q) = (ag, co'), where c .̂ = arg (a % (07 (a^))).

But
a % ((7/ (a )̂) = X (^-1 ^i (ag) a) and a-1 cr; (a^) a = ̂  (g) Ay (a, ff),
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kj being a smooth function from GX ® into H, such that for each g, kj (a, g)
lies in (H^.)o. From here we can complete the proof as at the end of (&)
above.

6. — 6.1. a. A smooth map p (g) from (b into j0 (©) is called a cross
section, if T p (g) == g [ge © ; cf. 3 (e)], Each cross section determines

^ ^ -0-

a smooth map [L of G X ® into H by the condition, that ap (g) === pi (a, g) p (ag).
One verifies by an easy computation the identity [L (a, bg) [L (&, g) == [JL (a&, g)
(a, & e G ; g€©). Furthermore, if pi (g) is another cross section, there

is a smooth map 9 (g) from ® into H, such that y (g) pi (g) =EE p (g) (ge ®).
Putting, similarly as above, ap, (g) = [^i (a, g) pi (a, g), we find, that
p-i (a, g) = p- (a, g) [9 (ag)/y (g)]. Finally, if a belongs to G^ we have

p- (a, g) = 1 (== unity in H). In fact, to see this it suffices to recall,
A - A

that ^eKL means, that ^ G^eG^ and f^ (Lc)/= y/ [c/1. 3 (c)] and
therefore, if a belongs to Gg. we have a ̂  == ^. Hence, writing p (g) = (g, ^)
we get

ap (9) = (^, a ^) = (g, ^)==p(g)==^ (a, g) p (g)

and thus ^ (a, g) = 1, proving our assertion.

6. In the following we shall consider some special examples of cross
sections, which will be of interest later. Suppose, that { o-y (g); 1 ̂  j ^ ' m }
and a have the same meaning as in 5.2 (a). Let us observe, that for

~ A
each g€® there is an element ^o (g) of H^, uniquely determined by the
condition, that ̂  (g) (^. (g)) > 0 (1 ̂  / ̂  m). Setting po (g) = (g, ̂  (g)),
we get a cross section. In fact, the only thing which requires verification
is that the map [g i-̂  po (g)J is smooth which, however, follows at once
from a (po (g)) == (g, l^^XT^ (1 = unity in T771). Let us put

ap, (g) == ̂  (a, g) po (g).

If y is some element of H, we shall write y for the element of J, such that
^ o $ FEE y [cf. 3 (^)]. We recall, that y;, is defined on (H,)o = (G,.)o (Lc)/
by the condition, that /J (G^)o === ̂  and ^ | (Lc)/= 9/ [cf. 5.2 (&)].
With these notations we find, that

Ao (a, ^) = arg (^ (a-1 ̂  (a^) a ((T, (g))-1)) (€> (cr; (^)) ̂  a, € J for 1 ̂ j ̂  m).

We have, in fact, a ̂  (g) = (^o (a, g))^ ^o (ag), whence

%o (^) (a-1 cr; (a^) a) = po (a, g) (a,) ̂  (ag) (^ (ag)').
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By virtue of 5^0 (g) (cry (g)) > 0, we infer, that

po (a, g) (a,) = arg ̂  (g) (a-1 cry (c )̂ a) = arg %o (^ (a-1 ^ (ag) a (cry (^))-1).

We observe that the argument inside y^o (g) belongs to (ker <&) H H^ = (H^o;
hence we obtain finally, that

Ao (a, g) (a,) == arg ̂  (a-1 cry (ag) a (cry (y))-i) (ae G, ge &; 1 ̂ j ̂  m).

Let us suppose, as we can (c/*. Remark 5.1) that o"y (g) depends on
^ = 71 (g) = g ] & only; then, if a belongs to (G/)o, we have ^o (^? g) == 1.
In fact, as above

Zo (g) (a-1 or, (ag).a) = po (a, )̂ (a/) %o (a^) (cry (a^)).

But the left hand side is equal to y^o (g) (o'y (g)) > 0 since, if a€(G/)o
and fceG/^ L^ we have abcT^ = b mod (L/) (c/*. the proof of Lemma 7.4,
Chapter I), whence the desired conclusion is clear. If we assume finally,
that (Jj (g) if of the form bj dj (g) [&/€ H, d/ (g) € Lc; cf. the proof of Propo-
sition 5. ij then we can even infer, that

Ao (̂  9) (^) == arg cp/ (a-1 a; (a^) a (cr; (g))-1),

and thus j^o (^, g) depends on f = TC (g) only. In fact, to see this it suffices
to verify, that

a-1 cry (c )̂ a (cry ^))-1 = a-1 cry (a )̂ a (cry (a^))-1 cry (a^) (cry (^))-1

belongs to Lc = [GC? GcJ; but this is clear, since now

^ (ag) (^ (9))-1 == b, dy (ag) (dy (g))-1 b^ € Lc (1 ̂ j ̂  m).

c. We shall call the function [̂  (a, g), determined by the cross
section p (g) [cf. (a)] the obstruction cocycle belonging to p (g). Let us

w w . -e-

denote the group of all smooth functions from G X © into H, satis-
fying ^ (a, &g) [̂  (&, g) = ^ (a&, g) (a, & € G ; g€=®), by Z1 (©), the sub-
group of all elements of the form <p (^g)/y (g), where 9 (g) is a smooth

function from ® into H, of Z' (©), by B' (®), and let us put

H1 (0) = Z1 (&)/B1 (&).

Then, by (a), the set of all obstruction cocycles on ® determines an
element of H4 (®), which we shall denote sometimes by [®].
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6.2. PROPOSITION 6.2. — There is a cross section from © into 0 (®) such
that the corresponding obstruction cocycle is independent of the component,

in ®, of its argument, and thus gi^es rise to an element coeHom (G, H}.
Through an appropriate choice of our cross section we can arrange, that

the kernel of co contain the closed subgroup (G/)o Gg- L of G (g == arbitrary
in ® and f= g tr).

Proof. — a. Let us put ©1=11 (®)c&'. According to what we saw
in &.1 (a) and (fc) , to establish our proposition, it suffices to prove the
following. For a in G and fin ®i let us define

^(^n==^f(a-^Wa(a(f))-^

where o- (/*) == bd {f) (&eH) is as in the proof of Proposition 5.1. Then
there is a smooth function ^ from ®i into C* and an element
of Hom(G, C*), such that

CO

. (a, f) == c. (a) (^ (af)l^ (/•)) (ae G, /•€= <&).

&. To establish the assertion just formulated, we prove first, that there
is a smooth function (J. (/*) from ®i into C*? such that

^n^W)MO OeL,fe^)..

Let us put ®c= Gc^ (^e® fixed) and (®c)i = TC (^c)c^c- We show
now, that we can find a smooth function p from LcX(®c)i m^0 C*? such
that p (a, bf) p (&, /•) = p (afc, /•)Ja, &€ Lc; fe (®c)J, p (a, /•) = 1 if a€= (Lc)/
and p, when restricted to Lx©i , coincides with v [as in (a)]. To this end
we observe, that the map d (/*) from ®i into Lc, introduced in 5.1 (&) and
which satisfies d{f)f=b~lf (/*€©), can be viewed as the restriction
to ®iC(®c)i °f a t^P [to be denoted again by d (/*)] defined and having
similar properties on (®c)i- I11 fact, we remark first, that any Jordan-
Holder sequence for the action of G == exp § on &c ls invariant under the
action of Gc = exp §c? an^ hence, with the notations of 5.1 (a), we can
conclude, that (©0)1^®^- Our second remark concerns the fact, that
if & is a fixed element of H, then for any f in (®c)i? bfcljcf' I11 f^t,
if f = TT (g), g = ax (aCGc, ^Gfi') then, since

H = G,c Lc C Gx Lc C (Gc)aa: Lc == Lc (Gc)^
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we have fcg€Lc g, and hence also bf^lj^f. In this fashion, to obtain
the desired extension we can proceed as in 5.1 (&) and put

d (/) = exp [I (R (6-1 f, f), f)] [fe (Oc)i].

Defining cr (f) by fcrf (/•) [/^(©cOi] we set on LcX(®c)i :

p (a, f) -= cp./ (a-1 cr (af) a {? (f))-1).

It is clear, that p on Lx(®)i coincides with v, and also, that it satisfies

p (a, bf) p (b, f) = p (a6, f) [a, 6eLc, /•€= (&c)i].

Therefore, to complete our construction, it suffices to show, that p (a, f) = 1
if a€(Lc)/. But then we have

P (a, f) == ?/ (a-1) ?/ (^ (f) a (^ (f))-1) = cp/ (a-1) ̂ f (a) == 1

since a (/•)./•= ^ [fe(®c)J.
Our next objective is to establish the existence of a smooth function p-

from (®c)i to C*, such that p (a,/•) = ^ (O/p-(/•) [a€ Lc, ^(©0)1].
Then, restricting the last relation to L X ® we shall have obtained the
analogous conclusion for v, announced at the start of this point (6). To
this end we recall first, that by virtue of Corollary 4.1 there is a map h
of (®c)i^®y mto i^lf? suc!1 that, for a sufficiently large integer N,
(Q./V ^ ls the restriction to (^c)i °f a polynomial map of Vc lnto itself,
and such that: 1° h {af) ==h {f) (a^Lc), 2^ h (f)eLcf [fe{^c)^ Using
the notations of Proposition 4.2 let us put S (/*) = exp [I (R (/', /i (/*)), /i (/*))];
this is a smooth map of (®c)i ^t0 LC and we have S (f) /i (f) == f. Next
we show, that y. (f) =^ y. {S {f), h{f)) satisfies p (a, /•) == ^ (a/*)/^ (/•) on

LcX(©c)r I11 ^ t̂? since
^(af)h(af)=af==a^(f)h(f)

there is an element do in Lc such that

d, h(f)=h (f) and ^ (af) = a S (f) do.

In this fashion, using that p (a, f) = 1 if a€ (Lc)^ we get that

^ (̂ ) = p (^ (af), A (aQ) == p (a B (f) do, h (f)) = p (a, 3 (f) do A (f)) p (3 (f) do, h (f))
= P(^ /)P(^(/). A) A (/))p (do, A (f)) = p(a, /)^(f),

and thus p (a, f) =- ^ {c^f)!^ {f), completing the proof of our statement.
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c. Using the previous observations, we shall finish the proof of Propo-
sition 6.2 as follows. Let us put

., (a, f) - . (a, f) [^ (af)l^ (f)]-^ (ae G, /•€ (D,)

where ^ is as above in (&) . We have on L x © i that Vi (a, /*) = 1, from
where we conclude easily, that for any choice of d, d ' and d" fix in L :
Vi (dad\ d" f) =. Vi (a, f) on Gx®i . To complete our proof it evidently
suffices to establish the existence of a smooth map ^ from ®i into C*
and of a co€ Horn (G, C*), such that v^ (a, /l) = co (a) [^ (a/1)/^ (/)] [cf. the
end of (a)].

Let us denote by A the group G/L, and by A the canonical homomor-
phism from G onto A. Since G is simply connected and L = [G, GJ
(cf. the start of Section 2), A is isomorphic to a vector group. Also,
by what we saw above, there is a smooth function H from A X A into C*
such that Vi (a, &/o) = H (X (a), X (&)) (a, 6eG; f, fixed in ©i).

We observe, that to obtain the necessary conclusion, it is enough to show,
that H (a, k) = T) (a) (9 (/c + a)/y (/c)), where Y]€ Horn (A, C*) and y is
a smooth function from A into C* satisfying <p (k + b) = y (/c) for each /c
in A and b in the closed subgroup B = \ (G^) = G^ L/L of A. In fact,
defining then ^ (/*) = y (A (a)) for /'= a/o (a€G), and putting co = yj o X,
we obtain with ^ and oo so defined the desired relation for Vi .

We have obviously H {a + &, /c) = H (a, & + /c) H (&, /c) for any a, &, A'
in A. Also H (a, & + k) = H (a, /c) on A x A for any fixed b in B. From
this we conclude, that putting y (6) = H (&, 0) (6eB) we have
Y ( & + & / ) = y ( & ) Y ( & ' ) on BxB.

We finish our proof by showing, that T]€ Horn (A, C*) satisfies the above
relation for H, if and only if its restriction to B coincides with y. In fact,
the only point to be noted then is that y is obviously extendible to an
element of Horn (A, C*). Suppose, that we have

H ( a , k ) = = ' n ( d ) [ ^ ( a + k ) ^ ( k ) ] ;

putting a = &eB, k = 0, we obtain

H (b, 0) = y, (b) [9 (6)/cp (0)] == r, (6),

since y (6 + k) = y (k) (&GB, /c€A). Conversely, let us assume, that
Y] (6) = H (6, 0). We put 9 (/c) - H (^ O)/Y] (/c), and observe, that

^ ( k + b ) = . ^ ( k ) (AeA,6eB).
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In fact,
> (k + b) == H (k + b, 0)l-n (k + b)

== (H (k, b)l-n (k)) (H (b, 0)1^ (b)) = H (k, O)/Y] (k) = cp(^).

Finally we have

•n (a) cp (k + a) == -n (a) [H (k + a, O)/^ (a + k)}
= H (a, k) [H (k, 0)/7i (7c)] = H (a, Jc) cp (k)

for all a and k in A, completing the proof of Proposition 6.2.
Q. E. D.

6.3. Let ® be an orbit of M on fl' (c/*. Proposition 2.1); we recall
(cf. loc. cit\ that there is a connected and simply connected group GiDG,
such that [Gi, Gi] = [G, G] = L and Gi x = ® for any rr in ®. Imitating
the procedure of Sections 3 and 5 above, we can define a bundle 0 (®)
over ®, which is similar to the bundle 0 (®) over 0, through the following
steps.

a. First we observe, that the closed subgroup Gg. L of G does not depend
on the particular choice of g in ®. Setting K ===== G .̂ L (g€ ®), we denote
by A the canonical homomorphism from K onto

I=K/(K)o=G,/(G,)o (<7€<D).
We put

K = I o A c K and Gg = j %; % = character of G^, ^ | (G^)o = 1 j.

One verifies easily, that for any g in ®, the map K3^ i-̂  ̂  = ^ | Gy
-Q- -Q- ___

is an isomorphism between K and Gg. Let us form the group H for
® = G x (xe ®) [cf. 3 (d)]; we have H = G^ Lc. We note, that HD K,

-e- -e-

and obviously the map H3^ ^-> ^' === ^ | K is an isomorphism between H
- -, A

and K [tor H, cf. 3 (e)J. Similarly, the map H^3^ h-> ^' = ^ [ G^
I' A 1 . . A A
[for H^ c/*. 3 (c)J is a bijection between H^ and G^.

A -o-
We write now 0 (®) for the set U^e© G^- It ?€ K and p == (g, 7^) €0 (®)

/ • '̂ ' \we define y p by (g, y^%J; given a in G ^or in GJ we put ap = (ag, a^J.
One sees at once, that a (y p) = y (ap).

6. We employ next a local version of the construction of Section 5 to
define a differentiable structure on 0 (®)? which turns it into a fiber bundle
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538 L. PUKANSZKY

over ® with the structure group K, such that G acts on 0 (®) as a group

of smooth transformations, commuting with the action of K. We start
by observing, that given an element a in I and a fixed element x of ®,
there is a neighborhood U of the latter in ®, and a smooth function
cr : U -^ K, such that: A° A (a (g)) == a, 2° (T (g) eG^, for all g in U. In fact,
for all g in ® we have, if b is any element in K, bgG L g. Assume now,
that & e K satisfies A (&) = a. To attain our goal it suffices to establish
the existence of a U as above, and of a smooth map d : U -> L, such that
d { g ) 8 = = b ~ l g on U. Let { ^ ; 1 ^ / ^ N } be a supplementary basis
to (fii)^ in fli (Gi = exp $1), and let us put T = (<i, ^, . . ., ^eR1^ and
a (T) = exp (t, k) exp (<2 ^2 ) . . .exp (^ y. The map T ^> a (T) ^ is a diffeo-
morphism between an open sphere S around zero in R^ and some neigh-
borhood U of x on ®. In this fashion it will be enough to determine
a smooth map d! : S -> L, such that d! (T) x = f (T) x, where

f(T)^(a(T))-^-^(T)a:.

But to obtain this it suffices to take in the proof of Proposition 1.1,
V=$' , G = L and define d' (T) = g (T; x) [cf. (rf), loc. cit] where

^ == Zk + ̂  (21, Z2, ..., ̂ -i; rc), ^a == (/'(T));, [1 ̂  a ̂  dim (L a;)]
771

provided /•(T) = ̂  (nT))y ̂  (T€S).
7=1

Let us choose a basis { a j ' ^ l ^ j ^ m } in the free abelian group
/ — / \

I (/^ G^/(Ga;)oJ; we denote by ^j(l^j^m) maps corresponding to a/
as o- above to a€ I, all defined on a neighborhood U of x on ®. We denote
by ^ the map from 0 (®) onto ® defined by T p = g [p = (g, ^)].. Let us
define the map ? from T'(U) onto UxT^ by ? (p) = (g, co) where, if
p== (g ,X)€^ (U)C^(©) , and ^ = ( ^ ^ , o J 2 , . . . , c O m ) e T m we have
(D/ = X (^ (g)) (1 -= /^^)- We leave to the reader to verify, that by
requiring, that ? be a diffeomorphism between r1 (U) and UXT^ for all
possible choice of U and { o-y} as above, we obtain the differentiable
structure on 0 (®) with the properties specified at the begin of (&)
[cf. Section 5 for similar reasonings).

c. Let us denote by W (®) the portion of 0 (<&) over ®C®, that is
f i ' (®) =~^ (®)c<0(®) [r being the canonical projection from 0 (fib)
onto ®] with the induced structure. One verifies easily, that the map
S : r (®) ̂  ^ (®) defined by S (g, ^) = (g, X') [^- W] is a diffeomorphism
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satisfying S (y p) == y' S (p) and S (ap) = a S (p) for all p in i3' (®), y in H
and a in G.

We conclude from this, using the result of 6.2 above, that the
bundle 0 (®) defined in (&) is trivial. More specifically, there is a cross
section po, such that apo (g) == co (a) po {ag) ( a € G , g € ® ) , where co is

-e-

a continuous homomorphism of G in K, of which we can assume, that
k e r c o D G ^ ( G ^ ) o L ( g € ® , / • = § [ & ) . .

We can define, similarly as at the end of G.I, the groups Z1 (®), B4 (®)
and H1 (®) with respect to G and ® in place of G and ® as loc. cit. We
shall denote the image of co [considered as an element of Z1 (©)] in H1 (®)
by [®], and call it the obstruction to a G invariant cross section. One
sees at once, that if <D is acted upon transitively by G, f®J is equal to the
identity in H1 (®). We shall, however, show later (c/*. Section 8 below)
that this is by no means so in the general case.

7. — 7.1. In the following iB (©) will stand for the bundle defined in 6.3;
-©-

we shall assume, that dim K > 0.

PROPOSITION 7.1. — There is an equivalence relation S on 0 (®), uniquely
determined by the property, that if Oe0 (®)/S and p is arbitrary in 0,
we have G p = 0. Furthermore, there is a connected solvable group (&
operating on fi$ (®) through an action commuting with that of the structure
group, such that (& 3 G, [(&, <6] = [G, G], and the orbits of (6 coincide
with the orbits of S on 0 (®).

Proof. — a. By what we saw in 6.3 there is a homeomorphism Y]

from 0 (®) onto ® XT^ and an isomorphism £ from K onto T^ with the
-e-

following properties. I fp€j0 (®), ye K and TJ p) == (g, (o) (g€©, coeT771)
we have Y] (<p p) == (g, £ (y) co), and if a is any element in G, then

ri {a ~n (q)) = (g, co (a) co) [y = .(g, co)],

where co (a) is a continuous homomorphism from G into 1̂  such that
G^Cker co for any x in ®. Therefore to establish the truth of our propo-
sition it suffices to prove the analogous statement for the action just
described, of G on ©XT771.

b. Let x be a fixed element in ® and Gi as in Proposition 2.1. We
denote by Ei the quotient space ®/L and by iii the canonical map from ®
onto Ei. If a€Gi we have a ^i {y) [= Tii {ay)] = Tii {y) for all y in ®
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if and only if a belongs to (Gi)^ L. Therefore Gi acts on Ei as the abelian
group Ji = Gi/(Gi)^ L.

Let us put W^ (a) = iii {ax) (a€Gi) and let us write pi for the canonical
homomorphism from Gi onto Ji. We denote finally by ^i the map from Ji
onto Ei defined such that the diagramm

Ei=<B)/L

be commutative. We claim, that ^i is a homeomorphism. For this it
obviously suffices to prove, that ^i is an open map. If U is an open set
in Ji, we have ^i (U) = ̂ i (pt (U)). In this fashion to obtain the desired
conclusion it is enough to show, that Vi is an open map. Let G be as in
the proof of Proposition 2.1. We shall have attained our goal by proving,
that for a sufficiently small neighborhood V of the unity in G, Ti (VnGi)
is open. Let us put, as loc. cit., ̂  (a) == ax (a€ G-); we recall, that <& is an
open map from G onto ® = G x. Since W^ (VnGi) = n;i (<& (VnGi)) ,
it will therefore be enough to prove, that $ (VnGi) = ̂  (V) n^ (Gi).
But if ax = bx for a in V and b in Gi, we have a = be with c in Gx.
We recall now from 2 (c), that Gi is the connected component of the
identity in the closed subgroup Gi. Gx of G. Hence if V is a sufficiently
small neighborhood of the identity in G we have, that a Vn Gi. G^c = Vn Gi,
and thus <i> (VnGi) = $ (V)n<& (Gi), completing the proof of our state-
ment.

c. Let us denote by A the dense subgroup pi (G) of Ji. We note,
that there is a continuous homomorphism 001 from A into T171, such that
GO == (Oi o p^ on G [c/*. (a)]. In fact, we have pi (a) = unity for a in G if
and only if it belongs to G n (Gi)a; L = Gx L; but we know, that ker co 3 Go;L.

fW ___ ^

We put Ji = J iXT^ (direct product of abelian groups). Let A be
the subgroup { (a, (Oi (a)); a€A } of Ji; we denote by B the closure of A
in Ji. We put Ei = Ei XT771 = (® xT^/L, and write %i for the canonical
projection from ©XT'" onto Ei. For (/, co) in Ji we put

^((^^(Mj^^Ei.

According to what we saw in (b) above, ̂  is a homeomorphism between Ji
and Ei.
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d. Let y be the element {x, 1) (1 = unity in T^) of ® XT^. To prove
the existence of an equivalence relation as in Proposition 7.1, it will be
enough to show, that if u is in G y C ^ X T ^ , we have G u = Gy. For
this it suffices to establish ^i (G u) = ̂ i (G y), since ?Ci (G u) == ^i (G u)
and %i (G y ) = ̂ i (Gy). But taking the image of both sides under the
inverse of ^i, the desired conclusion is implied by the fact, that if b is any

?sr
element in B, we have b 4- A = B.

The uniqueness of the equivalence relation S is evident.

e. Finally, to obtain the group <&, we consider first the direct
product of groups G l = G l X T m . It operates on (DxT^ by the rule
(a? (jL)) (g? (0/) = (^5 ^>'). For (a, (o)eGi let us put

pi ((a, co)) = (pi (a), co) e Jr

One shows easily, that the connected component of the identity in the
complete inverse image of B under ^i has all the properties of (&. For
later use, let us observe, that (6 (Gi)a; is closed in Gi, and that
(&=((& (G,).)o.

