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UNITARY REPRESENTATIONS
OF SOLVABLE LIE GROUPS (")

By L. PUKANSZKY.

Du kennst doch das Schillersche Gedicht  Spruch
des Konfucius ” und weisst, dass ich da besonders
die Zeilen liebe : Nur die Fiille filhrt zur Klarheit
und im Abgrund wohnt die Wahrheit.

N. BOHR, quoted in W. HEISENBERG,
Der Teil und das Ganze
(R. Piper Co., Miinchen, 1969, p. 284).
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INTRODUCTION ().

The investigations of the present paper started with an examination
by the present author, through special examples, of the possibility to
extend the recent theory of type I solvable Lie groups by L. Auslander
and B. Kostant (cf. [1]) to arbitrary Lie groups. These authors, carrying
forward by an essential step the line of research started by A. A. Kiril-
lov [22] and continued by P. Bernat [3], using results by C. G. Moore,
gave a neccessary and sufficient condition in order that a connected and
simply connected solvable Lie group be of type I. Furthermore they
provided in this case a complete description, by aid of the orbit space
of the coadjoint representation, of the dual. Thus, in particular, if G
1s such a group and g is its Lie algebra, then G is of type I if and only
if : (1) Any orbit of G on g’ (= dual of the underlying space of g) is locally

(?) The Introduction and the Summary, in front of each chapter, intends to give only
an outline of the results of this paper. For a precise formulation of these as well as for
complete references to the literature we refer to the corresponding point of the detailed
discussion.
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closed and (2) The de Rham class of the canonical 2-form is always integral
(and hence zero; ¢f. Th. V. 3.2, loc. cit.). Two examples, due to J. Dixmier
(cf. [10]) and F. I. Mautner resp., of solvable groups which are not of
type I, are particularly well known in the literature (for the definition
of these cf. the Summary of Chapters I and II). From among these
Dixmier’s group satisfies the first of the above conditions but not the
second, Mautner’s violates the first, but satisfies the second. A closer
inspection of Dixmier’s example led us to the conclusion, that by aid
of a natural extension of the procedure of Auslander and Kostant one
can associate to each orbit in the general position a well determined factor
representation of type II_. More importantly it turned out, that this
relationship admits a description modelled after Kirillov’s theory of
characters of a connected and simply connected nilpotent group. Let G
be such a group and g its Lie algebra. We can identify the underlying
manifold of G to that of g by means of the exponential map. The measure,
corresponding on G to a translation invariant measure dl on g is biinva-
riant. Let T be an irreducible unitary representation of G, ¢ an element

of C; (g) and let us form the operator T (9) =fq9 T dl. It is of
g

trace class, and Kirillov’s formula, which is the natural analogue (cf. [30],
p- 258-264) of the character formula of H. Weyl for compact semi-simple
groups, provides the following expression for its trace. Let us write
LU (leg, 'eyg’) for the canonical bilinear form of the underlying
abelian group of g. We define the Fourier transform of ¢ by

b0 = [v0r>a @es).
g
Then there is a uniquely determined orbit O of G on g’ such that
1 Tr(T(9) = | ¢ () d
M FTE) =[O

where dv is an appropriately normalized invariant measure on O. Let us
observe, incidentally, that in the case envisaged here, the proof of the abso-
lute convergence of the right hand side is relatively simple. Conversely,
to each orbit O there is a unitary equivalence class, corresponding to O
by virtue of formula (1). In other words (1) can be used to define a
bijection between elements of the orbit space and of the dual of G resp.
(cf. for all these e. g. [29]). Returning to the example of Dixmier we
found, that with the factor representations we constructed (1) substan-
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tially retains its validity, provided on the left hand side by Tr (T (¢))
we mean the value on T (¢) of an appropiately normalized trace in the
sense of the II_ factor generated by T. We obtained similar conclusion
for the group of Mautner with the difference, that in place of O we had
to substitute closures of orbits of the coadjoint representation of G.

The main consequence of the above observation for us was a concrete
suggestion, that perhaps for all connected solvable Lie groups the left
(or right) regular representation is a continuous direct sum of semi-
finite factor representations, or what amounts to the same, the left (or
right) ring, that is the von Neumann algebra generated by the left (or
right) regular representation is semifinite. Let us recall, that this was
shown by I. E. Segal to be the case for any separable locally compact
unimodular group (cf. [34]) but was disproved by R. Godement in the
general case. This conclusion, in fact, imposes itself by assuming, that
for any connected solvable group, too, sufficiently many semifinite factor
representations can be constructed, such that the essential features of (1)
be preserved, and by observing the mechanism of the Plancherel formula
in the nilpotent case. In fact, let us write A = ¢’/G, and let us set T,
0, and dy; resp. for the objects, as in (1), corresponding to A€A. Then
to show, that the representations { T,; A€A | provide a central conti-
nuous direct sum decomposition of the left regular representation, one
has to prove, that the value ¢ (0) of ¢ at zero can be reconstructed from
the values Tr (T, (¢)) by aid of a formula of the type

@ 90 = L Tr (s (9)) dp- ().