Q. E. D.

REMARK 7.1. — Let 0 be an orbit of S and p € 0. Let us observe, that 0,
as a subset of 0 (©) [cf. 6.3 (c)], coincides with the closure of G p in 0 (©).

7.2. We close this Section 7 by quoting two statements, which shed
some light on the structure of the orbits of S and their position in 0 (®)-

PROPOSITION 7.2.1. — There is a unique closed^ connected subgroup T

of K, such that the projection of any orbit 0 of S onto 0 (®)/r, along with

the canonical projection from the latter (considered as a K/T bundle) onto ®
is a finite covering of ®.

PROPOSITION 7.2.2. — The following three conditions are equivalent :
1° For any 0 in 0 (®)/S, dim 0 = dim ®; 2° (0, r) is a finite covering
of © ; 3° [©] is of a finite order in H1 (®) [cf. 6.3 (c)].

8. The purpose of this closing section of Chapter II is to show by an
example, that the obstruction to a G invariant cross section, in general,
is different from the unity in H1 (®).
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a. In the following, given a real vector space V and a finite subset v^
v^y . . ., v^ of V, we shall denote the subspace, spanned by these elements,
of V, by r^; l^/^M].

Let us denote by g the twelve dimensional real Lie algebra, spanned
by the elements <?i, <°2, . . ., e^ with the following nonvanishing brackets

[d, ^] = 63, [^4, ^] = ec,
[ei, €5] = e^ [e2, eg] = eg,
[ei, 67] == eg, [d, eg] =— 67,
[^2, ^1 == ?i 610, [e2, 610] =— ^69 (^ = irrational),
[^4, en] == 612, [e4, ^12] ==— en.

One sees at once, that & = [g, g] = [^; / == 3, /^6] is abelian, and
so is fi/b, and therefore fl is solvable. We have also ^ = R Cs + R ^.

Let us put ^-[^;1^/^6] and ^ = [^; 7 ̂  ̂  ̂  12J. V is
a nilpotent, ^r an abelian subalgebra of $ and [^5 ^J == ^r.

Writing G === exp $, V = exp ̂  and F == exp ^, any element a of G
can uniquely be represented as a product /^(/*eF, ^eV).

6. Let us consider a basis { < ° ; ; 1 ̂ /'^ 12}, dual to the basis
12

{ ^ ; l^/c^l2|, in $'. Given y in $, we shall write y=^yj'ej etc.

Let us put
W = { x; x^ 0, x^+xl^ 0, ̂  + x^ ̂  0, ̂ i + ̂ 2 ̂  0 ;.

An easy computation, the details of which we leave to the reader, shows,
that if x is in W, we have

o (x) == G x = { y ; y^ 1/2, y^ == arbitrary, 1/3 == x,, y, = a-e, i/g = ̂  + (fi + ^ + ^3) a-6,
U'j + iys = e-2^ (x^ + ixs), t/9 + "/io = e-^^ (^9 + i^io),

yn + ^12 = e-^ (rKn + tei2), (/i, ^2, ^3) = arbitrary in R3 }.

Hence, in particular, for a; € W we have dim o {x) = 6.

c. We put CT = exp r2 TI (^i — ^4)], and write 2 for the subgroup gene-
rated by (T. One sees at once, that o" commutes with any element in
L = [G, G] = exp b, and that, if g belongs to W, we have G^ L = 2 L.
Therefore, in particular, G^ is abelian, implying G^ == G^, and G^/(G^.)o ~Z-

(?. Assuming again x eW, we have for the orbit © of % (cf. Proposition 2.1)
containing x :

® == i y; ffi, ^2, y4, z/5 == arbitrary, 1/3 = ̂ , ye = rce,
^ +yl =^ +^,z/9 +ffL =^ +^o,i/L +yL =^i +^2{cW.
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e. Writing K for G^ L = 2 L [cf. 6.3 (a) and (c) above] with g in ®,
we have K/(K)o^Z, and A (a) is a generator of the latter. Let us put

f (y) EE= exp |. ̂ 7T^ . Q/io e, — y, Cio)1 e L[_A ^9 -{- a/io^ j

and o- [ y ) === o- /' (y) == f (y) cr. Then we have for all y in ® : 1° A (or (27)) == A (o-);
2° a (y) ̂ Gy= Gy. For a = fu [/•€ F, y € V$ c/1. (a)] let us put

r r 6 m
co (a) = Gi) (c) FEE exp [2 TT f^ ^3] y = exp V y; e/ .

L L/=i JJ
Obviously (o is a character of G, and an easy computation shows, that
%y (a~1 cr [ay) a (or {y))~1) == ̂  (a) (aE G). Writing, similarly as in 6.3 (c),
S for the diffeomorphism between 0 (®) and © X T defined by

( ^^(^ X) = (^ X ((7(§r))) \g€©, X^GJ and putting, for q in ©XT, ag for
/ —i \

8 (^a S (y)} we obtain a (g, co) = (ag, co (a) co) (aG G). In particular, 00 is an
obstruction cocycle.

/*. Using the preceeding remarks, it is now easy to show, that [®] is trivial
if and only if 2 TI Xs belongs to the subgroup Z + ^ Z of R1. By the
same token, we can conclude, that [®] is of a finite order in H1 [©] if and
only if 2 71 ^3 belongs to Q + X Q (Q = field of rational numbers). Hence,
in particular, upon removing from W \cf. (a)] a sequence of % invariant
hyperplanes, we can arrange, that for the remainder [®] be always of
infinite order. The subsequent reasoning will show, that in the latter
case S (c/*. Proposition 7.1) contains but one orbit {cf. also Proposition 7.2.1).

To establish the above statement let us assume, that [®] is trivial [that
is, it equals to the unity in H1 (©)]. We denote by 9 a smooth function
on ®, such that co (a) = y (ai/)/y {y) (aeG, ye ©), and | y {y) \ ==. 1.
Since Fcker co, we conclude at once, that 9 (fy) = y {y) on ® for all/* in F,
and hence y {y) does not depend on y^ ^3, y^. Let us put ©i === ®/F; it
can naturally be identified to the subset { y; 1/5 == arbitrary, i/^+ ̂ == ̂ + a?^,
2 / :+2/ :o=^+^ y^+y^=^+^} of ITXT3. It a = / b is
some element in G, we have

c"/ == (̂  — (pi + u^+ u,) XQ, e1^ (1/7 + iys), e^ (1/9 + n/io), ^^ (i/n + 11/12)).

Let us define the map £ from ® onto r == F^XT3 by
£ (y) = (— y^lx,, (t/7 + iys)l \ yi + iys |, (y^ + zyio)/1 y^ + iyio |, (yn + iy^)! \ yn + iy^ \).
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Writing £ Q/) = (^, cOi, (03, 0)3) ( u € R ; ^€T for j = 1, 2, 3) we have

£ (°y) = (" + Ui + ^2 + ^4, e1^ coi, e^ co2, e^ 003).

We denote by F' the dense subgroup { y ; v = {ui + ^2 + v^ e^^ e^, <°^),
(^1, ^1, ^) arbitrary in R3 } of r. Let y' be the function corresponding
to 9 on r; we can obviously assume, that 9' (<°) = 1 {e = unity in F).
Then <p' (on F') is a character of F', and since it is continuous, it
belongs to the character group of F. We must have therefore

cp' (u, &)i, &)2, Ms) == exp [feu] co^ co^2 ̂

on r (c€R, yz/GZ, 7 = = = 1, 2, 3 properly chosen). On the other hand,
by assumption, on F' : 9' (y) = co (y) = exp [2 ii ^3 ^3], which implies
at once, that 2 7 i ^ 3 € Z + ^ Z . The converse statement follows easily
from the previous reasonings.

CHAPTER III

THE NONTRANSITIVE THEORY

SUMMARY. — We start this chapter by showing, that each orbit 0 of the equivalence
relation ,$ on (^ (cf. Summary of Chapter II). carries an, up to a positive multiplicative
constant uniquely determined, G invariant Borel measure \L. Using this, in Section 2 we
assign to each orbit 0 of ^ a factor representation as follows. We recall first (cf. Section 7,
Chapter I), that the procedure of the transitive theory assigns to each point p of ̂  a unitary
equivalence class ^ (p) of concrete factor representations. We have ^ (p) = ^ (?') if
and only if p and p ' lie on the same G orbit. One can easily show, that there is a field
{ T (p); peO } of concrete unitary representations, such that T (p) belongs to ^ (p), and
that we can form F© T (p) d[i (p). We show (cf. Theorem 2, Section 2), that this integral

^o
defines a factor representation, the unitary equivalence class of which is independent of
the particular choice of the field used in its construction. It is of type I, if and only if 0
is a G orbit, and if for some (and hence for all) p in 0, ^ (p) is composed of type I factors.

We know, that if p = (g, ̂ ) [^ e Qg] the latter condition is fulfilled if and only if the reduced
stabilizer of g is of a finite index in the stabilizer of g (cf. Theorem 1, Chapter I). Let (D be
the projection of 0 into g'; then © is an M orbit, and 0 is an ^ orbit in ^ (0) (cf. e. g.
Summary, Chapter II). Thus, in particular, C) must be locally closed in 9'. We conclude
therefore, that if the % orbit © is not a G orbit, then no '$ orbit of ^ (<D) can give rise to
a type I factor. Also, in order, that G be of type I, any orbit of the coadjoint represen-
tation must be locally closed, or g'/G == 97%. One can show, that if O/ are Q orbits,
such that their projection into the dual of t> == [9, 9] coincide, and Ty are representations
corresponding to Oy (j = 1, 2), then there is a character 9 of G, such that T2 = ? Ti, and
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conversely. Hence, in particular, two Q orbits in S (<D) give rise to factor representations
of the same type. We could not decide, if the factors of Theorem 2 are all semifinite or not.
It will, however, follow from the results of Chapter IV, that the collection of % orbits,
giving rise to a factor representation of type III, at the worst can be enclosed in a set of
Lebesgue measure zero, of 9'. To explain the motivation behind Theorem 3 (cf. Section 3),
let us consider again the first derived group L = [G, G]. Denoting by -^ and -^G the left

regular representation of L and G resp., we have ^n == ind ^^ Since L is nilpotent, it is
L^G

unimodular and of type I. Assume, that J?L = / (B T (0 ̂  (9» where d^ (S) is the
^t

Plancherel measure, and T (S) is an appropriate multiple of a concrete irreducible repre-
sentation of the unitary equivalence class SeL. Then this decomposition is central; in
other words, the von Neumann algebra R (^) generated by -^L (that is, the left ring
of L) contains the ring of all diagonalisable operators. In fact, the latter coincides
with the center of R (J^)- We have also

j^ == F® W (-0 d^i (S), where W © = ind T (;).
»/^\. L^ G

In general, neither are the W (S)'s factor representations, nor is the last decomposition
central. One obtains a decomposition with the latter property by appropriately « grou-
ping » the « summands » on the right hand side. To this end we can proceed, for instance,
as follows. Let G be a connected and simply connected Lie group with the Lie algebra 3f,
such that G 3 G, [6, 6] = [G, G] and 9 be isomorphic to an algebraic Lie algebra (cf. Sec-
tion 2, Chapter II). Then G operates on L, such that L/G is countably separated, and there
is a measure T on S = £/G such that denoting, for s e S, the corresponding G orbit by 0 (s),
and by dvs (0 a suitably chosen measure, which is quasi-invariant under G, on 0 (s), the
Plancherel measure ^ is a continuous direct sum, with respect to T, of all these measures.
Let us put

We have

Z(s) - f ®W(9dv.(0.
^0(s]

^G== f®Z(s)dT(s)
«-'s

and this decomposition is already central (cf. for all this Section 9,. Chapter IV). This
being so. Theorem 3 (cf. Section 3 below) asserts, that any of these representations Z (s)
(s € S) is quasi-equivalent to a central continuous direct sum of an appropriate subcol-
lection of the factor representations defined by Theorem 2. The results of this chapter
will be used in an essential fashion at the end of the next chapter to analyze the structure
of the regular representation of G.

1. Below we shall employ the notations of 11.7.1.

PROPOSITION 1.1. — Let 0 be any orbit of S on i0 (®)- There is a
(up to a multiplicative constant) unique nonzero positive G invariant
Borel measure on 0.

Ann. Sc. Norm., (4), IV. — FASC. 4. 69
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Proof. — a. Let p be a fixed element of 0. For a in ® let us put
$2 (a) = ap. We denote by o- the canonical map from <& onto <&/<6p,
and define the map 93 from ®/(^ onto 0 = €> p , such that the diagramm

be commutative. We claim, that 93 is a homeomorphism. To show this,
it evidently suffices to prove, that <I>a is open. We identify, as in 7.1 (a),
Q (®) to ® X T^. Assuming, that p == {x, (Oo) we put $1 (a) = aa; (a€ Gi).
Let us write, for b in Gi, ^i (&) = 6p. If 5 = (a, co), we have

e>i (6) = (or, cocoo) == (C>i (a), Mcoo).

We proved in 7.1 (&) that <^i is open, which implies, that ^ too, is
open. In this fashion to establish, that ^2 == ^i | ® is open, it is enough
to show, that for a sufficiently small neighborhood V of the identity in
Gi, we have $1 (Vn(&) = ̂ i (V)n^ i (<&) (cf. loc. cit. for a similar reaso-
ning). If a€V and &e<6 are such that ap = bp, we have, since
(G^== (Gi),,a€Vn^.(G,),. But we have (& = (® (Gi),)o [c/. 7.1(6)]
and hence, if V is sufficiently small, a€Vn©, and thus

<MV)n$i(G)c^i(Vn€)),

proving our statement.
We conclude from the preceding reasoning, that we shall have proved

our proposition at once we can show the existence and uniqueness of a
positive nontrivial G invariant measure on (&/(6p.

&. Our next objective is to establish, that ®/€^ carries a <&
invariant measure of the indicated sort. Let us write ® = exp go, and
((G,),)o=exp[(fl,),]= (^)o [since ®p=<6n(G,) , and ((G,).)oCG].
Hence to arrive at our goal it is enough to show that

det (Ad (a) \ go) = del (Ad (a) \ (^) for all a in (GQ,.

To this end let us observe once more, that [go, flo] = [gi, gi] = & {cf. for
the second relation Proposition 2.1). In fact, if Gi = exp §1, we have
§1 = Si X a, where a is abelian, and thus [go, go] C[fli, §1] = [fli, g,]. On the
other hand, if a is any element of G, we have (a, co (a))e©, and hence
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(Z, !)€[<&, ©](?€L) implying [$i, j9i]C[go, go]. Using this observation
we can conclude, that

det (Ad (a) \ ̂ ) = det (Ad (a) | ^) = det (Ad (a) \ ^),
and

det (Ad (a) | (^) = det (Ad (a) \ Qh^nb) = det (Ad (a) \ ̂ \

and therefore it is enough to show, that

det(Ad(a)|^)=l [ae(G^].

For ?i, ^2 in fi let us put B {li, l^) === (|7i, l^, re); B gives rise to a nondege-
nerate skew symmetric bilinear form on g/ga;. Putting al = Ad (a) I and
ax == (Ad (^r1)/ ^5 we have

B (ah, ah) = ([al, ah], x) == (a [I, h], x) == ([h, h], a-1 x) = ([h, h}, x) = B (h, h)
(;i,Z2€0, foralla€(Gi)^);

consequently Ad (a) | fl/^ leaves B invariant, implying det (Ad(a) ] QlSx)= 1.

c. Let p- be a Borel measure on (&/(&?, and let us suppose, that it is G
invariant. To establish the uniqueness statement of our proposition it
will suffice to show, that p- is also © invariant. Let us denote by dk an
element of the L invariant measure on (&/®^D o- (L) = L/La;$ dk is invariant
also under the action of (6 p. Therefore, if f is some continuous function

of compact support on (&/<fi^, the function F (a) == ^ f (a/c) c?/c satisfies
^(L)

F (ao a) == F (a) for any Oo € ^6p L. Let us put 51 == ®/^ L $ we denote by
X the canonical homomorphism from © onto 51. Using the same letter
to indicate the function corresponding to F, as above, on 51, and putting
a = X (a), we can conclude, that F (a) is continuous and of a compact
support on 51. It is known furthermore, that any function of the said
sort can be obtained in this fashion.

Since, by assumption, [f. is G invariant, it is, in particular, L invariant.
Hence there is a positive Borel measure v on 51, such that for any f as
above we have

f( f f(ak)dk\dv= f f(g) dp.
^V(T(L) / J^/^

The G invariance of p- implies the invariance of v by translations of X (G) C 5L
But since X (G) is dense in 51 [cf. 7.1 (e) $ observe, that with the notation as
loc. elf., X == ^ [ G], v is also 51 invariant, implying the (6 invariance of .̂,

Q. E. D.
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2. — 2.1. Before proceeding, let us recall the following facts from
Chapter I. Assume, that p € ̂  = U^eg'G^. For an 1) C t^c with 1) == pel (p)
we form ind (t), p) (c/*. Remark 7.2, Chapter I). By Theorem 1 ind (1), p)
is a factor representations of type I or II, uniquely determined, up to
unitary equivalence, by p . We denote by 31 (p) the unitary equivalence
class of representations determined in this fashion. ^ (p) is of type I
if and only "if, assuming p === (g, y), the order of Gg./' Gg. is finite. For p,
p' € ̂  we have ^ (p) = ̂  (p') if and only if p' === ap for some a in G.
Otherwise any pair of representations, with members from 31 (p) and ^ (p')
resp., is disjoint. By virtue of Lemma 4.3, Chapter I, we have
a ind (t), p) = ind {a 1), ap), in the sense of unitary equivalence, for all a
in G. We shall also use the following relation, the easy verification of
which, by aid of the reasonings of Lemma 7.1, Chapter I, we leave to the
reader. Let us suppose, that ^ is a character of G, such that d^ = ic (c € g').
Then

^ ind (1), p; K) = ind (1), ^ I (G,) ̂  g + c; K)

in the sense of unitary equivalence.

2.2. Let 0 be a fixed orbit of S in 0 (®), and [̂  a G invariant Borel
measure on 0 {cf Proposition 1.1). In the following the notions of measu-
rability, summability etc. will be understood with respect to the measure
space derived from the field of Borel sets on 0 by aid of p..

By a field of polarizations we shall mean a rule, which assigns to each
point p of 0 a polarization \)p with respect to p [or t)p = pol (p)]. One can
construct a special class of such objects in the following fashion. Let po
be a fixed point of 0. Assuming po == (go? 7.0) and putting /*o = go | &?
the contragredient action on V of K = ̂ p \ tf leaves /*o invariant. Since
[(6, (6] = L (c/. Proposition 7.1, Chapter I), we have also [K, K]cAd (L).
Therefore [cf. the end of 1.4 (&)] there is a polarization with respect to fo
(== ^ say), which is invariant under the action of (&p in &c- Thus, if
apo = a po (a, a € <&) we have a \\ = a ' 1), and hence we can define \\p = a t),
if p = a po. We have \)p = pol (p) and also a \}p = \\ap (p€0, a€®).

Let { l)p; p€0 } be a field of polarizations and let us put

T (p) = ind (^, p) and H (p) == H (T (p)).

We are going to show, that on the field of Hilbert spaces { H (p); p € 0 }
we can define a measurable structure, such that the field { T (p); p € 0 }
of concrete representations turns out to be measurable. We recall (c/*.{13],
Proposition 4, Chapter II, §1, and [12], 18.7.1), that to accomplish this
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we have to construct a sequence { fn (?); n = 1, 2, . . . } of fields of vectors,
such that : 1° For each fixed p, the set { fn (p) } is total in H (p); 2° For
each pair n, m of positive integers and a in G, the function p t-> (T (p) (a) fn (p),
fm (p)) is measurable. Assuming, that all this can be done for a special
choice of our field of polarizations it is clear, that the same can be done
at least in one fashion for any other choice, too. The result, howewer, is
essentially uniquely determined. In fact {cf [12], 8.2.3, Proposition and
18.7.6), if { H (p), T (p) } and { H' (p), T' (p) } are measurable fields of
Hilbert spaces and of unitary representations resp., such that T (p),
T' (p)€ ̂  (p) (p€0), then for each p€0 there is a unitary map V (p) :
H (p) -> H' (p), which makes T (p) correspond to T' (p), and which has
the property, that if { / ( p ) ; pe0 } is a field of vectors, measurable with
respect to { H (p); p € 0 }, then { f (p) = V (p) f (p); p € 0 } is measurable
with respect to { H' (p); p€0 }. For later use let us observe, that in
this case, in particular, the unitary representations

T = f© T (p) d^ and T = f© T' (p) d^
^0 JQ

are unitarily equivalent. To establish the statement formulated above,
let us fix a point po of 0. To attain our goal it obviously suffices to exhibit
a neighborhood U of po, a measurable field of Hilbert spaces { H (p) }
and of representations resp. over U, such that T (p) € ̂  (p). Let us choose
U such, that there exist a* continuous map p i-> a (p) from U into (& satis-
fying p === a (p) po. We denote by 1) a polarization with respect to po.
Let us define

H (p) == H (ind (1), po)) and T (p) = a (p) ind ft, po) (peU).

Since T (p) is unitarily equivalent to ind (a (p) 1), a (p) po == p), and
since a (p) 1) = pel (p), we have T (p) € ̂  (p). Let { fn; n = 1, 2, . . . }
be a total sequence in H (po). Putting fn (p) = fn (p€U, n= 1, 2, . . .)
obviously all conditions will be met.

Summing up, given a field of polarizations { l ) p , p € 0 } , and writing, as
above, T (p) === ind (l)p, p) we can form the unitary representation

) © T (p) dy.. Its unitary equivalence class depends on 0 only; we shall

denote it by Q1 (0).

2.3. The following two lemmas are close to a result of E. Effros
{cf. [16], Proposition 8.6).

LEMMA 2.3.1. — The representations of ^ (0) are factor representations
ofG.
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Proof. — With notations as above, let us denote by ^ the ring of the
decomposition T = \ Q) T (p) dy. {= ring of diagonalisable operators).

^o
Since, for any a in G, T (a) € ̂  (= commutant of ^), we have R (T) C ̂ '.
Therefore, if A belongs to the center of R (T), we have A€ ̂ '. Hence A is

decomposable; we shall write A. = Q) A. (p) Jp.. If a is fix in G, we
^o

have T (a) A = AT (a) and thus T (p) (a) A (?) = A (p) T (p) (a) almost
everywhere with respect to p.. Hence the same conclusion holds true if a
varies over a countable dense subset of G, from where we derive, that
changing, if necessary, { A (?)} on a set of [JL measure zero, we can assume
T (p) (a) A (p) = A (p) T (p) (a) for all p in 0 and a in G. In this fashion
we have A (p)e(R (T (p)))' for all ?e0. Let { A^; n == 1, 2, .. . } be a
sequence of linear combinations of the operators { T (a); a€G } such that
An -> A in H (T) strongly. Replacing, if necessary, { An } by a suitable
subsequence, we have then A.n (p) -> A (p) strongly for all p, which do not
belong to a set E of p. measure zero. We obtain in this fashion, that tor all
p in 0-E, A (p) belongs to the center of R (T (p)). Since R (T (p)) is a
factor, we conclude, that there is a bounded measurable function <p (p)
on 0, such that A (?) == 9 (p) Ip [Ip = identity operator on H (p)] almost
everywhere. We can obviously assume that, with the above notations,
An (p) -> ? (p) 1̂  with the possible exception of a G invariant set F of p-
measure zero. Let a be a fixed element in G; for a p in 0-F let us put
p' = ap. Let U be a unitary map from H (p) onto H (p') such that
T (p') = UT (p) U-1. Then we have for each n = 1, 2, . . .,

A, (p') = UA. (p) U-S

whence, passing to the limit, we conclude, that <p (a?) ̂  <p (p) for all a
in G and all p in 0-F. Let us consider the Borel measure d!p == y (p) d[f.
on 0; according to what we have just seen, it is G invariant. From this,
reasoning as in 1 (c) we derive, that Jp is also ® invariant implying, that
<p coincides almost everywhere with a constant a, and thus A = a I. Sum-
ming up, if the bounded operator A on H (T) belongs to the center of R (T),
it is scalar multiple of the identity proving, that T is a factor representation
of G. Q. E. D.

LEMMA 2.3.2. — Let 0 be an orbit ofQ on 0 (®). The (factor) represen-
tations of ^ (0) are of type I if and only if 0, and hence also ® is a G orbit,
and if for some p€0 [and thus for all p€0 (®)] ^ (?) consists of type I
representations.
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Proof. — The sufficiency of the above condition follows from
^ (ap) = ̂  (p) (a€G, p€0) along with standard facts of reduction
theory {cf. [12], 8.1.7 and 18.7.6). Let us observe immediately, that in
this case, if Ue^(po) (po arbitrary in 0), and T€^(O) , T is unitarily
equivalent to a multiple of U.

To show the necessity, we employ the previous notations and assume,
that T is of type I. Then we have a representation of H (T) in the form
Hi (g) H"2, and an irreductible unitary representation T' of G on Hi, such
that T === T' 0 la (la = unit operator on Ha). Let again ^ be the ring
of decomposition. Since we have ®c(R(T)) '== I (g)B(H2) , there is an
abelian von Neumann algebra Q on Ha, such that ® = I (g) Q. ®, and thus
also Q, is ^-isomorphic to L^ (0) acting by multiplications on L^ (0).
Therefore, there is a subdivision of 0 into a sequence of pairwise disjoint
measurable sets { On; n = 1, 2, . . . }, such that Ha is unitarily equivalent

00

to ^(B (Hn 0 L^ {On)) (Hn = n-dimensional unitary space), and if A (9)
71=1

is the operator, corresponding in Q to <p€ L^ (0), and if we put (pn == y | On,
and L (<pn) for the multiplication operator by <pn on L^ (On), we have

A(cp)=^©(L(g)L(9.))
n=i

under the above unitary correspondence (L == unity on Hn). We conclude
from all this, that if En is the subset of 0, where T (p) is unitarily equivalent
to an Tz-fold multiple of T7, then En is measurable; in fact, it differs from On
by a set of measure zero. Also, the complement of U,T=i En in 0 is of
measure zero. Each En is evidently G invariant and most importantly,
since ^ (?') = ̂  (p) (p, p'eO) implies, that p' = ap for some a in G
{cf. 2.1), E^ is a G orbit.

To prove, that 0 (and hence also ®) is a G orbit, it suffices to establish
that, in the notations of 1 above, X (G) == 51. If X (G) C 51, any G orbit
in 0 of is [L measure zero. But we have just shown, that if T is of type I,
there is a G orbit of positive measure, and hence 0 itself must be a G orbit.

Q. E. D.

2.4. We sum up the result of the previous discussion in the following
fashion.

THEOREM 2. — Let 0 be an orbit of '8', and [f. a G invariant positive Borel
measure on 0. If { t ) p ; pe0 } is a field of polarizations, we can form the

unitary representation T = f Q) ind (^p, p) dy. which, up to unitary equi-
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valence, is well determined by 0. T is a factor representation. It is of type I
if and only if 0 is a G orbit, anf for some p = (g, -/) € 0 (and hence for all)
the index of the reduced stabilizer of g in the stabilizer is finite.

REMARK 4.3.1. — One can show, that, if G is of type I, the represen-
tations of ^ (0) are multiples of the irreducible representations assigned
to 0 by Auslander and Kostant in |"1].

3. In the following G will have the same meaning as set forth at the
start of 11.2. Let XQ an element of g', which will be kept fixed in the
sequel. Denoting again by IT the canonical projection from fl' onto &', we
put

^ = TT (G Xo) and ^ = ~n (l2) c ̂ .

3.1. a. Let us write S for the orthogonal complement of & in fl'. Since,
if G = exp §, we have [§, fl]C[§, §] = &, we conclude, that for a€G and
0'e:^, a o- == G-, and hence the direct product Gx2 acts transitively on 12.
Let us observe next, that il carries a Borel measure, invariant with respect

tW M M

to Gx2. In fact, we start by showing, that 12 has a G invariant Borel
measure du. Since Q == G TI (r^o) is homeomorphic, under the natural
identification^ to G/G^) {cf. Proposition 1.2, Chapter II), to attain our
goal, it is enough to establish the existence of a measure of the said sort
on the latter. To this end, it suffices to verifiy, that for any a in
G/o [fo=^ (^o)l we have

det (Ad (a) [ ?)= det (Ad (a) | ̂ ).

This is so, if we can show, that

det (Ad (a) \ b) = det (Ad (a) \ ̂ ) or det (Ad (a) \ b/^) =1 (a € GyJ,

but this follows at once from the fact, that Ad (a) leaves invariant the
nondegenerate skew-symmetric form, corresponding to (Zi, ^2) 1—^ {[li, ^l? fo)
(li, li^) on &/&^ X &/t^, [cf. 1 (V) for a similar reasoning].

lif[x) is continuous and of a compact support on Q, F (x) == \ f(x + o-) ^cr,
^s

where d(J is a positive translation invariant measure on 2, will be of the
same kind on 12 [x = 7i(rc)]. Therefore there is a Borel measure dy. on tl
determined by

ff(x)d^= f ( ff(x+a)d^du.
^ ^oVS /
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The invariance of d\^ under the action of 2 is clear; that it is also G
invariant follows from F (ax) = F (ax) (a€G).

&. If g and gi are elements in t2, we have g^ 4- ^ == fl^ + ^- In fact,
to this end it is enough to observe, that : 1° g^ depends on g | b only; 2° If a
is in G, then g^ == a Q^. We put k = ̂  + ^ (g€^) and denote by p
the canonical projection from k' onto ^/. We write I2/, = p (Q). Reaso-
ning as in (a) we conclude, that if A is the orthogonal complement of bin k',
there is a A and G invariant Borel measure rfu</c on I2/^, such that

f f(y)d^= f ( ff(x+7.)dl\du
^Q, ^Q VA /'5VA

where dX is translation invariant on A. Let 2i be the orthogonal comple-
ment of k in fl '; for d^i translation invariant and appropriately normalized,
we have

ff(x) d^ = f ( f f(x+ ̂ ) d^\ d^.
J^ JQ.k Ws, /

3.2. LEMMA 3.2.1. — G x is closed in ^1 for all x in tl.

Proof. — Let { dn\ n = 1, 2, . . . } C G be such, that lim On x == g belongs
n-^+w

to ii; we have to show, that g is in G x. Since also a^ir {x) —^ TC (g), by
virtue of Proposition 1.2, Chapter II we have dn= bn Cn, where bn-> &€G,
and Cn is in G^(^). In this fashion, Cn -> b~1 g, and to complete our proof
it is enough to show, that there is a c in G^ ̂  such that lim Cn x == ex. If

7l>oo

a€G^), we have ax = x + T (^)? and y (a6) == y (a) + T (^)? therefore
it suffices to establish, that F == y (G^)) is closed. But by Corollary 1.1,
Chapter II, x 4- r ^-= (x -}- S) H G a? is locally closed in fl', and thus F is
closed. Q. E. D.

3.3. a. Observe, that the groups G^ L and G^ Lc do not depend on
the choice of g in 12; we shall denote them by K and H resp.

^
With the notations of 11.3 (/*) let us consider the set 0 (Q) == U^Q U?5

we define actions of G and H on 0 (Q) as loc. cit.

If a is some element in J == H/(Ho), there is a smooth map <r from 12
into H such that : 1° <& (o- (g)) = a; 2° o- (g) € H^. In fact, by Remark 5.1
in Chapter II, there is a map (T' from G x into H (x arbitrarily fixed in it)
having the properties stated, such that a' (g) depends on g | if only.

Ann. EC. Norm., (4), IV. — FASC. 4. 70
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Therefore it suffices to define for g€^ : o- (g) = a-' (gi) where g iGGa; is
such, that g | & == gi [ &. Let { o/$ 1 ̂ j ̂  m } be a basis in J; we denote
byo-y maps, as above, corresponding too/ (i^=j-=m). If p = (g, y)e)0(Q)
/ A \
\XeHU we put

a p = (^; arg % ((7i (^)), ..., arg % ((7,, (^)))e^ xT^.

We show, as in 11.5.2 (a) that a is a bisection, and define, as loc. cit., on
0 (£2) the structure of a differentiable manifolds by requiring that a be
a diffeomorphism.

We know [cf. 11.6.3 (a)] that there is a canonical identification between
A A

^e^ U? ̂ d ^ed G^. We define on the latter the structure of a bundle

over the base space £1 with the structure group K by transfer of structure;
this, too, will be denoted by 0 (tl).

Let x be an element in 0. We showed above in 3.2, that 0 = G x is
closed in Q, and we see at once, that j0 (©), as defined in 11.5.2, is just the
portion of 13 (t2) over ® Ct2. Therefore, in particular, we can speak of the
orbits of Q in 0 (0). Let us observe, that by Remark 7.1, Chapter II,
i f p € 0 (^), the orbit of Sf containing p is just the closure of G p in 0 (t2).

6. The closed subgroup (G/)o K of G is independent of the particular
choice of /in 12$ we shall denote it by M in the sequel. Bearing in mind
what we saw in 11.6.2 (a) we can conclude, that there is a cross section po
from Q into 0 (t2) satisfying apo (g) == co (a) po (ag) (a€G, g€^2) where

/ "̂coGHom ^G, K) is such, that Mcker co.

c. If p (g) is any cross section, the map (g, 9) h-> y p (g) from Ox K onto
0 (0) is a homeomorphism. Let rfy be an element of the invariant measure

-e-

on K (^ T^. If h is continuous and of a compact support on 0 (£2), the
value of the integral

/ h (? P (̂ )) ^? ^^«
^n^-r^xt-

where d!;i is as in 3.1 (a), does not depend on the particular choice on p.
We denote by dr^ the corresponding measure on 0 (t2).

d. Let re be an element of t2, and t)C^c ^^h ^at t) = pol (re (^)) and
G^) 1) ji 1). Since Go; £ G^) £ G^), this implies in particular, that
Go, 1) ̂  I). We define ^ (g€^) by a I) if n (g) = a TI (^) and set l)p = ̂
for p = (g, ^) €0 (0). Observe, that t)p = pol (p) (c/*. Remark 7.2, Chap-



REPRESENTATIONS OF SOLVABLE LIE GROUPS 555

ter I). Let us put U (p) = ind (I),,, p; K) and H (p) = H (U (p)) (cf. foe. c^.).

We have the following rules of computation : 1° If y € K, <p U (p) = U (y p);
2° If a6:G then a U (p) = U (ap), always in the sense of unitary equiva-
lence. Bearing this in mind, we can easily define a measurable structure
on } U (p), H (p); p€0 (^)} {cf. 2.2). We proceed analogously as loc. cit.
Let po = (^o? %o)^^ (^) I36 fixed; and U a neighborhood of Xo on & Xo,
such that there is a continuous function a (g) from U into G with
a (g) Xo == g (g€U). If rc&1 is as in 3.2 above (with Xo in place of x
loc. cit.) and I\ a supplementary subspace to the connected component of
zero of r, in b1, there is a small neighborhood V of zero in I\, such that the
m^? Y! (g? T) == a {g) ^o + T = S + T ̂ e a homeomorphism between U x V
and some neighborhood of Xo in 12; we shall denote the latter by W. For
Y € Pi we write ̂  for the character of Ko determined by d^^ = i (y | (S + g^)).
Let ^ be a character of K such that $ | Ko = ̂ . As a slight extension
of the rules 1-2 given above one shows easily (c/. 2.1) that a ind (1)^., y, g; K)
is unitarily equivalent to ind (l)a^+p ^ ' -^ X? a^ + T; K) (^ = ^ G^).
We denote again by T the canonical projection from j0 (12) onto t2.
^ P = (^ X ) ^ T (W), let us define the representation V (p) on the
space H (po) by ^ a (gi) U (po), where g i€U and $ are such that
g == gi + T ( T € V ) and)c=^a (g,)^ ($ | Ko==^). The field { V(p), H (po)$
pG T (W) i is obviously measurable, and V (p) == U (p) if p€T1 (W) in the
sense of unitary equivalence, completing the proof of our statement.

Let us note, that by what we have just seen, { U (p) { is actually Borel
measurable.

3.4. In the following we shall often indicate the unitary equivalence of
the representations U and V by writing U r>u V. Let P be a von Neumann
algebra on which the group A acts by ^-automorphisms; we shall denote
by P^ the collection of all fixed points. With these and the preceeding
notations we have

LEMMA 3.4.1. - Let us put U= f 9 U (p) ^Y], and denote by Q the
J^ (Q)

ring of this decomposition on H (U). Then we have (^CR (U) [M = (G/)o K-
f=g\^ g€^; cf. 3.3 (&)].

Proof. — In the following often, when a direct integral of Hilbert
spaces over the measure space (X, p-) is specified by the context, we
shall write L^ (X) for the ring of all diagonalisable operators (== ring of
decomposition).
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a. Let po (g) be a cross section as in 3.3 (&). We set

Vto)==U(po(<7)) 0/e^), V==f©V(^, and X == f © cp dcp.
l7Q ^-t

Then, since y U (p) ̂  U (9 p), there is a unitary map from H (U) onto
H (V) <g) H (X), which maps U onto V (g) X and Q onto L; (tl) (g) L: (K).
Recalling, that ker co 3 M, to prove our lemma, it will be sufficient to show,

that R (V (g) X) 3 (L; (Q))^1 (g) L; (S).

6. Let us observe, that if a is any element in M we have a U (p) r>u U (p)
(c/*. Remark 6.2, Chapter I). In fact, assuming p == (g, ^), we can obviously
confine ourselves to the case, when a€=(G/)o {f==g ^). But then,
a U (p) ̂  ind (a 1)̂ , a ^,ag; K); by definition a ̂  = t)^, and we infer from
the proof of Lemma 6.1 and of Lemma 7.4, Chapter I, that a % = y and
ag k == g [ k resp. [k = b 4- fl^$ c/- 3.1 (&) above]. Hence to complete our
proof it suffices to observe, that if g \ k = gi [ k, then

ind (t), /„ g; K) = ind (I), %, ^i; K).

We can conclude from this, that V {ag) ̂  V (g). In fact,

V (ag) == U (po (ag)) == U (ape (<7)) - U (po (^)) = V (^) (a e M).

c. Let us put W=V[ Ko and W(g) = V(g) | Ko; we have W= f©W(g) ^p-

and W (ag) ̂  W (g) (a€M). Let A be some decomposable operator on

H (W), and ( A ( g ) ; g€^ } the corresponding field of operators that is

A = f © A ( g ) ^ 1 . We shall write A = (s) if for a€M we have
^ Q- J

A (^ = V A (g) V~1, where V is a unitary map from H (W (g)) onto
H (W (ag)), such that VW (g) V-1 == W (ag). We observe now, that to
prove the statement at the end of (a) above, and hence Lemma 3.4.1,
it is enough to show, that A = {s) implies, that V belongs to R (W). In
fact to see this we take into account, that for any a in K we have V (a) = (s),
since W (g) | L ̂  Ind (t)^., g &) is irreducible, and thus W (g') == VW(g) V~1

(^ = bg, b^M) necessarily implies V (g') = VV (g) V-1. Hence, by
assumption, R (W) 3 { V (a); a€ K } and therefore, by virtue of

R (V 0 X)3R ((V (g) X) | Ko) == R (W) (g) I,

we get R (V (g) X) 2 R (W) (g) R (X) [= R (V) (g) L; (S)} In this fashion
to attain our goal it suffices to remark, that if C (g) is a bounded measurable
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and M invariant function on 12 we have trivially f (D ^ (g) 1̂  d[f. = {s)
Q

[1 .̂ == unit operator on H (W (g))] and therefore

R (V ® X) 3 (LE; (̂  (g) L? (£).

cL Let us denote by ^ the canonical projection from fi' onto k'; then we
have Q/, = ^ ((2) fc/. 3.!(&)]. Given (g, ^)e^(^), let us form, as at
the start of Section 7, Chapter I, the representation Ty, by taking 1)̂ , in
place of t) loc. cit. Then the concrete representation Ty | Ko depends on
^ (g) only; we shall denote it by S (h) [h = ^ (g)]. Putting S {g)= S (^ (g)),

W (g) is unitarily equivalent to S (g) and hence W^ / (]) S (g) d[J. = S,
JQ

say. Let A = {s) be some operator on H (W), A its image on H (s) under

the said unitary equivalence, and assume A === / (j^ A (g) d\s.. Taking
'Ai

into account, that by virtue of Lemma 6.2, Chapter I, 1° If g, g'G^l and
^ {g) = ̂  (g') there is an element a in (G/)o [/*== TC (g) = 71 (g')], such that
g' = ag; 2° Evidently on Q/^ the M and L orbits resp. coincide, one concludes
that A (g) depends on ^ (g) only and that, if i;eL, A (Ig) = VA (g) V"1,

provided S (;g) = VS (g) V-1. Let us put S = f © S (K) d^ [cf. 3.1 (6)].
•^u,k

For a decomposable A on H (S) we shall write A = ((), if A == \ Q) A.{h) d\^^
^Q,k

and A {lh) = VA (/i) V-1 if S {hi) = VS {h) V-1 (^€L). According to what
we have just seen, to prove Lemma 3.4 .1 it is enough to establish that
A ==(( ) implies'A€R (S).

In the following, if S is replaced by a unitarily equivalent representation,
A == (() will stand for the correspondingly modified condition.

e. We denote again by p the canonical map from k' onto V and recall,
that p {£lh) = H.

LEMMA 3.4.2. — There is a Borel map ^ from £1 into ilh, such that :
lo ^ (/•) & == /; 20 4. {if) =l^{f) (;eL, fed).

Proof. — Let k = k, 3 k,_i 3 . .. 3 k^ == &D . . . 3 ko = (0) be such,
that { ky; 0 ̂ j' ̂  m } is a Jordan-Holder sequence in &. Let us assume,
that ^ e k / — ky_i and that (^, ^) == §,7 (1^^, j-=r), we put .̂ == p (^.)
( l^J^^)- With the notations of the proof of Proposition 4.1,
Chapter II, we write &' for the subset of elements of <^, such that
Q6 =Clr\^e 7^ 0$ it obviously suffices to define ^ on ^<? (eG^'). We
assume, that h {x) (^€®e) is as in Corollary 4.1, Chapter II, and put, with
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the notations of Proposition 4.2, Chapter II, d {x) = exp [I (R {x, h (x)), h (x))].
Then h {x) and d (x) are continuous maps on ®^, such that ^ = d {x) f {x)

m

(a;€®e). If y=^Vj^j is some element of &', we shall write y for the
7=1w

element ^yj l'^. of k'. With these notations we set ^ {x) = d! (^) h~(x), and
7=1

claim, that on Q6 we have the required properties. In fact, first

P (^ (x)) == d (x) p (F^)) == d (x) h (x) = re.

Second, if Z is some element in L, we have l^ [x) = I d {x). h {x) but also
l d ( x ) . h { x ) ==d(lx).h{x), and thus Id (x) = d (Ix) d,, where ^o satisfies
rfo h(x) =h (.zQ.^JBut i f 7 p (A) = p (A) (/i€^, ZeL) we have also Ih = h,
and therefore do h {x) = h {x). In this fashion we get l^ (x) = ̂  (^) /^(te) == ̂  {lx)
[since A (^) = h {x)] for all Z in L and x in Q6 completing the proof of our
lemma. ^ E. D.

/'. We write again A for the orthogonal complement of & in k'. The
map ^ of t2 X A into ̂  defined by ^' (/, X) = ^ (/) + X [^ as in (e)] is
a Borel isomorphism, and it makes correspond to d[L/, the measure du d\
on I^xA [c/3.1 (&)]. Let us observe, that if I is any element of L, we have
W (/? ^) === ^'(y? A)- Given X in A, we write y^ for the character of
Ko == exp k determined by d^ == i X. We have ker ?^DL and for any
A in 12,, S (A + X) ̂  y, S W. Let us put T (/•) = S (^ (/)) (/G^); we have
T (Z/*) ̂  T (/•) ( ;€=L), since S (IK) ̂  S (/^) [c/. {d)] implies that

T (Zf) == S (^ (Zf)) = S (Z ^ (/•)) - S (̂  (/•)) = T (0.
/-»

Summing up, S = _(Q S (A) ̂  is unitarily equivalent to the direct
J^

integral,

f ® ̂  T (/•) dy d?,
^QxA

and thus also to T (g) 3>, where T = f @ T (/) rfy, ^) = f^ y ^A. If
J^ "A

A = (^) [c/. the end of (^)] and A = f © A (/, X) ̂  ̂  we have
'QxA

A (;/; ^) = VA (/; ^) V-1, if T (If) = VT (f) V-1 (/ e L).

g. Let us consider now a Borel transversal for the action of L on f2.
To obtain this, we can proceed, for instance, as follows. Putting E for
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the complement of e^&' [cf. (<?)] in { 1; 2, . . ., m}, and writing He for the
hyperplane spanned in V by^j 'eEt , we take d3 = Uees' (H^H^).
Let fo be a fixed element of t2, and let us identify 0 to the homogeneous
space S) = G/G^ (cjf. Proposition 1.2, Chapter II). We put 51 == G/G^ L,
and denote by ^ the canonical projection from ^ onto 51. Retaining the
same notation for the image of CD in £), we observe, that the restriction of ^
to (0 is a Borel isomorphism with 51. Hence there is a field of representa-
tions { P (a); a€5l } of Ko, such that P (^ {q)) = T (^) (g€^C^). Let
us define T' {q) = P (C (?)) (g€^). Then T(g)$ is unitarily equivalent to

I © ?>, T' (9) d^ rf^, and we have A == (() if and only if
^xA

A = f ©A(^)dyd^
^xA

and A (g, X) === A ( q , X) if q' == Iq (?eL). Let cr be the canonical map
from G onto £). Proceeding as in 1 (c) we can find an invariant measure
dk on o" (L) = L/L^, and a measure dtv on 51 = 4)/L such that we have
for any F, which is continuous and of a compact support on S),

f ( f F (ak) dk\ dv = fF(y) dv.
^V^tL) / ^

(y)
^\^(7(L) /

Let us form the representation P = \ Q) P (a) rfv; we denote by cB theJ^
corresponding ring of decomposition. To prove Lemma 3.4.1 we have to
establish, that A = (t} implies, that A belongs to R (T (g) $) [cf. (/*) above].
Reasoning as in {d) above we conclude, that this is certainly so, if we
can prove, that R (P 0 $) = 6^' 0 R (^ for which it is enough to show,
that if P == P L, we have R (P) == d3'. To establish the last relation,
let us observe first, that by virtue of our construction P (a) ̂  P (a')
implies a == a [P (a) == P (a) | L]. Next we recall, that the map from VfL

into L, which assigns to the orbit L jfin V the equivalence class of Ind (1), f)
[cf. 1.4 (/*)] is continuous (c/*. [31], Proposition 2, p. 89) and hence it gives

rise to a Borel isomorphism between i^'/L an(^ L (c/^ PL Proposition 2.5, p. 7;
A

observe, that L being of type I, L is standard and thus, in particular,
is countably generated). Now we have a canonical map T from 51,

via H/L, into L, which establishes a Borel isomorphism between 51
A . A

and T (51) C L. Hence we can conclude, that there is a measure rfv on L,
which is concentrated on a G orbit, such that P is unitarily equivalent
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to J Q ) 7i (^) cR (C) where i T i ( ^ ) ; ^ e L i is a Borel measurable field of
^t

A
representations on L, such that 7 i ( ^ e { ^ c (cf. [12], 4.6.2, Proposition,
p. 95). d3 goes over into the ring of the diagonalisable operators of the
last decomposition. In this fashion the desired conclusion follows from

the fact, that R/^ J ^ 71 rivps the commuting ring of the ring of decom-

position {cf. [12], 8.6.4, Proposition, p. 155 and 18.7.6, p. 325).
Q. E. D.

Let us put, for p = (g, ^)e0 (0), T (p) = ind (t^, p) (^. 2 .2) . Then
we have [cf. I .4(g)] , T (p) = ind U (p). Hence along with the field of

K. ̂  G

representations { U (p); pe0 (12) }, the field { T (p); p€0 (Q) }, too, is
measurable and, putting

T = f ® T (p) dr) and U = f ® U (p) d-n
^fflfQ) ^)0(Q)

we get T = ind U (cf. [23], Theorem 10.1, p. 123).
K ̂  G

LEMMA 3.4.3. — Let P &^ the ring of all diagonalisable operators of the

decomposition T = f © T (p) dr^. We ha^e P^R (T).
•^3(0)

Proo/1. — a. Let A be a Borel fundamental domain of G mod K. The
restriction of the canonical map, from, G onto G/K, to A is a Borel
isomorphism with its image. Let d^ be the inverse image on A of the
invariant measure on G/K. We have

T(p) K = f® a U (p) dS (a) and T | K = f© aU ̂  (a).
^A JA

Hence, in particular, we have an identification of H (T) to L? (A) (g) H (U),
such that P corresponds to L^ (A) (g) Q, Q having the same meaning as in
Lemma 3.4.1. Given ^ in L^ (0 (D)), we denote by L (^) the corres-
ponding operator in Q. For a in G, we put (a '^) (p) = ^ {a~1 p). In this
fashion, to prove our lemma, it will be enough to show, that a^ == f^
for all a in G implies I (g) L (^) € P.

b. Since a U (p) ̂  U (ap), and C?Y] is G invariant, we conclude at once,
that a U ~ U ( a € G ) . Let y^ be the unique ^-automorphism of R (U),
such that 9^ (U) = a U. Then, if ^ is such, that L ^)eR (U), we have
^(L^))=L(a^.
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c. Let B be an operator in R (U); then the field of operators { < ? „ (B); a € A }

is measurable, and we have / Q) <p^ (B) d^ (a)€R (T). In fact, this is
^A

certainly true, when B is a finite linear combination of the opera-
tors { U ( & ) ; & e G } . The general case follows by choosing a sequence of
operators {Bn ] of the said form, such that B == lim Bn strongly.

n^-+- oo

d. Assume now, that ^eL^ (B (H)) is such, that a f^ == ^ for all a in G.
Then we have, by virtue of Lemma 3.4.1, L (^) € (^CQ^CR (U).
On the other hand [cf. (&)] , y,, (L (^)) == L ( f^) (a€ G). In this fashion
finally, by (c) :

R (T) 9 f© cp. (LW) dC (a) = I ® L (^)
^A

completing the proof of our statement. Q. E. D.

We recall, that the decomposition V = f (f) V {x) d[^ of the represen-
•"x

tation V is called central, if the von Neumann algebra R (V) generated
by the operators of V contains the ring of all diagonalisable operators.

LEMMA 3.4.4. — With the previous notations, there is a Borel measure ds.

on E = 0 (Q)/1?, such that T = f© T (s) dz, where T (s)e^(£) {cf. 2 .2) ,
JE

the decomposition being central.

Proof. — a. Choosing a cross section po ( g ) from Q into j0 (0) as in 3.3 ( & ) ,
we identify Q (i2) to 0x1^. Putting again 2 = Ir1, let us form the
direct product of groups H == GxSxT^, and let us define an action
of H on 0 (i2) by setting

(a, o", c*)) (g, (,/) == (a^ + o-, ooc.)') (a€ G;o-ei; ci), ci/eT7"; ̂ e^).

Evidently, H acts transitively on 13 (^). We write £) = GX^ (H=^ x2)
and infer from 11.7.1, that there is a closed, connected subgroup © of ^,
satisfying [<6, (6] == [H, H], such that for any p in 0 (12), © p coincides
with the orbit of JS containing p. Hence, in particular, we have

E = 0 (^)/$ = 13 (^)/^.

^. Let po = (^05 ^o) be a fixed point of 0 (t2); we have just seen,
that 0 (t2) == H^. Our next objective is to show, that the natural iden-
tification between 0 (^) and H/H^ is a homeomorphism. To this end it

Ann, EC. Norm,, (4), IV. — FASC. 4. 71
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will suffice to establish, that if { hn} and h are elements in H, such
that hn po -> hp, then we have also hn -> h mod H^. Let us assume
hn == (^n? ^n, ^n) and h = (a, G", co). We have clearly 00^ -^ (0, and hence,
putting H' = Gx2, it is enough to prove, that On Xo + ̂  -^ axo + cr
implies that (a^, c^) -^ (a, cr) (mod I-Q. The assumption yields

ctn n (Xo) ~> an (x^

and hence, as in the proof of Lemma 3.2.1, we can write On = bn. Cn, a == &c,
such that bn -> b and Cn, cG G^(^). Thus it will suffice to show, that
{cn, ^n) — {c, o-) mod H^, if Cn Xo + (Jn -> cx^ + 0-. But, with notations as
^oc. cit. we have

C,, a;o + ̂ n == Xo + r (Cn) + 0-̂  == CXo + (7^,

where we put
^ = T (^0 + ̂  — T (c)-

Hence (c^, o-,,) == {c, a^) mod H^ and evidently (c, o^) -> (c, o-) in H', proving
our statement.

c. Given £ in 0 (^)/'Si [= 0 (°)/^L we denote by 0 (£) the corres-
ponding -S (®) orbit in 0 (tl). We are going to show now, that there
is a Borel measure ds. on E = 0 W/'S1, such that if ^ is an appropriately
normalized G invariant measure on 0 (e) {cf. Proposition 1.1), the H inva-
riant measure Y] on j0 (0) [c/1. 3.3 (c)] turn out to be the continuous sum
of the measures { p-s; £ € E } with respect to dz. We denote by the same
letter the image of T) on H/H^ [cf. (&)]. We put ® = H/(H^.(6) and
write o- for the canonical map from H onto H/H^. Let dy. be a © invariant
measure on o- ((&) ̂  ®/©/,o. By virtue of what we saw above, we shall
attain our goal by showing, that if f (q) is continuous and of a compact
support on H/H^, then

f f(ak)d^=.F(a)
^a((Q}

satisfies F (aao) = F (a) for all Oo in H^ ®. In fact, in this case, as
in III.l , we can conclude, that with an appropriately chosen invariant
measure de on ®, we have

f f(q)d-n= f¥(e)de.
"/^u ^e
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To verify the indicated statement, we observe, that it suffices to prove,
that if (& = exp go and A€ H^ [h == (a, a", co)] we have

del (Ad (A) | ̂ o) == det (Ad (7i) (90)^).

Reasoning analogously as loc. cit.y we observe, that to this end it is enough
to show

det (Ad (a) \ 9) = det (Ad (a) \ ̂ ) forall a € Gn (,,).

But this is implied at once by the relation ([^i, a^], Xo) == ([7i ^], .To)
valid for all l^ ^ G g and a€ G^(^).

rf. Using the previous results, we can complete the proof of Lemma 3.4.4

as follows. Let us put T (s) = f ^ T (p) d[i.^ then we have T (s) € ̂  {€)
•AXS)

(c/*. the end of 2 .2) . By virtue of what we saw in (c) also

= f ©T(p)^= r©T(c)d£T = C T (p) d-n == 1 © T (c) d£
^10(£2) ^(£

(c/*. [24], Theorem 2.11, p. 204). But by Lemma 3.4.3 this decomposition
is central.

Q. E. D.

. ~ . A
LEMMA 3.4.5. — With the previous notations^ there is a G orbit Q on L,

and a G invariant measure dv on 0, such that T is unitarily equivalent to

M . m d f f © 7 T ( S ) ^ ( 0 ^
L4-G\Jjp /

where M is either one or infinite.

Proof. — a. Taking into account, in particular, what we saw in 3.1 (a)
and 3 . 1 ( f c ) , we conclude, that if f (p) is continuous and of a compact
support on 0 (Q), then we have

^(i^)i î?

I f(p) d-n == f f(? po (g)) rf? d^
^(Q) ^-t.oK xQ

= f ( f ( f f^ p° ̂  +a + ^))dal} ̂  d^} du9

^VTxA^ ) ]
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b. Since we have T = ind U (cf. Lemma 3.4.3) it will suffice to
R ^ G /

establish, that

U - M.ind ( f © TT (C) dv (Q^
L^K\J^)

where 0, v and M are as in our lemma.

c. Let gbe a fixed element in g'. Then U (y po (g + o-i)) does not depend
on (JiGSi, and therefore we have

f © U (9 po (ff + ^i)) ̂ i = Mi .U fc? po (y))
"Si

where Mi is one or infinite.

d. Let X be some element of A and assume, that ^ i€ f i ' is such, that
X J k = X. Then, if po ( g ) = (g, ̂  (g)), the expression ̂  {g + X,) ̂  (g)
depends on X only. Denoting it by y^, we observe that <p^ is a character
of G^, such that rf (9^ | (G^)o) = *̂ (X [ g^). Writing yx tor the uniquely
determined character of K = Gy L with <p^ [ G .̂ ̂  y^, ̂  L = 1, we obtain,
that

u (? Po (g + ^i)) ̂  cp ind (1),., 9). %o (9'), g + ? i; K) ̂  cp^ ind (li,., %o (g), g; K).

In this fashion we conclude that

[ ® f r © U ( ? p o ( y + < 7 + î)) (̂  d9^
^TxA VJ^ -/

/- Mi. ind (I),., %o (^, g;K)®( f C ??x d? d?>^.
VTxA /

Let A === K/L and denote by a the canonical homomorphism from K
onto A. We have A = A o X B , where B is isomorphic to K/Ko ~ 7^.

Let A1 and B1 be the annihilator of Ao and B resp. in A. Assuming,
that dao, db and da are appropriately normalized invariant measures

on A1, B1 and A resp., we obtain, that

/ ® ??A d? d^^\ f ® ('̂ ) (too (+) db (/)1 o a ̂  ( f© % da (%)^ o a.
'TxA L^XBi J \^ 7

In this fashion the left hand side is unitarily equivalent to the regular
representation of A == K/L lifted to K. Let us set f = g & and 1)̂  = t)^
[cf. 3.3 (rf)]. Since ind (t)^, y , (g), g; K) | L ~ Ind (t)/, /*) we conclude
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[cf. [26], Lemma 1, p. 325) that

ind (^, ̂  (g), g; K) 0 (j^ © cp 9). d<f d^\cp^dcpdA
K xA /\ K ^ A /•

is unitarily equivalent to ind (Ind (t)^, /')). Thus finally
L^R

U = = f ©U(p)^-Mi.ind/ f ® Ind (b/, /•) dy (f)\.
Jj0(Q) ^VS - /

e. Reasoning as in (g) of the proof of Lemma 3.4.2 we show, that
putting, with the notations as loc. cit.y 0 = ̂  (51) and v == v JO we have

f ®Ind (by, f) ̂  (f) - M. f © TT (0 ̂  (0
•̂  ^n

>^M2 < 69 7r(C)dv
^ lyjo

where Ma is one or infinite. Hence, writing M = = M i . M 2 , we get by
virtue of (&) above

T-M.indf f © TT (Q ̂  ft)YL^G\J^ y
Q. E. D.

We sum up the previous results in the following.

THEOREM 3. — Suppose, that G D G is connected, simply connected and
such that [G, Gr] == [G, G], and if G = exp §, § admits a faithful algebraic

representation. Let 0 be an orbit of G on L, and d^ a G invariant measure
on 0. Then an appropriate multiple of the representation

indf f® TT (S) dv (0) [7: (S)e(( S !)c, S€L]
L/SG\Jjp /

is unitarily equivalent to a central continuous direct sum of the factor repre-
sentations described in Theorem 2.

Proof. — This is evident from Lemmas 3.4.4 and 3.4.5.
Q. E. D.

REMARK 3.4.1. — It follows from the previous reasonings, that to
form the said central decomposition, we can confine ourselves to orbits
of '81, the projections of which, to g', lie in the inverse image (in fl'), of the G

orbit, corresponding to Q C L on b'/L [cf. 1.4 (/')].
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REMARK 3.4.2. — Observe, that we have T = indf f ® TI (^) riv (C)^
L^G\Jj0 7

if and only if : 1° k == g (on the relevant part of $; cf. above); 2° The repre-

sentations in 51 C L are one dimensional.

CHAPTER IV

STRUCTURE OF THE R E G U L A R R E P R E S E N T A T I O N

SUMMARY. — Let M be a von Neumann algebra. Below by a trace on M we shall
mean a trace on the set of all positive operators of M, which is faithful, semi-finite and
normal (cf. [13], p. 81-82). An operator AeM satisfying y (A* A) << + oo will be called
a generalized Hilbert-Sehmidt operator with respect to ® (the reference to which will be
omitted, if specified by the context). Let G be a separable locally compact group.
We denote by dx an element of the right invariant Haar measure. If T is a unitary
representation of G and f e L1 (G) we put

T(f) = C f ( x ) T ( x ) d x .
^'c.

We denote by (^ (^) the right (left) regular representation resp. of G, and by R (G) (L (G))
the right (left) ring resp. of G.

It was shown by I. E. Segal in 1950 (cf. [34]), that if G is unimodular, R (G) is semi-
finite. More precisely, there is a trace ^ on R (G), uniquely determined by the condition,
that we have for any / e L1 (G) n L2 (G) :

(1) + (^ (/) [^ (/)]*) == (A /) [ =f I / (x) I 2 dx].

Hence, in particular, generalized Hilbert-Sehmidt operators [even those of the form
iK (/) (/ e L1 (G)] generate R (G). If on the von Neumann algebra generated by the
unitary representation T there is a trace with the analogous property, we shall call T
a trace class representation. Assume now, that G is not unimodular, and define the func-
tion A on G by d (ax) == A (a) dx (aeG); thus A ^ 1. It is easy to see, that in this case
no formula of the type (1) can hold true. In fact, upon replacing / by fs (x) == f (s~1 x)
(s fixed in G), the left and right hand sides get multiplied with (A (s))2 and A (s) resp.
This in itself, of course, does not exclude, that R (G) be semi-finite, but R. Godement
showed by an example, that for a properly chosen G, R (G) may turn out a factor of
type HI. We can add also, that even if R (G) is semi-finite and hence carries a trace,
this does not necessarily make (^ a trace class representation in the sense of the defi-
nition given above. The purpose of Section 1-7 of this chapter is to prove, that if G
is a solvable and connected (but not necessarily simply connected) Lie group, the right
(or left) regular representation is of trace class (cf. Theorem 4, Section 7). Hence,
in particular, R (G) is semi-finite, which corollary has already been extended by J. Dixmier
to an arbitrary connected group (cf. [14]). The starting point of our proof is the following
observation. Assume, that / e L2 (G) is such, that by convolution on the right it gives
rise to a bounded operator V/ on L2 (G). It is easy to see, that in the unimodular case (1)
is equivalent to
(2) ^ (V/ (V/)*) = (A /)
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for any such /. In general we have, as above

^ (V/, (V/J*) = (A (s))2 ^ (Vy (V^)*) and (/,, /.) = A (s) (f, f).

One is tempted to rectify this assymetry through replacing the right hand side of (2)
by (JVr /, M'/), where M' is a self adjoint, positive, non singular operator, all bounded
functions of which lie in L (G), and which satisfies (M' /„ M' /,) == (A (s))2 (M' /, M' /) for
all s in G. Since the left hand side here can be written as A (s) (M7 L (s) /, M' L (s) /),
to this end it suffices to determine M' such that we have in addition

L (s) ]VT L (s-1) == (A (s))-1/2 M' (s e G).

That following up this lead we, in fact, arrive at the desired result, this we infer from
the theory of quasi-unitary algebras by J. Dixmier (cf. for all this Section 7 below,
in particular Lemma 7.1 and 7.2). In this fashion, our task is reduced to finding an
operator M' with the indicated properties. Let 9 be the Lie algebra of G, u the greatest
nilpotent ideal of 9 and N the connected subgroup, determined by n, of G. Since, if N
is not simply connected, additional complications may occur (cf. Section 3), here we
confine ourselves to sketching what happens, if N is simply connected. In Section 4
we show the existence of nonzero elements p and q in the center of the universal enve-
lopping algebra of n (acted upon by G via interior automorphisms) such that ap = e (a) p,
aq = -n (a) q and -r\ (a)/£ (a) = det (Ad (a)) = A (a) for all a in G (cf. in particular Corol-
lary 4.1). The right invariant differential operators, corresponding to p and q, on G
give rise to commuting non singular selfadjoint operators P and Q on L2 (G). To obtain M'
as above, it suffices to consider the minimal closed extension of | P |1/2.! Q |—1/2. Using
the fact, that by virtue of our construction, for any /eC? (G), Q / lies in the domain
of M', one derives easily the existence of a left invariant differential operator D, such
that, for /eC? (G), (^ (D /) is a generalized Hilbert-Schmidt operator and that these
operators generate R (G), implying, that the right regular representation is of trace class.
Let us observe, that p and q as above, and hence also the corresponding trace, are not
uniquely determined, the degree of nonuniqueness depending on the <( size " of the field
of G invariant rational functions on the dual of the underlying space of n'. As a partial
substitute for this lack of uniqueness we show, that p and q can be chosen such, that
their degrees do not exceed a constant depending on the dimension of n only. The
essence of the above construction can be well illustrated by the following simple example.
Let G be the connected component of the identity of the group of all affine transfor-
mations of the real line. We can realize G as the collection of all pairs { (t, x); ̂  x e R }
with the multiplication (t, x) (f, x ' ) = (t + f, x + e1 .x'). It is known, that G has
altogether two infinite dimensional irreducible representations. One can show further-
more, that if T is such a representation and 9 e C? (G), then the operator T (9) is comple-

tely continuous if and only if we have j 9 (/, x) dx == 0 identically in t. Let us define
^R

the operator D by (D 9) (t, x) = e1 (^y/^r) (t, a;); D is the left invariant vector field deter-
mined by a generator of the one parameter subgroup of translations. By what we have
just said, T (Dcp) is completely continuous (even of Hilbert-Schmidt class) if 9 e C^ (G).

The previous results, in particular, imply, that if G is any connected solvable Lie group,
the type III component of R (G) (say) is always trivial. Our last major result (cf.
Theorem 5, Section 9) asserts, that if G is simply connected, then either the type I or
type II components are trivial. In other words, the right regular representation admits
a central continuous direct sum decomposition of factor representations, consisting of
type I or of type II constituents only. By virtue of the results of Chapter III (cf.
Summary, or Theorem 2 and 3, loc. cit.), to establish this we need essentially two propo-
sitions. First, that either Gg == Gg, or Gg/Gg is infinite almost always with respect to
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the Lebesgue measure on 0' [c/. Proposition 8.1; for Gg cf. Summary, Chapter I or 1.4 (c)].
Second, that either the collection of the locally closed orbits of the coadjoint represen-
tation or its complement is of measure zero in 9'. We show finally, that in general
Theorem 5 is false, if G is not simply connected.

1. The purpose of this part is to summarize several results of the theory
of unitary representations of connected and simply connected nilpotent
Lie groups, to be used below.

Let n be a nilpotent Lie algebra over the reals, and N the corresponding
connected and simply connected Lie group. We recall, that the expo-
nential map establishes an analytic isomorphism between the underlying
spaces of u and N resp. Given some function <p (n) on N, we write y ( I )
for the function on n, which is determined by o (7) = y (exp ( I ) ) (Z€n) .

a. Given a (necessarily biinvariant) Haar measure dn on N, and
yeL1 (N), we put for any unitary representation T of N :

T(?)=f?(n)T(n)rfn.
^N

Then^ if y € C ^ (N) and T is irreducible^ the operator T (y) is of trace class
(cf. e. g. [29], Theoreme, p. 108).

&. We recall, that the measure dl, which is the inverse image of dn
under the exponential map, 0x1 ti is translation invariant. [In fact, this
follows at once from the form of the law of composition on N = exp n,
given in (c) of the proof of Proposition 1.1, Chapter II; replace $ loc. cit.
by n.J Assuming again y € C ^ (N) we set

6 (/') = f 9 (Z) < /, // > d/, where < /, // > == exp [i (Z, 1%
^\\

[I , F ) being the value of the canonical bilinear form on u x u ' at ^ € n , FEU' .
Then there is an orbit 0 of the coadjoint representation in u' such thaty
with T (<p) as in (a) above

(1) Tr(T(cp))=f9(0^
JQ

where dv is a positive invariant measure on 0. The integral on the right
hand side converges absolutely, and 0 and dv are uniquely determined by

A
the class of T in N. Conversely^ to any orbit 0 there corresponds an irre'
ducible representation by virtue of (1) {cf. [29], Theoreme, p. 111).
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c. If dim 0 is not zero, the measure du, called the canonical measure,
is obtained as follows. 0 carries a nondegenerate invariant 2-form co;
setting d == dim 0, du is the positive measure which corresponds to the d
form c^VC {d) [C {d) = (rf/2) ! ̂ .V} on 0 (cf. [30], Theorem, p. 271).

d. One can show, that the orbit OCtt' of (1) coincides with the orbit
corresponding to T as in 1.4 (/'). We shall call canonical the map, sending

the equivalence class of T into 0, of N onto ti'/N.

2. The purpose of this section is to discuss several aspects of the theory
of irreducible unitary representations of a not necessarily simply
connected, connected 'nilpotent Lie group. Our main goal is to derive
the property of the Plancherel measure described in Lemma 2.3.

Let ti be as above and N a corresponding connected group. Then N
is of the form Ni/2, where N1 is a connected and simply connected group
belonging to n, and S a discrete subgroup of the center of N1. We denote
by ti^ the center of n, and by F the discrete subgroup of n^, which is the
inverse image of 2 under the exponential map. Let us write M for the

locally compact abelian group n/F and M for its dual. M can canonically
be identified with the annihilator, in the sense of the duality between
the underlying groups of tt and n' resp., of F in n'. Observe, that since F
is left invariant by the adjoint representation of N1, we have, by duality,

an action of N4 on TO.
A

LEMMA 2.1. — The restriction of the canonical map from N1 onto tl'/Ni,
A . . . . A A /

to NcNi establishes a bijection between N and M/Ni.

Proof. — We write <& for the canonical map in question, and we show,

that $ (N) = TO/NI (Cti ' /Ni). If T is an irreducible representation of N1,
we have for all c in vft : T (exp (c)) ̂  )(j (c) • I? where %j ls a character of n^.

A . .T belongs to N if and only if the kernel of %j contains r. Let 0 be the
image of the equivalence class of T under $. One sees at once, that if I '
is fixed in 0, the linear form c \-> (c, V) on vfi is independent of the parti-
cular choice of V in 0. Thus for any such V the map

c^^O^expt i^Q]

defines a character 5^0 of ti^, and we have 0 € Mo/Ni if and only if 5^0 is iden-
tically one on F. Therefore to complete our proof of Lemma 2.1 it is
enough to show, that y^ = ̂ r L61- c be a fixed element of ti^, and let us
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replace in (1) (Section 1) y (Z) by y {I — c) (Z€tl). One sees at once, that
in this case the left and right hand side loc. cit. gets multiplied with ̂  (c)
and 5^0 (c) respectively. Thus, because of the arbitrariness of <p we can
conclude, that %j = 5^0.

Q. E. D.

Our next objective is to derive the analogue of the trace formula (1)
in the non simply connected case. Let us denote by ^V and ^ the cano-
nical homomorphism from N1 onto N === Ni/2, and from the underlying
group of n onto TO == ti/F respectively. Using

exp (I + c) == exp (1) exp (c)

for all I in n and c in tl^, one verifies easily, that there is an isomorphism co
of the underlying manifold of TO onto that of N, such that the diagramm

U—————^^————N,

^ ^
-°——— Î'l

be commutative. Similarly as in the simply connected case, given any
function <p (ra) on N, we write f {1) for the function defined on It, and
uniquely determined by y (co (Z)) == y (^) (Zetl). With these notations we
have to following

LEMMA 2.2. — Let T &e an irreducible representation of N, <p a C^ function
on N, dre a Haar measure on N, arerf d? f/ie measure, corresponding on M,
pia co, to c?n. Then the operator

(1) T^)=fcp(n)T(n)dn
^n

is of trace class, and we have

(2) Tr(T(9))= f^{l')dv.
^0

Here 0 is the element, corresponding to T in the sense of Lemma 2.1,

o/'TO/Ni, y (Z') (Z'e TO} 15 the Fourier transform of <p {I) on TO; in o^r words

^')=f?(0<U'>o
^n

d/

wA^r^ <^ ^ r )>o 15 the canonical bilinear form on TOxTO; finally, du is a posi-

tive invariant measure on 0, which can be computed according to the algo-
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rithm gi^en in 1 (c) abo^e, and the integral on the right hand side converges
absolutely.

Proof. — a. Let d<J be the translation invariant measure on 2, for
which the measure of the neutral element is one. Let 90 be a function
in C^° (N1), such that

cp (n) = f cpo (o- no) do- [n = ̂  (no)].
^s

We denote by dni the Haar measure on N1, with which we have

f 9 (n) dn == ^ cpo (n) rfni
JN ^Ni

whenever y and (po are connected as above. We form the representation
T' = T o W of Ni ; then, with dn and d^i as before, we have T (<p) == T (yo),
showing, that T (y) is of trace class.

&. To prove (2) we recall first, that by virtue of (1) [cf. 1 (&)] we have

Tr(T(cpo))== f^(l\)du
^0

where
$0 (/,)>= f^(l.)<li,l\>dl, (l^u')

Jn

and dli is the measure, corresponding to dni via the exponential map,
on tl. Hence to obtain the desired conclusion it suffices to show, that the

restriction of 90 to Men' is identical to 9. To this end we observe, that,
if d-\ is the translation invariant measure on F C n, for which the measure
of the zero element is equal to one, we have

cp( / )= f^ (Y+/ , )dy [Z=^(/OeM].
^T

On the other hand, if V ̂  and ^CF, < I + ^,1' > = < ;, I ' >, and
therefore

$(Q= ^9(^)<Z, r>od^=^f fcpo( / l+T)^)<^^>o^=^?o(0<^,Z />d^=$o(0
J^ J^, V^r / ^ti

proving our statement.
Q. E. D.
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Let ( 7 i ( ^ ) ; ^ e N ( be a Borel field of unitary representations, such
that TC (C) is of the class ^ {cf. [12], 4.6.2, p. 95 and 18.7.3, p. 324). Let

us recall, that the Plancherel measure p- for N is a positive measure on N,
such that for any y in C^° (N) :

9(e)=rTr(7r(0(cp))^(S).
J^

Having fixed the Haar measure dn, utilized in forming 11 (C) (y), on N
[cf. (1)], dy. is uniquely determined by this relation (cf. [12], 18.8, 1-2,

p. 327-328). We also observe, that the map, sending the orbit Ocft
into the equivalence class of a corresponding irreducible representation
{cf. Lemma 2.1) is continuous (c/*. [31], Proposition 2, p. 89) and hence

it establishes an isomorphism betweeen the Borel structure of TO/N and

N (cf. [2], Proposition 2.5, p. 7). In view of this fact, in the following,
whenever speaking of the Plancherel measure of a connected nilpotent

group, we shall mean the corresponding measure on TO/N. Let us denote
by { T y ; l ^ / ^ } a basis for the lattice T in ^ (s > 0). Let Z (s)
be the collection of all 5-tuples a = (a^, a^, . . ., a,) with integral compo-
nents. Putting H a = { r ; r e n ' , (y,, Z') = 2 Tia,.; l ^ j ^ s ] , we have

NHa^Ha and t=Uaez(.) Ha.

LEMMA 2.3. — Let P be a polynomial function on tl', such that for a in
Z (s), the restriction of P to Ha is N invariant and not identically zero. Then

the direct image, in H/N, of the set of zeros ofPon Ha is of Plancherel measure
zero.

Proof. — Let dl be as in Lemma 2.2. We denote by dl' the measure,

dual to dl, on TO and write dl'o, for the part of df on Ha [aeZ(^)]. For
an element X of Ha/N, we denote by Ox and dv^ the corresponding N
orbit and canonical measure [cf. 1 (c)] resp. By virtue of Lemma 2.2,
to obtain the Plancherel measure rfp., it suffices to determine, for each a
in Z (^), a positive measure d^ on Ha/N, such that

f g { l ' ) d l ^ f ( fg^du^d^
J^ ^H./N Wox /

holds for any rapidly decreasing function g (T) on n'. In fact, in this
case, by virtue of the Plancherel formula for the abelian group TO, it will
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be enough to define a positive measure d\^ on M/N by the condition,
that its part on Ha/N be rfp.a. From now on we keep a fixed, and omit
it from our notations. Using the definitions and notations of the proof
of Proposition 4.1, Chapter II, let e be the smallest element of S, for which
the restriction of Qe to H is not identically zero. Below we shall suppose
d (e) > 0, and leave to the reader the easy modifications necessary, when
d\e) = 0. We can obviously assume, that the Jordan-Holder sequence,
fixed as loc. cit. (replace fl by n) is such, that Us is the smallest subspace,
containing F, of n^, and that Ij = ̂ j ( i ^ j ' ^ z s ) . We observe, that
for any e in & we have { 1, 2, . . ., s }c E. In fact, let us recall, that /
belongs to f {x) if and only if n/_i [x) C tl/ {x). But since, for / ^- s,
^y'^^^R (^)? we can conclude, that n/ {x) = R {x) for each 7 not
exceeding s. In this fashion we get {cf. Remark 4.1, Chapter II)
that

( m \P^ n H = < x; x ==V Xj l '^ , Xj == 2 Tray for 1 ̂ j ̂  s, and Xj =0 for j e e >.
( 7=1 )

Let us show now, that ©eHPeOH is Zariski open in PenH. To this
end it is enough to see, that the restriction of Qe to PeH H is not identically

zero. If x is any element in ©^nH, then y ===^^y(^) fylies inPeH ®eH H
/eE

and 0 7^ Qe {x) = Qe (y), proving our statement. The map x i—^^\/ {x) ?y
yeE

(.r€®cnH) gives rise to a diffeomorphism between (®eHH)/N, and
PeO^enH. Let us write E' for the complement of { 1, 2, . . ., s } in E.
Using Remark 4.1, Chapter II, we see at once, that if S {x) is a poly-
nomial on n', such that its restriction to H is N invariant, then there
is a polynomial U (^) in the indeterminates { ^ / e E ^ , such that,
on H, S (x) == U (A (x)) where the right hand side is obtained by
replacing \/ through Xy (x) ( r rG^eHH) . Bearing in mind all this,
by imitating the argument of [30], p. 278-279, we arrive at the following
description of d\^y.. Let us denote by Le a polynomial, satisfying
L^ == Qe, on n'. Along with Qe, its restriction to H is N invariant,
and, as we have just seen it, this can be written as Re (X (x)).
Then d\^y. is carried by (®enH)/N, and there it corresponds to the measure

Re (X) | rfX on PeH^eHH; d\ stands for the product of the differen-
tials of the variables { X / $ y e E ' } . Let now P be as in the statement
of Lemma 2.3. To conclude our proof it is enough to observe, that
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if we write the restriction of P to H in the form V (X {x)), then the
subset

( ' )
re; x =^ 2 Tra; //, + ̂  ̂ . l^ V 0) == 0

( y=l /eE' )

of PeUff i^nH is of measure zero with respect to | Re (X) | rfX.
Q. E. D.

3. Let G be a connected but not necessarily simply connected solvable
Lie group with the Lie algebra $. We denote by n the greatest nilpotent
ideal of fi and by N the connected subgroup, belonging to n, of G. Let Gi
be a connected and simply connected Lie group belonging to g, and N1
the connected subgroup determined by n. We denote by M a discrete
central subgroup of Gi, such that Gi/M is isomorphic to G. We put
2 = = M n N i and r for the complete inverse image of F under the expo-
nential map from n onto N1. We let G act on n through inner automor-
phisms and on n' by the corresponding contragredient representation.
Given a€G and leu (Ten' resp.) we shall write al [aV resp.) for the
action of a on I {V resp.). We observe, that G leaves r invariant, and

thus G operates on M = n/F, and by duality, also on TO {cf. 2 above).
In the next sections important role will be played by nonzero rational

functions R, defined on one of the connected components of Men', and
verifying R {ax) == A (a) R {x) where A (a) = det (Ad(a)) (a€ G). Our
next main objective is to establish the existence of such functions
(c/*. Proposition 4.1 below). Our problem, of course, would be simpler,
if it were possible to take the restriction of a rational function, defined

over n' and having the indicated transformation properties, to ilcn'.
That this is not necessarily feasible is shown by the following example.
Let us denote by fl the solvable Lie algebra, spanned over the reals by
the elements [e^e^ . . . , ^ 5 } satisfying the following commutation rela-
tions :

[eo, 61] = 61, [60, 62] == — e^ [eo, 63] = — ^, [e^ e^\ = 64, [d, e,] = 65,

all other brackets having the value zero. Here u is spanned by
{^; l ^ : /^ : 5}, and we have i^ = R e, + R e, = $\ Let Gi and N1
be as above with respect to the Lie algebra just defined. We denote
by H the orthogonal complement of ti^ in n'. To prove our point, it
will be enough to show, that if S (x) is a rational function on n', such that
S {ax) = [A (a)]-1 S (x) (a€Gi) , and if the restriction of S to H is defined,
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then it is identically zero. We denote by {^ ;1^ /^5} coordinates
with respect to a basis, dual to { ^ / ; 1 ^ / ^ 5 } , in n'. Let us observe
next, that the system of polynomials { x^y x^y x^ x^ — x^ x ^ } constitutes
a system of algebraically independent generators of the ring of all N1
invariant polynomials on ti' (cf. [9], p. 326). We set }\.[x)=.x^x^ — x ^ x ^
and show, that R [ax) = [A (a)]""1 R {x) (aeGi). To this end let us write
T( ̂  (Ad (exp (— teo)))/ and remark, that it suffices to prove, that
R (TtX) == exp (t) R (x) for all t, which is immediately clear. Thus
S/R is invariant with respect to Gi and hence it can be written as pfq,
where p and q are relatively prime polynomials satisfying p {ax) ̂  a (a) p {x)
and q {ax) = a {a)q {x) for all a in Gi. Since a is identically one on N1,

n
we can write p as ^.A^ (^4, x^) R7 (X^ ̂  0), where the X/s are polyno-

7=0

mials in x^ and ^5, and thus invariants of Gi. We conclude therefore,
that p is of the form X (^4, x^) R", and similarly, ^ can be written as
[̂  (^4, ^5) R^ (/c^O). But since p and q are relatively prime, we have
n = k = 0, and X and [i are relatively prime polynomials in x^ and ^5.
Summing up, S is identical to RX/[I, and [JL^O on H = [x',x^u\x^ == x^ == 0},
but then S := 0 on H.

4. PROPOSITION 4 . 1 . — Wit/i t/i^ previous notations, let s be the rank
of r, Us the subspace, spanned by elements of r, of n, and ^ the canonical
projection from n' onto u'^ •==•- n'/111- Given X in n,, w^ put H), = TC (^).
Then there exist polynomials p azzrf q on n/, ^uc/i tAat their degrees do not
exceed a bound B (m) depending on m = dim n only, and such that p and q,
when restricted to H ,̂ are not identically zero and satisfy p {ax) =. a (a) p {x)y
q {ax) =. ̂  {a) q {x) for all x in H and a in G; a and ? are positive characters
of G, such that a (a)/P (a) = A (a), where A (a) = det (Ad (a)).

«
Proof. — In the following we shall assume, that s > 0, and that n is

nonabelian. The easy modifications, necessary to settle the remaining
cases, will be left to the reader.

a. We consider G as acting on the complexification lie °f n' ^nd denote
by (6 the smallest algebraic subgroup, containing (Ad (G) ] n)' of GL (tic).
(Observe, that (6 is irreducible, and hence connected.) Let n1 be the
orthogonal complement of n^Cll in n'. Keeping^ fixed we set 3€ == H'A -4" nl1

and observe, that (j& leaves 9€ invariant. With these notations we claim,
that to prove our proposition it suffices to find two polynomials P and Q
on He, such that their restrictions to ^€ are not identically zero, and such
that P {gx) = a^ {g) P (^), Q {gx) = ̂  {g) Q {x) for all g in © and x in 9€^
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where o^ (g)/Pi (g) = det (g), and such that their degrees do not exceed a
bound BI (m) depending on m only. In fact, let us write r == ri -)- ir^
and s = Si + ^2 respectively for the restrictions of P and Q to n'C tie-
By virtue of our assumptions r and s, when restricted to H),, are not identi-
cally zero and thus, for instance, the real part F (x) of rjs is defined and
not identically zero on H),. We observe next, that for all g in G :
det (Ad (g-1) ti) = det (Ad (g-1)) = A (g-1) and therefore F {gx) == A (g-1) F (x)
(^€ Hx, §€ G). On the other hand, F {x) =. g {x)f | s (x) |2 where

g (x) ̂  Fi (x) Si (x) — 7-2 (x) S2 (x)

and, putting ^ (g) = ̂  ((Ad (g-1) n)'), we have . (gx) 2 == [ ̂  (g) |21. (^) |2.
Hence we conclude finally, that to satisfy the conditions of our propo-
sition, it suffices to take p (x) ̂  | s (x) 2, q (x) = g (x), a (g) = ] ^3 (g) |2,
P (g) ̂  I ̂  (g) 2 A (g-1) (ge: G), and B (m) = 2 B, (m).

6. Let fi be the Lie algebra of (&CGL (tic)- By virtue of our choice
of the latter, g is the smallest algebraic Lie algebra of endomorphisms
of tic containing (ad gc I ^cY- Let us denote by tli the collection of all
nilpotent elements in $; then there exists an abelian algebraic Lie algebra I)
of semi-simple endomorphisms in fi, such that fl, as a vector space over
the complex field, is direct sum of the underlying spaces of tli and 1] respec-
tively (c/*. [G], vol. Ill, Proposition 20, p. 130). We denote by H and N1
the connected subgroups, belonging to 1) and Hi resp. of <&. If g is any
element of (&, it can uniquely be written as hn, where AeH, TzeNi
{cf. [G], vol. Ill, Proposition 21, p. 131). Let us denote by m the subalgebra
(ad (tic))' °f ^9 ^d by 4% the corresponding connected subgroup of <&.
Observe, that m is an ideal in fi. In fact, putting go == (ad (gc) | tic)'?
we have [fl, fl] == [go, flo] (cf. [G], vol. II, Theorem 13, p. 173); but since fl
is solvable we also have

ho, gol = (ad [9c» 9c] I ^cX c (ad ̂ c I ^c)' = w'

proving our statement. Furthermore, since g/w is abelian, the same
is valid for <&/M ( cf. [G], vol. Ill, Proposition 12, p. 120).

c. Let us put gi === 1) 4" ttl; fli i8 a subalgebra of g. We write (61 for
the corresponding connected subgroup of ^ and observe, that d$i = H-1M.
We claim, that to prove our proposition, it suffices to show^ that there exist
polynomial functions S and T on tic? such that S | 9€ ~=^. 0, T [ ^C ̂  0,
S (g^) = y (g) S (rz;), T (grK) = S (g) T (x) for all g in ®i and x in ff€, where
T (s) 1^ (§) = ^e^ (§0? an^ such that the degrees of S and T 6?o TZO^ exceed a
bound L (m) depending on m == dim tl on^y. To show this we observe
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first, that there is a homomorphism o^ (pi) of (& = HNi into the multi-
plicative group of all nonzero complex numbers, uniquely determined by
the condition, that o^ (A) = y (A) [pi (/z) == S (/i)] for all h in H and such
that ^==i (Pi = 1 resp.) on N1. We have evidently a^ (g)/?i (g) = det g
on (6. In this fashion, by virtue of (a), to prove our assertion, it is
enough to establish the following statement. Let S (x) be a polynomial
on He such that S (gx) = 7 (g) S (^) '/or aM gin^i and x' in SC, and S | Qt ̂  0.
L^ a &^ ̂  homomorphism of^ into the group of all nonzero complex numbers^
such that a [ ®i =E "y anc? a [ Ni = 1. Then there is a polynomial function
R {x) on tic? s^ ^at R [ ff€ ̂  0, deg R ̂  deg S OM^ R (gx) = a (g) R (^)
/or aM g in (& a/zdl ^ in 9€. Let us denote by W the vector space, over
the complex numbers, composed of all polynomials P on tic? satisfying
P (gx) = Y (g) P {x) for all g in <&i and ^ in 9€, and deg P ̂  deg S.
We write Wo for the subspace of all elements, vanishing identically on 3C^
of W, and set V == W/Wo. We have evidently dim W < + oo and
hence also dim V < + oo. On the other hand, by virtue of the existence
of S {x) as above, W properly contains Wo and thus dim V > 0. Given
any element g of <& and P in W, let us put (T (g) P) {x) = P (g-1 x). We
observe, that the linear map P-h-> T (g) P (PeW) transforms W into
itself. To see this it suffices to take into account, that (&i = HIM is
invariant in <&, since (&/4M is abelian [cf. the end of (&) above]. On the
other hand, it is evident, that T (g) leaves Wo invariant. We write U (g)
for the operator, induced by T (g) on V = W / W o $ the map g \-> U (g)
is a linear representation of © on V. Since the image of any element I
of tli in the differential of U is obviously a nilpotent operator, by virtue
of the theorem of Engel, applied to U (N1) as acting on V, we can conclude,
that there is a nonzero element r in V, such that U (n) r ==E r for all n
in Ni. Let R be an element of W lying over r. We have R [ 9€ ̂  0
and also R {gx) == a (g) R [x) for all g in <& and x in 3 .̂ To prove the
last statement let us assume, that g === An(/i€:H, ^€=N1). Then if x is
in ?6, by virtue of the definition of W and a :

R (^) = T W R (^) = a (h) R (nx) === a (g) R (nx);

but in view of our choice of R, R {nx) == R {x) on 3€, and thus

^(gx)==^(g)R(x),

completing the proof of the statement made at the start of (c).

d. Summing up once more, to establish our proposition, it suffices to
construct polynomials P and Q on HQ, such that P ^6^0, Q | 9€ ̂  0,
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P (^) = T (^ P (^ Q (^) = S (g) Q {x) for all g in (6, = HM and x
in <?€, where y (g)/S (g) = det (^), anrf deg (P), deg (Q) ̂  L (m), w/i^
L (m) depends on dim ll = /n OTI^V.

<?. In the following, given an endomorphism A of a vector space V,
A' will stand for the transpose of A, operating on the dual V of V. If 3(
is a family of endomorphisms of V, we write 51' for { B; B = A', Ae^l }.
Let <6 be the smallest algebraic group of endomorphisms of tl^, which
contains Ad (G) | n. Since the group of all automorphisms of tic ls ^g6-
braic, we conclude, that any element of ® is an automorphism of tic.
We have evidently OS '3 <6 [cf, (a)] implying, that <&' consists of automor-
phisms of lie- Let us observe, that ® leaves the center of $c (Cttc)
elementwise fixed, and hence the same is valid for (&'.

Let us choose now a Jordan-Holder sequence

^c = m^ ̂ m-i 3 ... 3 wo = (0) (dim my = j, j = 1, ..., m)

for the action of the solvable Lie algebra Si = t)' + w' [cf. the start of (c)]
of derivations of tic- By what we have just seen, we can assume, that m,
is the complexification of n^Cfl^, where n, is as in the statement of Propo-
sition 4.1. Since along with H, H', too, consists of semi-simple endo-
morphisms, for each / = 1, 2, . . ., m we can find a nonzero element Ij in
tit/ — m/_i, such that hij = ̂  (h) Ij for all h in H. Observe, that we have
[Lj == 1 for 1 ̂  / ̂  s. With the notations of Proposition 4.1, Chapter II,
taking loc. cit. C, m, M and {mj} in place of K, $, G and { f l y } resp.,
let us denote by e the smallest element of &, such that QJ <?e ̂  0.
Assume first, that rf ( < ? ) = ( ) ; 1M acts then trivially on S€. Let
{^• ; l^ /^m }be coordinates with respect to a basis, dual to { ̂ ,1^/^m},

771

on nc. We claim, that by setting P [x) = \\ xj, Q (a;) = 1, y (g) = det (g),
''=:,?+!

^ (g) = i- (^(S&i) the conditions of (d) above are statified. In fact, all
what we have to show is that P {hx) = (det (A)) P {x) for all ^ in S€ and

771

/^ in H; but this is certainly so, since det (A) = TT p-y (A). Let us assume
y"=.5-+l

now, that d {e) > 0, an let us consider, as in Lemma 1.3, Chapter II,
the system { X , ( ^ ) ; / e E } . Evidently { 1, 2, . . ., s }c E\ Writing E'
for the difference of these two sets, the points •[ Xy (x); /€ E7 } of Q^
[k == m — d {e) — s y coordinates arranged according to increasing /'],
if x varies over the Zariski open set ff€f\^e in <%, describes a set of
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the same kind (c/*. Remark 4.1, Chapter II), and thus, in particular,
Xy {x) ̂  0 if / belongs to E'. Let us show now, that Xy {hx) = y.j {h) Xy {x)
for all h in ^C, x in ®e and / i.n E. To this end, by virtue of Lemma 1.3,
Chapter II, it is enough to observe, that if h belongs to H, then its trans-
pose h' is an automorphism of tic satisfying h' .lj = ̂ j (A) Ij (1 ̂  /^ m).
We recall, that by definition

Qe (x) ̂  det i ([/„ Zy], x); i, j e e } .

Observing, that for h in H :

([Z,. Z;], hx) == (h' [It, Z;], x) = ([h1 Z, h' Zyl, x) = ̂  (h) ̂  (h) ([Z, Z;], x) (i, j e e),

we conclude, that for all x in tic we have Qe (^) = ([^ (A)) 2 Qe (^), where

^(h)==1[[^(h).
y'ee

We denote by Pg a polynomial, homogeneous of degree d (^)/2, over He?
such that P^ = Qe. Then we have P^ {hx) == p- (A) Pe {x) for all /i in H.
We set

R (x) = P. (x)f[ ̂  (x).
7€E'

R {x) is a rational function, the restriction of which to 9€ is not identi-
cally zero. Since

in

det (h) = f[ ^ (h) = ^ (h)f[ ̂  (h),
7==A-+1 7'eE'

we have R {hx) = (det (/i)) R (^) on 3^ for all h in H. In addition, by
virtue of our construction, R | ̂ € is invariant under iM and thus, since
^1 = H M and det (n) = 1 on i^l, also R (g^) = (det {g)) R (rr) {x€S€,
gG^i) . By virtue of Lemma 4.1, Chapter II, since \j {x) = Pj {09, x),
with notations as Zoc. cit. we can write ^ {x) = Ay (^)/(Qe (^^^ where
Aj{x) is a polynomial satisfying deg (Ay (rr)) ̂  (2 m + 1) K {m) (/'eE').
Thus putting

P (x) == Pe (x)f[ Ay (x) and Q (a;) = (Qe (^))^(m) ^ = m — d (e) — s],
7'€E'

the polynomials P and Q satisfy deg (P), deg (Q) ̂  L (m), where
L (m) = m2 (2 m + 1) K (m). Let us define finally [̂  (g) = [̂  (^) if g == hn
(A€ H, MGIM). We have on 9€: Q_(gx) =v (g) Q^), where v (g) ̂ [^(g)]2^^
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(gS^i). Summing up, it is clear from the previous discussion, that
choosing P, Q and L (m) as above, and setting y (g) =ES ( det (g)) .v (g),
^ (^ = v (g) (^(Si), all the conditions of {d) above are met, and thus
the proof of Proposition 4.1 is complete.

Q. E. D.
Given a finite dimensional Lie algebra $ over the reals, we denote

by U ($) the universal enveloping algebra of fi. Let <p be an automorphism
of fi; we shall write 9 also for the corresponding automorphism of U (g).

COROLLARY 4.1. — Let G be a connected solvable Lie group with the Lie
algebra $. We denote by u the greatest nilpotent ideal of g and by V the
center of U (n) [CU ($)]. There are nonzero elements p and q in V, such
that gp = £ (g) p, gq = Y] (g) q, and Y) (g)/£ (g) = det (Ad (g)) (g€ G).

Proof. — We denote by S (fi) the symmetric algebra over the underlying
space of g. We recall, that there is an isomorphism <& of the underlying
space of S (fl) onto that of U ($), such that for any finite collection
{ ^i, x^ . . ., x^} of elements of g the image, under <E>, of the product
Xi x^ . . . ^M, computed in S (g), be the same as

1 / Y \
J^-l( ^j ^(1) ^7T(2) ... ^(M) )

V^en, )

computed in U (g). If 9 is any automorphism of g, we have $ (9 (^) = 9 3> ((^)
for all p in S (fl). Let ^ ($') be the algebra of all polynomial functions
on the dual $' of the underlying space of g. There is an isomorphism W
from S (g) onto ^ ($') such that

M

^ (x, x, ... rrM) (0 ==n (̂ , Z') (Z7 e 9).
7=1

If A is some endomorphism of the underlying space of g, we have
W (A P) (r) = W (^) (A' ;') [^eS (fl), reg']. We replace above fl by n,
and assuming, that p, q in ^(n') are as in Proposition 4.1, form their

-i
images in U (n) under $ o y. Denoting these again by the same letters, by
virtue of what we saw above, we have gp== (l/^g))?? ^9^(1/P(^))9 (g€G).
Since the restriction of a and [3 to N is identically one, p and q lie in V,
and thus to complete the proof of Corollary 4.1 it suffices to set
^)=lMg), ^)=l/P(g) (geG).

Q. E. D.

5. Before proceeding we wish to recall the following facts.



REPRESENTATIONS OF SOLVABLE LIE GROUPS 581

a. Let G be a connected Lie group with the Lie algebra g. Denoting
by C^° (G) the family of all complex valued C00 functions of a compact
support on G let us put, for a given a in G, (R (a) f) {x) == f {xa) [/*€ C^° (G)].
The map a }-> R (a) defines a representation of G on C^ (G), considered
as a vector space over the complex numbers. Let U (g) be the universal
envelopping algebra of fl. For p in U (fl), dR (p) is a left invariant
differential operator on G. We put p (f) = (dR (p) f) {e) [feC^ (G),
e = unity of G]; the linear form f ^ p ( f ) is a distribution, the support
of which is { e }. The map assigning to p € U ( f l ) this functional is an
isomorphism between U (fl) and the algebra of all distributions with support
at e, the product in the latter being defined by convolution. In fact, let
{lj\ 1 -= 1 ̂  ̂  } be a basis in g, r = (r^ r^ . . ., rj (rj ̂  0 integer for
/ = 1, 2, . . . , m). With notations as in Corollary 4.1 we put

f ( r )=<^(^ . . .Z^)eUOO.

The desired conclusion is implied by the fact, that the collection of all
these elements span U (fl) as a vector space over R, along with the obser-
vation {cf. [19], p. 98) that for feC; (G) we have

(1) / (r) (f) = ̂ ^^^^(exp (/ (T))) |^o

where | r \ = r^ + ra + . . . + r^ and for T = (^i, t^ . . ., t^) we have
m

set nT)==2^.
7=1

b. There is an isomorphism <p from S (fl) into the algebra of all complex-
valued polynomial functions on $', uniquely determined by the condition,
that

771? (̂  z? . . . ^m) (o ̂  ̂ 'n ̂  o'7 (r € 8/)-
y=l

Let us set £ == y o $; c is an isomorphism of the underlying space of U (g)
with its image such that, for any a in G we have £ (ap) (Z') == £ (p) (a~1 (')
[p€U (fl), ^eg'J. This map admits a unique extension, to be denoted
again by £, to an isomorphism between the underlying space (over C)
of [U (fl)]c and that of the collection of all complex valued polymonial
fonctions over g'. Let U be the center of U (fl); an element p belongs to lie
if and only if £ (p) is G invariant.

c. Let T be some continuous unitary representation of G. If p is any
distribution of compact support on G, there is an operator T (p) on the
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variety of all indefinitely many times differentiable vectors of H (T),
uniquely determined by the condition, that we have for any pair /*, g of
vectors of the said type : (T (p) f, g) == p, (T {x) f, g). If p is central, T (p)
is a scalar multiple of the identity map I. In this case we shall write
(with a slight abuse of notations) T (p) = (D I (coe C).

d. We assume now, that fl is nilpotent and G connected and simply
connected. Let T be an irreducible unitary representation of G belonging
to the orbit 0 in g' {cf. 1). If p€lL, £ (p) is G invariant [cf. (&)]; we shall
write £ (p) (0) for its value on 0. With these notations A. A. Kirillov
proved {cf. [22], Theorem 7.2), that T (p) == s (p) (0) I.

e. Identifying the underlying manifold of G to that of g by means of the
exponential map let us observe, that for any p € U (g) its Fourier trans-
form p, formed with respect to the underlying abelian group of fl, coincides
with £ (p). In fact, putting for yeC; (fl), y (— 1) = y_ (;), we have by
definition p (y_) == p (y), where 9 is as in 1 (&). Let us choose a basis
{ l j ' , l ^ j ^ m } in g. With notations as in (a) above, to establish our
statement, it is enough to consider the case off(l{r)). Let { ^.; 1 ̂ ]^_ m\
be a basis in g' such that (^, ^.) = S,y and denote by { Xi} and { y j } the
corresponding coordinates on g and g' resp. We have by (1),

P(^-(-^^^^^(x)^-(-^'^^

On the other hand £ {I (r)) {y) = i'" ̂  y^ . . . ̂  == j^l ̂  Therefore to
complete our proof it is enough to recall, that if dx is an element of the
Lebesgue measure on R^ we have

'iff ^(x)eixydx=(—lyr\ f ̂ —^(^e^dx.I'M y \ cp (x) e^r dx == (— 1)^1
^R"1 ^R"^Rm ^^ox

6. We denote again by tl a nilpotent Lie algebra and by N a corresponding
connected, but not necessarily simply connected nilpotent group. Using
the notations of Section 2, we identify the underlying manifold of N to
that of the abelian group M = n/r by means of CD (cf. loc. cit.). Let (S
be the family of all central distributions of compact support on N. If
p-€<®, we write p- for the Fourier transform, in the sense of the abelian

group M, of [̂  on M. Observe, that evidently pi is N invariant. Given an N

orbit 0 in TO, we shall write [L (0) for the value of pi on 0.
By virtue of what we said in (e) of the previous section, the following

lemma is a slight extension of the result of Kirillov quoted in {d) loc. cit.
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LEMMA 6.1. — With the previous notations assume, that T is an irreducible
A

unitary representation, belonging to the orbit OcTO, of N (cf. Lemma 2.1).

Then, if [i€^, we have T (p-) = y. (0) I.

Proof. — a. It y is in C^° (N), we have

T (^ x q?) = T (p.) T (<p) (^ x <y == convolution on N).

Forming the trace of both sides, by virtue of Lemma 2.2 we conclude, that
the assertion to be proved implies

(1) fpo<9dy==^(0) f^dv.
17 0 ^0

But the inverse implication, too, is valid. In fact, replacing in (1),
y by 9 X^[^€C:(N)] we conclude, that Tr([T(^Xy)-[l(0)T(y)]T(^))==0,

whence, varying first ^ and then y we get easily, that T (p-) == [̂  (0) I.
In this fashion, to prove our lemma, it suffices to establish (1).

b. Let us observe, that if 0 is a zerodimensional orbit, we have certainly
T (p-) = p. (0) I. In fact, let us assume 0 = { ko }; then T coincides
with the character <p of N defined by y (oo {1)) === ^ I, ko > (?€TO). In this
fashion T (p-) = p- (^ I, ko )>) == [k (ko), proving our statement.

c. We proceed now to prove (1) by induction according to the dimension
of N. By (&) our statement is valid if dim N ̂  2, since in this case any
orbit is zerodimensional.

Let TO' be the image of u^ in M. Since < nl, I > == < I, n~11 > {n € N, ?€ M,

]; e ̂ ), putting, with ko in 0 : f (V) = < ;, ko > (^eM'), the character / on W
depends only on 0. We denote by A the kernel of /*, and assume, that the
dimension of the component Ao of its neutral element is positive. Let us put
M = = N / c o ( A ) ; we have dim (M) < dim (N). We write M = M/A and
observe, that the relation of M to /̂ M is analogous to that of N to TO (c/*. Sec-

tion 2). The dual of JTO is identifiable to the annihilator of A in TO. Hence,
A A .

by virtue of our construction : Oc^McTO. Given a distribution a,
invariant under translations by A, on TO, we denote by ai the corresponding
distribution on 4M. Let dS be an element of the invariant measure on A.

For y€C^ (TO) we put v (y) == ^ <p(S) d8. Denoting by w the Fourier trans-
JA

form, with an appropriately chosen invariant measure, on Jll, we have
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<p iM=((pxv)i [c/*. (&) in Lemma 2.2]. ( i^Xv) i is a distribution of
compact support, which is central with respect to M, and

(cpX^-Xv)i FEE (cpXv)iX(pi .Xv)i .

Hence, by virtue of the assumption of our inductive procedure

f{^X^)du== f(9^r^^)idy=(^1;)i(0) r(cp3^)idy=^(0) f^du
^0 ^0 ^0 ^0

which is the desired conclusion.

d. If dim Ao = 0 we have dim (n^) = 1 and 0 is not orthogonal to t^.
We recall now the following results of Kirillov (c/. [29], p. 130-136). Let
0 ̂  jzen^ I = { z, y } a 2-dimensional ideal. There is y 7^ 0 in n' such
that ad (V) y =: (Q (T) z (^Gti), and tlo = ker (9) is the centralizer of I. Let
us put N' == exp (tlo) $ N' is a closed subgroup, of codimension 1, of N.
This being so, any N orbit 0 in tl', which is not orthogonal to tl^, satisfies

0 + tl1 = 0. Let TO' be the image of tlo in TO; we have TO' = TO/n1. Assume

now, that Oc TO, and let Oo be an arbitrary N' orbit in its projection into

TO'. Let x be an element of u with y {x) = 1, and denote by 0^ the image
of Oo under exp {tx) (<€ R). Fot y in C^(TO), we write <po tor its restriction
to TO'. Then, if yo ^ ^Ae Fourier transform of (po o^ TO' (with a suitably
chosen invariant measure) we have

f^(U)du=. f(f^(l)du,\dt
Jo J^ \Jo, j

where dvt is the canonical measure [cf. 1 (c)] on 0^. Let y. be in ̂ . Since
y. is N invariant we conclude, that it is invariant under translations by

elements of tl1 C TO, and thus the support of p- is contained in TO'. Assume
now, that 0 is as in our lemma. We have, for each fixed t, by virtue of
our inductive procedure

\ (̂ !3^p)o = / ^X^o dVt == p (OQ / ?o dui.
^Ot ^Ot ^Ot

But since jl (0^) ̂  p- (0), we obtain finally, that

n )̂ du == p. (0) f ( f ̂  du,\ dt == p. (0) fcp (Z') dy.
^0 ^RV^Ot / ^0

Q. E. D.



REPRESENTATIONS OF SOLVABLE LIE GROUPS 585

In the following we continue to identify, whenever convenient, the under-
lying manifolds of N and II resp. We shall call a complex valued function

A
P on N a polymonial function, if the function corresponding, by virtue

A /
of Lemma 2.1, to P on IT/N, on each component of the latter, arises out of

A
a polymonial function of n'. We say, that the polymonial function P on N
is of bounded degree, if the said polymonials can be chosen such, that their
degrees are uniformly bounded. The polynomial functions P and Q will

/\

be called proportional, if the corresponding functions on 11 are proportional
on each connected component (the factor of proportionality being permitted
to vary). Assuming, that N is not simply connected, let us denote by % the
maximal torus in the centre of N; we write s {s > 0) for its dimension.
We say, that a distribution on N is of a bounded degree, if it can be written
as a finite sum of distributions of the form v X A", where k is in U (u) [cf. 5 (a)]
and v is a complex valued measure carried by % and there of the form f dt,
where j feC^ (^) and dt is the element of the normalized invariant measure
on ®. Observe, incidentally, that the convolution of v and k with respect
to N and the underlying group of 11 resp. coincide. We denote the collec-
tion of all central distributions of bounded degree by d?u. Any element
of c0u is carried by ®. If N is simply connected, we define d?o by ^LQ
[cf. 5 (o), &)].

A
LEMMA 6.2. — Let P be a polynomial function of bounded degree on N.

Then there is an element p- of d0o such that, with the usual identifications, [L
and P are proportional.

Proof. — Assume first, that N is simply connected. Then there is a [̂
in *Uc such that P = £ ([^.) [cf. 5 {b)] and we have also P = p- by 5 [e). Let
us suppose now, that N is not simply connected. With notations as above
and in Lemma 2.3, let { Pa; aeZ {s) } be a sequence of polynomial func-
tions, such that Pa Ha is N invariant, and that the corresponding function

A /on Ha/N coincides with the restrictions of P to Ha/Nclt/N. By virtue
of our assumption on P, we can suppose the existence of a constant
K > 0, not depending on a, such that deg (Pa) < K [a€Z(^)]. Using
coordinates { ^-; 1 ̂ j ̂  s } corresponding to the basis { fy; 1 ̂  j ̂  s }
of r, on % (identified here to n,/r), let us put ^a {t) ==E exp (— 2 n it a)
r 1

a = (ai, a^, . . . ,a ,)eZ (^), <a ==V tj/Xj |. We write also %a tor the measure^2, ... ? ^s) ^= ̂  ^/? ̂  — — Z _ j v ] '^J

/=1

on N, which is carried by ^ and there coincides with y^dt [dt = dti d^. . ' d t s
Ann. £c. Norm., (4), IV. — FASC. 4. 74



586 L. PUKANSZKY

If p is some element of U (n), we have pXy.a | Ha == c (p) Ha and

p X X a | H^EEEOif Y^a. If Pa - £ (pa)[a,eZ (5)] we can write pa = ̂  c^ Z (r)

[c/*. 5 (a)]. Let us put §a = sup j ^a) | and
M^K

( 1 if <^==0,

Ta == ' / ' \1 exp (— a | ) oa ' otherwise ( | a ==V ay ) .
\ \ /==1 /

Then for each fixed r ( [ r ^ K) the sequence { -ya ^a); aeZ (^) } is rapidly

decreasing, and hence the function fr ==^, fa ^a) %a is C00 on ^. Writing
a

v/- for the measure on TO, which is concentrated on %, and there coincides

with /,. dt, one sees at once, that if we set [̂  = V v,.xl (r), we have for all a
A '"^

in Z (6-) : y. | Ha = Ya Pa | Ha. Since Pa | Ha is N invariant, ^, too, is N
invariant. Thus ^ belongs to c0o, and it satisfies all the requirements of
Lemma 6.2. Q. E. D.

7. Let G be a separable locally compact group, dx an element of the
right invariant measure on G and let us put d (ax) == A (a) dx (a€ G). We
recall, that the right regular representation a h-> (Ji (a) (aeG) of G is the
continuous unitary representation, corresponding to the map / {x) ̂  f {xa}
on the Hilbert space L2 (G) of the equivalence classes of all complex valued
functions, square integrable with respect to dx. The right ring R (G)
of G is the von Neumann algebra generated by the operators { < H (a); a€ G j.
The left regular representation a .-> C (a) is the unitary representation,
corresponding to / (x) ̂  (A (a))"172/1^"1 x) (aeG) on L'2 (G); the left ring
L (G) is the von Neumann algebra generated by { £ (a); a€:G }. Putting
for/eL^G) :

(Sf)(x)^f(x-^(x))^

we have |j S/'.j] = [| f\\, S £ (a) S = ik (a) (ae G) and thus also SL (G) S = R (G).
We recall also, that R (G) is the commutant of L (G), that is R (G) == (L (G))'
(c/*. the proof of Lemma 7.1 below or [13], 5, p. 80). We shall write J for
the selfadjoint operator on L2 (G), which is the minimal closed extension
of the map f (x) ^ ^ ~ ( x ) f ( x ) of C (G)cL2 (G) onto itself. Let A and B
be, not necessarily bounded, selfadjoint operators on a Hilbert space. We
say, that A and B commute, if any bounded function of A commutes
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with any bounded function of B. We recall, that in this case the product
AB is densely defined and admits a self adjoint minimal closed extension,
which we shall denote by [AB]. Given a von Neumann algebra M, we
say, that the (possibly unbounded) self adjoint operator A is affiliated with
M, in symbols A T) M, if A commutes with any operator of the commutant
M' of M (cf. e. g. [13], 10, p. 15). In the following, whenever speaking of
a trace on M, we shall mean a trace on the set of all positive operators of M
in the sense of [13], Definition 1 (p. 81), which is in addition faithful, semi-
finite and normal (c/*. p. 82, loc. cit.). We recall, that in this case M is
semi-finite {cf. [13], Proposition 8, p. 99). If y is a trace on M, we shall say
that an operator A in M is generalized Hilbert-Schmidt operator, if
y (A*A) < +00 {cf. [12]-, A. 32, p. 338). If /; g€L 2 (G) we shall put

(fxg)(x)= ff(xy-i)g(y)dy.
^G

We say, that the element /eL2 (G) is right bounded, if the map g h-> gXf
[g€L2 (G)] gives rise to a bounded operator V/ on L2 (G). Since V/
commutes with £ (a) (a€G), by what we saw above, V/ belongs to R (G).

With these notations and terminology we have

LEMMA 7.1. — Suppose, that there is a selfadjoint, positive and non singular
operator M' affiliated with L (G), such that, putting M = SM'S we have
J = [M'M"1]. Then there is a trace <p on R (G), uniquely determined by the
property, that for any right bounded f in L2 (G) lying in the domain of M',
V/ be a generalized Hilbert-Schmidt operator and

(1) PW.V^I lM'f l ) 2 .

Proof. — Our assertion is a simple consequence of a result of J. Dixmier
{cf. [7], Theoreme 2, p. 287). We recall (cf. loc. cit.), that the quasi-unitary
algebra A is an algebra over the complex numbers, on which an involutive
antiautomorphism x \-> x\ an automorphism x \-> xJ and an inner product
{x, y) are defined, such that with respect to the latter A becomes a pre-
Hilbert space satisfying the following axioms : (i) {x\ Xs) == {x, x);
(ii) '{x, x^ ̂  0; (iii) {xy, z) = {y, Xs j z); (iv) the mapping x ̂  xy {y fixed)
is continuous; (v) the linear combinations of the elements of the form
xy + {xyY are dense in A {x, y , z arbitrary in A). One verifies easily, that
one obtains the structure of a quasi-unitary algebra on C (G) by defining

(f,g)^ff(x)W)dx, (f.g)(x)^(fxg)(x), f- (x) -= fMM (̂

p(x)^^).f(x) [/^€C(G)].
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Given a quasi-unitary algebra A, we denote by H^ the Hilbert space,
which is its completion. By virtue of (iv), for each a;eA there exists a
bounded operator U^ (V^) on H ,̂ satisfying V^ y == xy {\^ y == yx resp.)
for every y€AcH,. One can show, that the weak closure R^ (R^ resp.)
of { L L ; xeA.} ( { V a ; ; .r6A} resp.) is a von Neumann algebra on H^,
and (R^)' = R^. In the case of A == C (G) one has : H, = L2 (G),
R^ = L (G) and Rd = R (G). Hence, in particular, R (G) = (L (G))' (as
stated above). The minimal closed extension J of the map x \-> x1 (x^A.)
is selfadjoint, positive and non singular. We denote by S the involution,
arising by extending the map x t-> Xs (^€ A) to H^. We have R^ == S R0' S.
One sees easily, that for A = C (G) the operators J and S are defined as
before. An element f of H^ is called right bounded, if there is a bounded
operator V/ on H^, such that we have V / x == U^ j f fo r all x in A; observe,
that if A == C (G), this coincides with our previous definition. Now we
are in position to state the result of Dixmier referred to at the start, of
which our lemma is the special case for A = C (G). With the above
notations let us suppose, that M' TJ R^ has the properties enumerated in our
lemma and in particular, putting M = SM'.S, assume, that J = [M'.M~1].
Then there is a trace y on W, uniquely determined by the property, that if f
is right bounded and lies in the domain ofW, V*.V^ is a generalized IIilbert-
Schmidt operator and y ( V * V / ) == H M ' / ' H 2 .

Q. E. D.

LEMMA 7.2. — With the previous notations assume, that M' is a selfadjoint,
positive and iwertible operator such that M' r\ L (G), M' commutes with J
and for any a in G : £ (a) M' £ (a-1) = (A (a))-172 M'. Then, putting
M = SM'.S, we have J = [M'.M-1].

Proof. — We have for all a in G : £ (a) J £ (a-1) = (A (a))172 J, from
where we conclude, that K = [JM~1] commutes with £ (a) (a€G) and
hence, by virtue of R (G) =(L(G))' we have K ^ R (G). Let us put
Mi == K-1; by what preceeds, J = [M'.M71]. Let us set SM'.S = M r ^ R ( G )
and SM, S = M\ r^L (G). Next we observe, that SJS = J 1, whence we
infer, that also J = [M\ M~1]. Let us note, that M commutes with Mj,
since M == SM'. S commutes with J~1. Therefore M' and M\, too, commute.
From all this we conclude, that there is a selfadjoint, positive, invertible
operator C affiliated with L ( G ) n R ( G ) [= center of L (G) and R (G)J,
satisfying SCS == C and commuting with J, such that M = [CMi] and
M', == [CM']. In this fashion we have [M'.M-1] ^[C-'.J]. Writing L
for the left hand side, we have SLS == L f . Hence the same holds true
for [C^.Jj, whence we conclude, that C2, and thus also C is equal to the
unit operator and that J == [M'.M~1]. Q. E. D.
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LEMMA 7.3. — Let G a he connected solvable group. Then there is an
operator M' YJ L (G) with the properties of Lemma 7.2.

Proof. — Let $ be the Lie algebra of G, u the greatest nilpotent ideal of $.
We put N == exp (n) C G; N is a closed invariant subgroup of G.

a. Let dn and dy be elements of the invariant measures on N and G/N
resp., such that we have for all /€ C (G) :

ff(x)dx=f ( ff(nx)dn\dy.
^G ^G/N V ^ N /

Let S be a Borel subset of G, such that for any a in G we have a represen-
tation a -== ns with uniquely determined factors in N and S resp. The
restriction of the canonical map from G onto G/N, to S is a Borel isomorphisn
with its image. Let d^ be the measure, corresponding to dy on S. We
denote by £^ the left regular representation of N. There is a unitary
map from L2 (G) onto L2 (N) (g) L! (S), which carries € (n) into A W (g) I
( n € N ) ; to simplify notations we shall write )? (n) = A, (n) (S) L Let a
be some element of G and let us denote by ^a the unique ^-automorphism
of R ^ — I ^ N ) with ^a (A W) = £^ (a-1 no) (n€N) . If H is a

/,+°0

selfadjoint operator such that H T] L (N) and H = ^ XrfE),, we define
^ —— 00

/^+ao ' . . .
^a (H) by / X d^a (E),). This being so, let us assume, that H is positive,

invertible, and that for all a€G it satisfies ^ (H) = (A^))"172 H. We
claim, that in this case M' = H (g) I satisfies the conditions of our lemma.
To this end we have to prove, that M' commutes with J, and
£ {a) M'.J(?(a-1) = (A (a))-172 M for all a in G. The first assertion is
clear, since by virtue of A N == 1, we have under the above identification
J == I (g) K, where K corresponds to multiplication by (A f^))172 on L^ (S)
(;5€S). To establish the second we observe, that

J? (a) W.^ (a-1) = ̂  (H) <g) I = (A (a))-1/2.^ (g) I) == (A (a))-1/2.]^ (aeG).

&. We conclude from the previous remarks, that to prove our Lemma,
it is enough, in particular, to find an H as above with H T) (L (N))^.

We recall [cf. 1 (a)], that if T€(N)c and y€C: (N), T (9) is of trace class,
and thus N is of type I {cf. [12], 13.9.4, p. 271). Let E, (Ei) be the set

{ C; ^€ N, dim C = + oo j ({ i:; C€ N, dim ^ = 1 j resp.). By virtue of

the theorem of Lie we have N = Ei U E^. Let H^ be an infinite dimensio-
nal unitary space, [J. the Plancherel measure of N {ef. [12], 18.8.3, Definition,
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p. 328), and v = ̂  | E^. We denote by ^ the Hilbert space of all v
measurable functions { A (^) } on E^, with values in the set of Hilbert-
Schmidt operators on H^, satisfying

fTr(A(0[A(0]*)d.(0<+oo.J^

We form analogously ^i by aid of a one-dimensional space Hi and [J. | E,.

L e t { T c ( ^ ) ; i ^ e N f b e a Borel measurable field of unitary representations

of N on H^ and Hi resp. such that ^ ( ^ ) € ( { ^ ) c fee N). We put
^=^i(g)^ and recall (c/1. [12], p. 327-328), that there is a unitary map

from L2 (N) onto ^, which sends /^eC^N) CL^N) into j n (^) (/•); ^NJ €^
and makes correspond the center (L (N))^ of L (N) to the ring of multipli-

cations by a measurable bounded complex valued functions on N. We

shall write for the latter simply L^. (N).
Let a be a fixed element of G and let us determine the -^-automorphism

of L^ (N) corresponding to ^ | (L (N))^ [cf. (a)]. To this end we denote
by V the unitary operator on L2 (N) such that (V/) (n) = (A (a))-172/(a-1 no)
[/•EL2 (N)], Since VL^ (n) V-1 = ̂  (L^ (^), also VAV-1 = ̂  (A) for
all A in L (N). Let W be the unitary operator corresponding to V on 4).
I f / ' eC: (N) we have

Wi7r (0 ( f t j= i7 r (0 (V f ) ( .

On the other hand, for each fixed ^€ N :

TT (S) (V f) = (A (a))-1/2 Cf(a-1 na) TT (Q (n) dn = (A (a))1/2 [a-1 n (;)] (U.
^N

Let U (^) be a unitary operator with a-1 n (^) = U (C) 7i (a-1 ^) [U (^)]*; then

W ! TT r0 ( / • ) } = { (A (a))1/2 U (S). T: (a-i S) (f) (U (;))* j.

If F is an element of L^ (N), we write M (F) for the corresponding multipli-
cation operator on ^; we put also F, (^) = F (a-1 ^) (a€G). With these
notations what we have just seen shows, that WM (F) W~1 = M (Fa).

By virtue of the above considerations, to prove our lemma it suffices

to find a Borel measurable function F on N, such that 0 < F < + oo
almost everywhere with respect to p-, and F^ == (A (a))-172 F for all a in G.

c. Let M and M be as at the start of 3, and let ^ be the map which assigns

to ^€ N the corresponding orbit in M/N. We recall {cf. 2), that ^ is a Borel
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isomorphism between the underlying Borel structures of these spaces.

Let us add, that f^ is equivariant with respect to the action of G on N, and

M/N resp.; we leave the easy verification to the reader (cf. Remark 4.1,
Chapter I).

d. In the following we shall assume, that the rank s of F (cf, 3) is positive,
and leave to the reader the modifications necessary to settle the remaining

• A .,
case. With the notation of Lemma 2.3 we have IT = U a e z ( s ) Ha. We
apply Proposition 4.1 to Ha [a fix in Z (.?)] in place of H^ loc. cit. As a
result we obtain polynomials pa (^) and qy, (x) on n7, such that p \ Ha ^0,
q Ha ̂  0 and pa {ax} ==. ̂  (a) pa (^), ?a (^) = ̂  (<^) ?a (^) on Ha for all a
in G, and ^a (^/^a (^) = A (a). Repeating the same construction for all

A /
ae Z (.?), we define the p (g) on TO/N by the condition, that its restriction to
Ha/N, when lifted to Ha, coincide with pa (^aresp.). Let us put P = p ° ^,

Q = q o ^. These are Borel functions on N. and, by virtue of Lemma 2.3,
the G-invariant sets [cf. (c) above] . { ^; P (^) = 0 } and { ^; Q (C) = 0 }
are of Plancherel measure zero. Writing G (^) == P (^)/Q (C) we have
by our construction G (a S) = A (a) G (^) [whenever G (Q is defined]. In
this fashion the function F = G j172 satisfies all the requirements formu-
lated at the end of (&). Q. E. D.

LEMMA 7 .4 .— Wecan make a choice ofW in Lemma 7.3 with the following
property. There is a distribution p on N of a degree not exceeding B (m)
(^m = dim n; cf. Proposition 4.1 and Section 6), such that p X flies in the
domain of M7 for all f in C^ (G) and p X f = 0 implies f = 0. Jf N 15 5imp^
connected, the support of p 15 the unity.

Proof. — We continue to use the notations of the proof of Lemma 7.3.
By virtue of Proposition 4.1 we can assume, that in {d) above deg (pa),
d e g ( y a ) ^ B ( m ) [a eZ (.<?)]. By Lemma 6.2 we can also suppose, that

there are 'elements p, cre^o such that P (C) = S(C), Q (Q == p (^) (^e N),
and deg (p), deg (cr)^B (m). We claim, that M7 corresponding to P, Q
as just specified, along with p, satisfy the conditions of our lemma. Let Ho
be the operator, corresponding to M (P/Q), on L2 (N) [cf. {b) in the proof
of Lemma 7.3] and let us put Mo = Ho (g) I [cf. (a), loc. cit.]', we have
(M')2 = Mo. If T is some operator, we shall denote its domain by D (T).
Since -- • •• • • • " '" ' l - - • • • • • • • . . ' . •• •• . - - . . - " ' ••• "

D (M^oD ((MQ2) == D ( Mo |) = D (Mo),;

to prove our lemma, it suffices to show, that pxY'^D (Mo) for all feC^ (G).
To this end it is enough to establish, that if g€ C^° (N) we have p X g€ D (Ho)
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and H o ( p X g ) =crxg. In fact, given /c€ C: (G) and a fixed s€S, let
us put ks {n] == k {ns) (»€N). Then, if h = px/" [/•€€: (G)J, we have
hs {n) == (p X/',) (ra), and thus h,e D (Ho) and

(Ho A,) (n) ̂  (cr x /•,) (n) = (o- x f) (ns) (n € N);

finally, (^x/') (?w)eL2 (N)(g)L-2 (S), proving our assertion. Since p(^)==Q(^)
and CT (0 = P (^), by Lemma 6.1 we have r. (^) (pxg) == Q (C) r. (C) (g)

and T;(^xg)==P(;)7:(i :)(g) (CeN). From this we see, that the
element {r. (^) ( p X g ) } of ^ [c/". (&), loc. cit.] lies indeed in D (M (P/Q)), and
that M (P/Q) { T-. (C) (pxg) } -= { r. (C) (^Xg) } [g€C: (N)] completing the
proof of our lemma.

Q. E. D.
LEMMA 7.5. — With p as in Lemma 7.4, the linear manifold { PX/'-

/•€ C: (G) } ^ dense in L3 (G).

PTOO/'. — One verifies easily, that concerning S [cf. (a), proof of Lemma 7.3]
we can make the following assumptions : lo Denoting by So the interior
of S, So is a submanifold of G; 2° Let ̂  be the collection of all functions on S,
vanishing outside So and the restriction of which to So belongs to C," (So).
Then ^ is dense in L2 (S), and for any ge ̂  and /i€C; (N) the function f
on G defined by f {ns) = h (n) g (s) (n€N, s€S) belongs to C: (G). This
being so, since L2 (G) = L2 (N) (g) L^(S) , it suffices to show, that
^ = { PX/"; /'€C ( N ) } is dense in L2 (N). Let iKy be the right regular
representation of N. If the said assertion is false, there is a heL2 (N),
h ̂  0, such that (^- (n) h, g} == 0 for all n in N and g in ^. From this
we conclude, that (C h, g) = 0, for all G€ (L (N))-' and g€@. Let { A (Q }
be the element of €) corresponding to h. Since the unitary correspondence
between L3 (N) and ^ maps (^(N))^ onto the ring of multiplications by all

bounded measurable functions on N [cf. (&), loc. cit.], bearing in mind; that
? (^) = Q (^ we conclude, that for any /"€C: (N) and a bounded measu-
rable function a (^) we have

f a (?) Q (?) Tr (TT (?) (/•) [A (Q]*) <^ (?) == 0.
•^N

But since Q (C) ̂  0 almost everywhere [cf. (d), loc cit.] in view of the arbi-
trariness of a (^) € L^ (N) we conclude, that Tr (TC (^) (/•) [A (2')] *) = 0
almost everywhere, and thus h is orthogonal to C: (N), contradicting h ̂  0.

Q. E. D.



REPRESENTATIONS OF SOLVABLE LIE GROUPS 593

We shall say, that the unitary representation U of G is of trace class,
if there is a trace on R (U), such that the set of all generalized Hilbert-
Schmidt operators in U (C* (G)) generate R (U) (cf. the start of this section,
and [12], 6.6.7, p. 126 and 17.1.4, p. 305 resp.).

THEOREM 4. — Let G be a connected solvable Lie group. Then its right
regular representation is of trace class. More precisely, denoting by N the
largest connected, nilpotent, invariant subgroup of G, there is a distribution T
on N, the degree of which does not exceed a constant depending on the dimension
of N only, and a trace on R (G), such that cU {fx ^) [/*€ CJ (G)] is a generalized.
Hilbert-Schmidt operator, and the collection of all operators of this form
generates R (G). If N is simply connected, the support of^: is the unity.

Proof.— Let M' and p be as in Lemma 7.4. We denote by E the set of
all generalized Hilbert-Schmidt operators in the sense of the trace deter-
mined by M' {cf Lemma 7.1). Putting (6 ={ g; g = ?x/1, /'eC;(G) }
we have < & C G ( G ) and by Lemma 7.4 : ( & C D ( M / ) , and hence { V,,;
g€<6 }cE. Let K be the smallest weakly closed, ^-invariant subalgebra,
containing the left hand side, of R (G). If K ^z R (G), there is a nonzero
central projection P, such that PA == 0 for all A in K. Let / i€L2 (G) be
such, that P h = h. We have

(V,; h) (x) E. fh (xy)TW dy ̂  0 Q/e €Q,
^G

and hence, setting x == e, we see, that h is orthogonal to <&. By virtue of
Lemma 7.5 this implies, that h = 0 if P h = h, contradicting P ̂  0.
In this fashion we conclude, that { V^.; ^€^3 } generates R (G). Let us
define, for feC{G),f+{x) by />(^-1)/A {x) (xeG)', we have Vy^^v^) .
We denote by T the distribution on N determined by the condition, that
T {h) == ? (/^) [/i€C: (N), h+ (n) =. h (n-4)]. Observe that T, too, is a
distribution of bounded degree; more precisely we have deg (p) = deg (r).
Also(pxA l ) + ^A l + X^ [/c€C^(G)], whence we conclude, that if g is some ele-
ment of (6, g^ is of the form /'XT [/*eCJ (G)] and conversely. In this
fashion T satisfies all the conditions of Theorem 4.

o. E. D.

COROLLABY 7.1. — L e t G be a connected solvable Lie group. Then its
right ring is semi-finite.

Proof. — This follows at once from Theorem 4 and from the definition
of the trace given at the begin of this section.

9. E. D.
Ann. Sc. Norm., (4), IV. — FASC. 4. 75
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We shall call Plancherel measure of G the class of measures determined

by ^v on G {cf. [12], p. 149-150 and 18.7.6, p. 325).

COROLLARY 7.2. — There is a subset E, of Plancherel measure zero, ofG,
such that any factor representation of G, the quasi-equivalence class of which
does not belong to E, is of trace class. In particular^ for any element a,
different from the unity', of G there is a trace class factor representation V,
such that V (a) ̂  unit operator.

Proof. — This is an immediate consequence of 8.8.2, Theoreme in [13]
(p. 160; cf. also 18.7.6, p. 325).

Q. E. D.

REMARK 7.1. — Of course, in Theorem 4 and Corollary 4.1 the right
regular representation can be replaced by the left regular representation.

8. Let G = exp (§) be again as at the begin of Section 2, Chapter II.
We recall, that if Hi is the gratest nilpotent ideal of §, there is a subalgebra I]
of fl such that § is the direct sum of the underlying space of 1} and Hi resp.,
and, for any h in I), ad (h) is semi-simple (cf. [32], p. 439). Putting
H === exp (1)) and N1 = exp (iti), we have G == HNj. In the following,
whenever speaking of a Zariski open subset of a vector space, we shall assume^
that it is non empty.

LEMMA 8.1. — There is a Zariski open subset ® of fi', and a closed sub-
group K of G, such that for any xe ® we have G^ N1 = K.

Proof. — Let us write V = flc. We choose a Jordan-Holder sequence
V = Vo 3 V, D . . . 3 VM == (0) for the action of G on V. If v,•€ Vy_i - Vy,
we have avj == yy (a) Vj- (V/); since, if h is in H, the corresponding operator
on V is semi-simple, we can assume, that hvj• •==- y/ (h) vj for all h^H
(1^7^M). L e t { ^ ; l ^ j^J}beabas i s in (n i )c , If { ^ $ l^'^M}
are elements of a basis in V7, which is the dual of { Vj}, we put a// {x) = (I , x, v\)
and write Ay (x) for the jx 3 matrix \ a^ {x); i ̂ jr, 1 ̂  /c ̂  J $. Let us
put mo = 0 and m/ = sup rank (Ay (^)) (1 ̂ j ̂  M). We denote by e

the subset of { 1, 2, . . ., M }, such that mj > 7n/_i if and only if j belongs
to e. Similarly as in the proof of Proposition 1.1, Chapter II [G loc. cit.
replaced by (Ni)c] let us form ©e== [x-, f {x) = e } ' , one sees at once,
that ©e is Zariski open in V. We write E for the complement of e in
{ 1, 2, . . ., M } and infer from loc. cit., that the functions X/ {x) =s= P^ (0; ^)
(j6E, xe^e) are the restrictions to ®e of some rational functions on V,
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all defined on ®e. Also, by Lemma 1.3, Chapter II we have
Ay {ax) == yy (a) ̂  (a;) [a€ H (Ni)c, a;€ €^ j'eE]. Finally, if x, x ' ^ ^ e
we have \/ (^) = Ay (^/) if and only if ^/e(Ni)c x. Let us denote by ©g
the subset of ®e? where none of the functions [\j(x)^ 7 'eE} vanishes.
We put ® = ©^Hg 7 ; ® is Zariski open in g7. Let us form the sub-
group K = HyeE ker(yy) of G. We show now, that ® and K, as just
defined, satisfy the conditions of our lemma. In fact, if ^€©, (^eG.,;
then

tj (ax) ̂  ̂  (x) == cpy (a) ̂  (a;),

and thus, since Xy (^) 7^ 0, y/ (a) = 1 (j€E) and hence Ga;cK, proving,
that rcG® implies Ga; N1 C K. To show the opposite inclusion, let A* be
some element of K and ^€®. We have

^ (kx) == ̂  (k) ̂  (x) = ^-(x),

and therefore /c^€ (Ni)c x^^ = N1 ^ (cf. Lemma 1.2, Chapter II), and
/ceGo-Ni, completing the proof of Lemma 8.1.

Q. E. D.

The following lemma is a weaker version, for the action of an arbi-
trary unipotent group on a finite dimensional vector space, of Propo-
sition 4.2, Chapter II.

LEMMA 8.2. — Suppose, that the connected and simply connected nilpotent
group G acts, via a unipotent representation^ on a finite dimensional real
vector space V. There is a Zariski open subset ® of V, a polynomial func-
tion P on V, which never vanishes on ©, a map I from R^ X ® into fi
[G = exp ($)] and a map R from G © X ® into R^ with the following pro-
perties : 1° P(^ )Z(T , x} (TeR^, ^€©) is the restriction to RdX^ of a
polynomial map from R^XV into fl, and for each x in ©, the map
R^3T h-> exp [I (T, x)] x is a bijection between R^ and G ̂ ; 2° P {x) R (y, x)
is the restriction to G ® X ® of a polynomial map from VxV into R^,
and for any x and y in ® and G x resp, we ha^e y = exp [I (R (y, x), x)] x.

Proof. — a. Let V = V o D V i D . .. 3V,, = (0) be a Jordan-Holder
sequence for the action of G on V, yy€V/_i — V/, (v^ v'^j = 8,/, and
{ Ij'; 1 ^=J^=. m} a basis in $. Let us form the matrices Ay (x) (1 ̂ j ̂  M)
and the subset e = { 0 < ji < j^ <. . . < jd ̂  M } of { 1 , 2, . . ., M } as
Ut the start of the proof of Lemma 8.1 above. For each k = 1, 2, . . ., d,
we denote by [̂  (x) a /cX/c submatrix of Ay^ (rr), such that

<^ (re) == det (^ (x))
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does not vanish identically on V. Reasoning as in (&) of the proof of
Proposition 4.1, Chapter II, we show, that if © is the Zariski open subset
of V, formed of all points of V, where none of the polynomials { cp/, (x) }
vanishes, there are maps { h (x); k = 1, 2, . . ., d } from © into fl, such
that o/, {x) I / , {x) is the restriction to (D of a polynomial map from V into g,
and that ^ {x) x == u^. (VJ (^€©). Let us form the function I (T, x\
from R^X © into g, by the condition that we have, if T === {t^ t^ . . ., ̂ ) e R^
and .red£? : «

exp [I (T, a;)] = exp [t, h (x)} exp [̂  h (x)] ... exp [̂  ̂  (re)].

Using the reasonings as loc. cit. we conclude, that the map I (T, x) so
defined satisfies the conditions of our lemma, provided for P we take a
sufficiently high power of the product y^ (x) o^ {x) . . . fa (x).

b. Let us put (^€©) :
M

exp [I (T, x)} x =^ Q; (T; x) v / .
/=!

We know [cf. {d), loc. cit.], that Q/,(T; x} is of the form

h+Rt(ti,t,, . . . , / / , _ , ; a;),

and thus the set of equations z/..= Q,,.(T; x ) { l ^ k ^ d ' ) implies, that

ft = Zk + 4'* (̂ l, Z-t, ..., Zk-1; X);

obviously we can assume, that P ^A (1 ̂  A- ̂  d) is a polynomial on R^XV
M

for each /<-. Hence finally, given y -=^y,•VjeG x (a-€©), it suffices

to define
R (y, x) = (R, (y, x), % (y, x) , . . . , R,/ (y, x))

where
Rt (ff, a;) = y,, + 4;, (y,,, .... y^; a;).

Q. E. D.

In the following G, G, H and Ni will have the same meaning as in
Lemma 8.1. Also G = exp ($), H = exp (1)), N, = exp (n,) and

G = exp (<i) = HNi.

LEMMA 8.3. — There is a Zariski open subset <0 in 9', a polynomial
function P, never vanishing on <D, and a sequence of maps { g / ( x ) ; j = 1, 2, ... }
from <D into G with the following properties : lo For each x in <D the
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sequence [ gy [ x ) } forms a complete residue system in G^ modulo (G^.)o;
2° For each fixed j , g^ (x) is of the form k exp [I (re)], where P {x) I {x) is
the restriction to © of a polynomial map from ^ into Hi.

Proof. — a. Let ©i and K be such as ® and K resp. are in Lemma 8.1.
By taking in Lemma 8.2, V == $' and G== Ni, we denote by ©2 the
resulting Zariski open set in $'. Let us put ® = ® i n © 2 , and let k
be an arbitrary fixed element in K. We have, for any x in ©,
/c~1 xe. Ni x and hence we can form, using the notations of Lemma 8.2, the
map I {x) = I (R {k~1 x, x), x) from (D into Hi . Let us put g {x) = k exp [I {x)~\^
We have g (x)GGx (xG ®), and replacing, if necessary, the polynomial
function P of loc. cit. by a sufficiently high power of itself we can assume,
that P (x) I {x) is the restriction to © of a polynomial map from fl7 into H i .

b. Let { kj', j = 1, 2, . . . } be a complete residue system in K modulo Ku.
We denote by gy (x) the map, from © into G, corresponding to kj by
virtue of the construction of (a) above. To complete the proof of our
lemma, it suffices to show, that for each x in ©, the sequence { gy {x) }
is a complete residue system in G,c modulo (G^)o. This, however, is implied
by the relations Ku = (Ga;)u Ni and G^nKo == (GL-)o. <,). E. D.

By a Zariski Go set in j' we shall mean a non empty subset, which is
intersection of a countable sequence of Zariski open sets.

LEMMA 8.4. — There is a Zariski Go set ©Cfl7, and a sequence of maps
{ Sj {x}'? J ==: I? 2, . . . } from © into G with the following properties :
1° For each fixed x in ®, the sequence [ gj {x) } is a complete residue system
in G^ modulo (G^)o; 2° There is a polynomial function P on fl', which never
vanishes on ©, such that for eacfij, g / {x) is of the form k exp [7, (x)] exp [L (^)J,
where P (x) I/, (x) (/c == 1, 2) are the restrictions to <0 of polynomial maps
from fl' into §.

Proof. — In the following ®i, ©2? . . . will denote Zariski open subsets,
specified by the context, in fl'.

a. Let us show first, that there is an ®i and a system of maps
{ Vj [x); 1 ̂ j' ̂  s } from ©i into §, such that for each ^€S ©i its members
form a basis in § .̂ mod (ja;), and that there is a polynomial function P'
on j', which never vanishes on (Dj, such that the maps { P' (x) u / {x) }
are the restrictions to (D| of polynomial maps from il7 into fl. Let
{ ^'? 1^7^ M j and j li^ 1 f^ /c ̂  m } be a basis in § and g resp. We write

-̂7 (x) == {h, I, x), M (x) == S a,y (x); l^k^m, l ^ j ^ M }
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and observe, that y =^,yjlj belongs to Sx if and only if we have
7=1

M
a^' (^) y / =0 (1 ̂  k ̂  m).2

Let us put r = sup rank (M (a;)). We denote by [L (x) an rXr submatrix
x

of M {x) such that y (x) = det (^ (^)) ̂  0; obviously we can assume, that
^ (x) = {dkj (^); 1^/c, 7^r}. Let ©3 be the set { x ' , 9 (^ )^0} .
There are functions { y^ (x)', 1 ̂ j ̂  r, 1 ̂  /c ̂  M — r } on ©3, such that

r

;̂ (x)y^ (x) =ai^k (x) (xe^; 1=1,2, ..., r)

and such that y (^) ̂ ) {x) is the restriction of a polynomial to ©2.

Putting w/, {x) = ( ̂ ^) {x) h} — ^+/.? we conclude, that if ^ € © 2 the

system { w/,. (x); 1 ̂  /c ̂  M — r } is a basis in § .̂. Let us write rt == §/g,
and let us denote by W the canonical homomorphism from § onto rt.
We fix a point Xo in ©3, such that the dimension of W (§^) be maximal,
and denote by [ v j [ x ) \ ^ - ^ j ^ s } a subsystem of { Wi, {x) }, such that
{W {Vj {xo))} is a basis in V (§.J. Let © i ^ © 2 be such, that the last
relation holds true for all x in © i. With this choice of © i, { V j (x) $ 1 ̂ j ̂  s }
satisfies all requirements, provided we set P' = 9.

&. One sees easily, that there is an ©3$=©i, and a system of constant
vectors { w / ; l ^ j ^ u ] in it, such that for any x in ©3 the set
{ W (i)j (^)), w/,•; i ̂ j ^=s, 1 ̂  k ̂  u } forms a basis in rt.

c. Let us put .31 == G/G = exp (il); we denote by F the canonical homo-
morphism from G onto 51. By virtue of Lemma 8.3 there is an ©/, and
a polynomial P^ not vanishing on ©4 such that, putting

f,(x)^log[F(g^x))]

(cf. loc. cit.), the maps P77 (x) f, (x) from ©4 into il are the restrictions of
polynomial maps. We set ©5 = © 3 H © 4 , and write for some x in ©5 :

/•/ {x) =^ ̂ ) (x) T (u, (x)) +^ b^ (x) wi.

It is clear, that there is a polynomial P, on fl', such that the functions
{ Pj {x) df^ (x), Pi {x) b\^ (x) \ are restrictions of polynomials to ©,.
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Let us observe, that there exists a g in G^^S^s) such that
.̂ (x) ==g ((G.,)o) if and only if we have b^ {x) ̂ 0(1 ̂ l ^u). We

denote by J the set of all those positive integers j, for which
^7) (x) = 0 (1 ̂  I ̂  u). Let J' be the (possibly empty) complement
of J. Forj6J7 we write

( " )
F;= ^^e(D„^(^^(.r))2=0 ;

¥j is the intersection of ©5 with a Zariski closed set, which is different
from ©5, and hence ® = ©5 — (Uy^j ' Fy) ls a Zariski Go set. Let us
denote by { gj {x); j = 1, 2, . . . ^ the sequence

f / / '
^(a:)exp(-( ^^(^^(^
I \ \^

^(^^(^^ijeJ

arranged in some order (^€©5). It is clear from our construction, that
g/ (x) € G^ for all a?e © (as above). Let us show, that { gj [ x ] } is a complete
residue system in Ga; mod ((Ga;)o). To this end, however, it suffices to
point out, that if gi, ga€Ga; are such, that g-.i. ̂  g^ ((Ga;)o), then also
gi = g2 ((-G^o), since Ga;n(Go;)o ^ Gn(G^)o == (G^)o. In this fashion,
to complete the proof of Lemma 8.4 it is enough to show, that for each 7,
gj (x) is of the form indicated in its statement. But this is evident from
our construction; for P loc. cit. we can take Fi.P'.P^.

Q. E. D.

REMARK 8.1. — Observe, that if P {x) -^ 0, gj {x) is defined and belongs
to Gx for all j.

Given some element x of fl7, we define the character ^ of (G^)o, as
in 1.4 (c), by the condition, that ̂  [exp (1)] = exp [i (I, x)] (?€g,t;). For a,
b in G, we shall put [a, b] = aba~^. 6~1. Bearing in mind, that
[G^, G .̂] cGa;nLc(Ga;)u [L == [G, G]], for any pair of elements a, 6 in G^
we can form the expression y^ (<^? &) = %,.r ([^9 ^]).

LEMMA 8.5. — With the previous notations we hwe :
1° y^ (aa', &) = y^ (a, &) y^ (a', &);
2° y.(a, &) =?.(_&, a);

3° a belongs to G,c [cf. 1 . 4 (c)] if and only if y,c (a, &) ̂  1 /br all
&€G.,(a, a', &€G,).

Proof. — Ad (1) we have [aa', &] == a^, ft] a ' .[a, 6], and hence the
desired conclusion follows from the observation, that if a^Gx and
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^€(G.r)o we have ^ {ada~1) = ̂  (rf). Ad (2) This is implied at once by
([a, b])~1 = [&, a]. Ad (3) This is immediat from the definition of Ga;.

Q. E. D.

In the following by [f. we shall mean a positive translation invariant
measure on fl'.

PROPOSITION 8.1. — Denoting by r (x) the index of G^ in Gx (^€fi')
let us form the sets Eo = { x\ r (x) = 0 }, Ey • = { x9, 0 < r (^x) < + °o } and
E^ == { x ' y r {x) = + °o }• TTien Ey i5 o/* Lebesgue measure zero, and so
is one of the sets Eo, E^.

Proof. — a. Let the polynomial function P be as in Lemma 8.4, and
let us form the set ©0 = { x\ P {x) ̂  0}. We fix a pair (^, j) of positive
integers and define for ^ € = © 0 :

F,,(rc)=(log([^(.r),^(a;)]),a;).

We observe, that by virtue of the form, described in Lemma 8.4, of the
maps ( gf {x)\ j = 1, 2, . . . }, there is an entire function II on C^ and
rational functions [ r j { x ) ' , l^ . /^N} on fl7, such that P {x) r; {x) is a
polynomial, and for ^€©0 :

P., (x) == H (r, (a;), ...,Ma;)).

From this we conclude, that if F/y {x) ==. c {c = some constant) on a
connected component of ©o? then we have F^ (^) ~= c everywhere on ®o.
Furthermore it is easy to see, that in the latter case the value of the cons-
tant c is zero. In fact, let x be some element of <Do? and o a positive
number, such that for t — 1 < S we have tx^ <0o. We have g, (tx) = gi {x)
and g , (tx) = gj (x) mod (G^o (c/*. Remark 8.1). Since (G^)oCGL from
this we conclude, that

^^ (9i (tx), g, (tx)) ̂  c^ (gi (x), g, (x)) ̂  exp [itc] - exp [ic]

for [ t — 1 \ < §, implying c == 0.

&. Let ® be as in Lemma 8.4; we have <Dc®o. Let us assume now,
that there is a pair (i, j) such that F/y [ (Do ̂  0. Then, by virtue of
what we saw in (a) above, the set E,. = [ x', xG, ©05 Vi/ {^) == 2 Ti r }
(r == real) is of Lebesgue measure zero. We observe now that, in conse-
quence of Lemma 8.5, if x belongs to ® n ( E o U E y ) , there is a positive



REPRESENTATIONS OF SOLVABLE LIE GROUPS 601

integer M such that (y^ (a, b))'1 = 1 (a, fceGa;). Hence, with an appro-
priately chosen rational number r we have rr€E/.. Thus

^(EoUE^cu^Q1^

implying, that p-(® n (EoU E^)) = 0 and in this fashion, since ® is a
Zariski Go set, [ ^ ( E o U E y ) = = 0 . By virtue of (a), the only alternative
to the hypothesis just made is that F^ | ®o = 0 for all (i, 7). In this
case, however, we have ®cEo and thus [ X ( E / U E J = = O , completing
the proof of Proposition 8.1.

Q. E. D.

PROPOSITION 8.2. — Let us denote by Ec the set of all those points in g7,
for which the orbit G x is locally closed. Then either Ec or its complement
are of Lebesgue measure zero.

Proof. — In the following we shall write o (x) = G x. Also, ©i, ©3, etc.
will stand for Zariski open subsets, specified by the context, of fl'.

a. We infer from the proof of Proposition 2.1, Chapter II, that o {x)
is locally closed if and only if GG^ is closed, or what is the same,
GG^/LcG/Lis closed [cf. in particular (<°), loc. cit.]. Let us denote by W
the canonical homomorphism from G onto A = G/L == exp (A), and let
us put ^ = log W. Writing B = $ (G) and C^ = 3> (GL) we can conclude,
that x belongs to Ec if and only if the subgroup B 4- Co; of the underlying
group of A is closed in A.

6. Below we shall make use of the following elementary statement.
Assume, that V is a finite dimensional real vector space, and £- a discrete
subgroup of V. Then £ is a free abelian group. Denote by £ the subspace,
generated by the element of J?, of V, and let W be some subspace of V.
Then the subgroup W + £ is closed if and only if the rank of J?nW is the
same as the dimension of £ C\ W.

c. Reasoning as in (a) of the proof of Lemma 8.4 we show, that there
is a system { Vj {x); 1 ̂ j^_ d } of rational functions, all defined on ©i C fl',
with values in A, such that for each x in ©i, { Uj {x) } is a basis of (C^)o.

d. Let ® 2 be as in Lemma 8.3, and let us fix a point ^ o € ® i n ® 2 .
There is a system of integers 0 < ji < . . . < jr such that, putting

dk (x) = €> (^, (x)) € C. = <D (&.) (1 ̂  k ̂  r; cf. Zoc. ci7.)

the set of r + d vectors { a/, {xo), Vj {xo) } is a linearly independent one
in A and generates Cc. Then there is an ® 3 C ® i n ® 2 , such that the

Ann. 2?c. Norm., (4). IV. — FASC. 4. 76



602 L. PUKANSZKY

system { a/, (a;), y/ (rr) } is independent for ^€©3, and in addition we
can easily show, that putting 1̂  = Z.Oi (^) +. . .+ Z.a^ (^), we have
C x = ^ x J r { C x ) o (^€©3). In fact, to this end it suffices to observe,
that if j is an arbitrary positive integer, there are rational functions
{ A (^)? gi {x) }? all defined on ©3, such that

^(ft^)) =^fk(x)ak(x) +^g^(x)u^x) (:r€(DO.
k I

For any ^ € © 3 the numbers { f/, ( x ) } must be rational, and thus
fi, (^) ==. mi, € Z on ©3, proving our statement.

e. We put D, = B + (C.)o, and E, = D.nf, [c/1. (6) above]. There is
an integer e such that on an ® 4 C ® 3 appropriately chosen we have
dim (E,c) = e. We can also assume, that there is a system of rational
functions {\j• {x); l^j^J}, all defined on ©4, with values in A'
(= dual of the underlying space of A), such that y€:Ea; if and only if
we have Xy {x) (u) =0 (i^j^ J).

f. Let us denote by &e the set of all independent e tuples in Z'.
If £€^,

s = { A, A, ..., /. j and fk == (m^, m^\ ..., m^) (m^^Z)

we write

E(^)=^x;x€^^(F^(x))2==ol

where we have put

Fy, (x) - ̂  (x) ̂ m^ a^ (x)\ (1 ̂ j ̂  J, 1 ̂  k ̂  e).
\ a /

Let us observe, that we have only the following two possibilities :
1° E (£) = ©4; 2° The complement of E (s) in ©4 is a Zariski open set
in fl'. Moreover we conclude by aid of (&) above, that ^eEcH®,, if and
only if ^eu,^^) (= E? ^y)- If E == ©4, we have evidently
[̂  (fl' — E,) = 0. If, on the other hand, EC ©4, the complement of E
in ® 4 is a Zariski Go set in fl', and thus ^ (E^) == 0, completing the proof
of Proposition 8.2.

Q. E. D.

9. Given a Lie group M specified by the context, in the following we
shall denote by £^ its left regular representation. Let again G be a
connected and simply connected solvable Lie group. Below we shall
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assume, that L = [G, G] is non abelian, and leave to the reader the easy
modifications of the subsequent reasonings necessary, when L is abelian.

Let ^ ~-> ^ (^) (j^eL} be a Borel measurable field of representations,

such that n (^) is of the unitary equivalence class of ^eL (c/*. [12], 8.6.2,
p. 154). Denoting by p- the Plancherel measure of L, we form the repre-

sentation II == \ Q) TI (^) d[f. (^); we have -X?L == (+00) H in the sense of
L

unitary equivalence. Let us observe, that the action of G (cf. the start

of Section 2, Chapter II) on L is countably separated. In fact to see
A

this we recall that the canonical map [cf. 1 (rf)] from L onto V / L is a Borel
isomorphism and equivariant with respect to the actions of G on these
spaces [cf. the remarks preceding Lemma 2.3 and (c) in Lemma 7.3].
Hence it suffices to establish, that V/G is countably separated. But this
is implied by Corollary 1.1, Chapter II (applied to A = G &7, V = V ;
cf. loc. cit.) and [17], Theorem 1. From this we can conclude {cf. [18],

A /^
Theorem 1, p. 390 and [23], Lemma 11.5, p. 126) that putting S= L/G,
there is a positive measure T on S, such that [̂  is a continuous direct sum
of measures concentrated on G orbits, and which are quasi-invariant
under G. Given a point s in S, we shall denote by 0 {s) the corres-

ponding G orbit in L, and by V y an appropriately chosen positive measure
on 0 (^), which is quasi-invariant under G. Let us put

u(5)=f e^(o^(o.
J0{s}

Then we have 11 = f© U {s) d^ {s) {cf. [24], Theorem 2.11, p. 204).
^s

We put M = ind II, T ( s ) == ind U (s) and observe (c/1. [23], Theorem 10.1,
L^G L4.G

p. 123), that

(1) M = f©T(s)dT(5).
^s

LEMMA 9.1. — The decomposition (1) is central.

Proof. — We observe, that since L is of type I, we have

R (II) = f © R (7; (0) ̂  (S) (cf. [12], 8.6.4, p. 155),
^
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and thus, in particular, L^ (L)cR(II). From here we can complete the
proof of our lemma as in Lemma 3.4.3, Chapter III, by substituting in

place of T, 0 (t2), T), T (p), K and U as loc. cit. M, L, a, ind TT (U,
T i TT L^G v

L and 11 resp.
Q. E. D.

Given a von Neumann algebra N, we shall denote by Nj, N,i and Nm
its component of type I, II and III resp. (c/1. [12], A 39, p. 339). We write
again L (G) = R (^).

LEMMA 9.2. — Suppose, that L (G)i 7^ 0. Then the sets E^ and
Enc == ^ — Ec (^.Propositions 8.1 and 8.2 resp.) are of Lebesgue measure
zero in g7.

Proof. — By virtue of our assumption, there is a nonzero abelian projec-
tion P in L (G) (cf. [13], p. 123). Conversely, if N is a von Neumann
algebra containing a nonzero abelian projection, then Nj ̂  0. Since
A, = ind A and A = (+ oo) II, we have .£„ = (+ oo) M, and hence R (M),

L^. G

too, contains a nonzero abelian projection Q. Let us write, by virtue

of decomposition (1), Q = f Q) Q (s) d^ (,<?). Since Q is abelian if and
•^s

only if QABQ == QBAQ for all A, B € R ( M ) , we conclude, that there is
a set EcS, such that T (E) > 0, and that, for ^eE, Q (s) is a nonzero
abelian projection in R (T (.<?)). Let us denote by E' the complete inverse
image of E in fl7. Then E7 cannot be a set of Lebesgue measure zero.
In fact, in this case the Plancherel measure of the direct image of Er

A
in L would be zero (c/*. [30], p. 278-279) implying T (E) = 0. Let us suppose
now that, for instance, E^ is not of measure zero. Then, by virtue of
Proposition 8.1, its complement in ^ would have a measure zero, and
therefore E 'nE^ would be nonempty. Let s be a point in E, such that
the inverse image (V {s), of 0 (s), in ^ meets E^. Since E^ is invariant
under G and &1 we have then O7 (^)cE^. In this fashion, by virtue of
Theorem 3 [with JO loc. cit. replaced by 0 {s); observe, that dvs is equi-
valent to a measure, invariant under G, on 0 (^)], Remark 3.4.1,
Chapter III and Theorem 2, R (T (^)) would admit a representation as
a continuous direct sum of factors, none of which is of type I. This,
however, contradicts the existence of a nonzero abelian projection
in R (T (.)).

Q. E. D.
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We recall, that a von Neumann algebra N is uniform of type 1^ if it is
the tensor product of an abelian von Neumann algebra with the full ring
of an infinite dimensional unitary space.

LEMMA 9.3. — Suppose, that the von Neumann algebra N is the conti-
nuous direct sum of von Neumann algebras, uniform of type 1^, over a
standard measure space. Then N itself, too, is uniform of type 1^.

Proof. - Cf. [13], p. 243.
Q. E. D.

THEOREM 5. — Let G he a connected and simply connected solvable Lie
group. Then its left ring coincides with its type I or type II component.

Proof. — By Corollary 7.1 and Remark 7.1 we have always L (G)ni = 0.
In this fashion it will suffice to establish, that if L (G)i 7^ 0, then we have
L (G)n = 0. By virtue of Lemma 9.2 our assumption implies, that the
sets E^ and E^ are of Lebesgue measure zero in ^. Therefore, by
Theorem 2, Theorem 3 {cf. also Remark 3.4.1, Chapter III) and
Lemma 9.3 there is a set E C S of T measure zero, such that, for s € S — E,
R (T {s)) is uniform of type 1^. Hence, by Lemmas 9.1 and 9.3 L (G),
too, is uniform of type 1^, and thus, in particular, L (G)n === 0.

Q. E. D.

REMARK 9.1. -— It is known {cf. [26], p. 324), that the vanishing of
the type II component of L (G) does not necessarily imply, that the group
in question is of type I. An example, similar to that loc. cit. is as follows.
Let us consider the six dimensional solvable Lie algebra g spanned over
the reals by the elements { e / ' , 1 ̂ j ̂  6 } with the following nonvanishing
brackets :

[d, e,] === e:3, [ei, e,} === — e.., [d, e,] = Q e,,
[ei, eg] == — Q 64 (0 = irrational), [^, 6:3] = e^ [e^, e,] = e^

Denoting by G the corresponding connected and simply connected group,
we claim, that G has the property indicated above. In fact, let us observe
first, that G is not of type I. This follows from the fact, that f l ' = R CQ,
G' = exp (g ') and G/G' is isomorphic to the group of Mautner (cf. Sum-
mary, Chapter II). On the other hand, we have here L (G)n = 0. In
fact, let us denote by n the subalgebra generated by the elements
{ ej', 2 ̂ j ^6}, and let us put N = exp (n). It is well known, that
any unitary representation of N, the restriction of which to G^ is a
nontrivial character times the unit operator, is a multiple of an irreducible
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representation, uniquely determined by this character. From this,
however, we can deduce at once, that any factor representation T of G,
such that T | G^ is not constant, is of type I. In this fashion any orbit,
which is not locally closed is contained in the orthogonal complement
of R <°6? proving our statement.

REMARK 9.2. — The above example makes it possible to show, that
Theorem 5 fails, if G is not assumed to be simply connected. In fact,
by virtue of the above discussion, to this end it suffices to consider the
discrete central subgroup T = exp (Z ^), and form the quotient G/F.
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SOME NOTATIONAL CONVENTIONS.

(1) If G is a group, G^ stands for its center; similarly for Lie algebras and von Neumann
algebras.

(2) If W is a unitary representation, H (W) denotes the representation space, and R (W)
the von Neumann algebra generated by the operators of W.

(3) If S is a set of unitary equivalence classes of unitary representations, Sc denotes the
corresponding set of concrete representations.

(4) If ^ is a group, G a subgroup of €) and p some representation of G, given a in ̂  we
denote by a p the representation of a G a~1 c ̂  denned by (a p) (b) = p (a-1 ba)
(beaGa-1).

(5) If $| is a Lie algebra, exp (<g) denotes a corresponding connected and simply
connected Lie group, unless specified otherwise by the context. If \\ is a subalgebra
of 9, and G = exp (9), exp (\\) denotes the connected subgroup, determined
by 1), of G.
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(6) If G is a Lie group with the Lie algebra $, Ad (a) denotes the value of the adjoint
representation of G at a<=G, and ad (I) the value assumed by the adjoint repre-
sentation of 9 at Ze g. Usually we shall write

al = Ad (a) I (a e G, I e 0) and ag = (Ad (a-1))7 ^ (g e 9', a e G).

Similarly, if n is some ideal of 0, and f e n7, of will stand for the action of (Ad (a-1) I nV
on f. / 1 /

(7) If G is a topological group, Go denotes the connected component of the identity of G.
(8) If T is a locally compact space, C (T) denotes the family of all continuous func-

tions of a compact support on T.
(9) If G is a group acting as a group of transformations of the set X onto itself, and p

a fixed element of X, we denote by Gp or Stab^ (G) the stable group of p in G.
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