But if dl’ is an appropriately normalized translation invariant measure
on g, we have

¢ =[Oy ar.
)

From this we conclude, that to obtain a formula as (2), it suffices to repre-
sent dl’ as a continuous direct sum of the measures d¢, by aid of a measure
dp. on A,

Although much progress has recently been made toward a clarification
of the possibilities of a formula as (1) for type I groups (¢f. [15]), unfor-
tunately already in this case any attempt to obtain a theory as for the
nilpotent groups is confronted with great difficulties. Their reasons,
among others are, that a bijection along Kirillov’s lines is limited to
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groups with simply connected orbits, and that it seems to be exceedingly
difficult to establish the convergence of integrals as in (1) for a suffi-
ciently ample family of functions. ‘We wish to observe, incidentally,
that these problems do not at all appear to increase by abandoning the
assumption, that our group be of type I. In this fashion, to follow up
the indications carried out above, we had to look for a different tool
which we found in the theory of quasi unitary algebras due to J. Dixmier
(¢f. [7]). As a result, we succeeded in establishing the purely global
result, that the left (or right) ring of any connected but not necessarily
simply connected Lie group carries a faithful trace (*), such that the
corresponding family of generalized Hilbert-Schmidt operators generates
the whole ring (c¢f. Theorem 4, Chapter IV of this paper). Hence, in
particular, the-left (or right) ring of any group of the said sort is semi-
finite. This conclusion has been shown in the mean time by J. Dixmier
to retain its force for an arbitrary connected topological group (cf. [14]).

This result of ours, however, leaves open the problem of the possibility
of an « orbitwise » theory of factor representations. One can namely
raise the question, if the procedure of Auslander and Kostant, through"
an appropriate modification, leads to a class of factor representations,
which can claim some special interest. In this paper we show, that
this is indeed the case as already suggested, incidentally, by the examples
of Dixmier and Mautner discussed above. Our main result concerning
this point (¢f. Theorems 2 and 3, Chapter I1I) provides a family of factor
representations parametrized by certain geometrical objects, genera-
lizing the orbits of the coadjoint representation in such a fashion, that
the regular representation admits a central continuous direct sum decom-
position involving only these representations. The necessity to consider
more than one representation for one orbit, and thus to go beyond these
in a search for objects parametrizing the dual, arises already in the case
of the universal covering group of the motion group of the Euclidean
plane. For the general type I group, according to the algorithm of
Auslander and Kostant, the irreducible representations, belonging to
the same orbit, can be parametrized by a torus, the dimension of which
1s equal to the first Betti number this orbit. Our construction proceeds
in two major steps. First (c¢f. Chapter 1) we associate with any orbit
a family of semifinite factor representations, the members of which are
in a one to one correspondence with the underlying set of a torus. The
dimension of the latter, however, is in general different from that of the

(*) For our definition of the trace cf. e. g. Section 7 in Chapter IV.



462 L. PUKANSZKY

type I theory. Example for this situation is given by an orbit in the
general position of Dixmier’s group. Here our torus is zerodimensional,
while the Betti number in question is 2. If all orbits are locally closed,
as 1s the case, in particular, for the type I groups, the collection of all
these representations already provides a central decomposition of the
regular representation. For a type I group this step essentially repro-
duces the algorithm, defining the orbit-representation relation, of Auslander
and Kostant. The only difference is, that our representations are not
necessarily irreducible ones, but one or + oo fold multiples of such repre-
sentations. If, however, there are orbits, which are not locally closed,
as in the case of the group of Mautner, to obtain the « central components »
of the regular representation a more involved construction is necessary.
In Chapter Il we introduce a generalization of the orbit concept leading
to certain solvmanifolds, which are transformation spaces of our group,
such that any orbit of the latter is dense. Also, these spaces carry inva-
riant Borel measures. From here, by virtue of a classical principle (cf.
Lemma 2.3.1, Chapter I1I) we obtain our « central factors » in Chapter III
by forming continuous direct sums over the said manifolds of appropriate
subcollections of the representations of Chapter I. Groups, violating
simultaneously both conditions of Auslander and Kostant, may at this
point display additional difficulties, not indicated by the examples of
Dixmier and Mautner (cf. Section 8, Chapter IT). Finally, using the previous
theory we show, that if our group is simply connected, the left (or right)
ring coincides with its type I or type 11 component (c¢f. Theorem 5, Chap-
ter IV). In other words, the left (or right) regular representation of any
such group admits a central .continuous direct sum decomposition into
factor representations, all of which are either of type I or of type II only.
Let us also observe, that our results imply the necessity of the conditions
of Auslander and Kostant quoted at the start. In fact, at once one
of these is not satisfied, there appears in our list a factor representation,

which is not of type 1.
It 1s clear from the beginning, that our construction cannot aim at

a complete classification of the factor representations of these groups.
For example, in the case of the groups of Dixmier and Mautner our proce-
dure provides semifinite factor representations only. On the other hand,
since these groups are not of type I, by virtue of the results of J. Glimm
they admit type 1II representations. We shall say, that the unitary
representation T is of trace class, if on the von Neumann algebra R (T)
it generates there exist a faithful, normal and semifinite trace (*), such
that the set of generalized Hilbert-Schmidt operators in the range of
the associated representation of the group C* algebra generates R (T)
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(cf. Section 7, Chapter IV). For instance, by what we saw above, the left
(or right) regular representation of a connected solvable Lie group always
has this property. Our results imply, that an « overwhelming » majority
of the representations appearing in our list are trace class representations
and hence, in particular, generate semifinite factors. But we leave in
this paper the problem of an individual characterization of these repre-
sentation open. While admitting, that certain points of the following
programm, at the present stage of the research, might appear overly
ambitious, we still believe, that ultimately it turn out, that our represen-
tations, up to quasi-equivalence, give precisely the collection of all trace
class representations. In addition we conjecture, that the factors they
generate are always approximately finite. The significance of the last
point 1s, that in this fashion one could show, that by considering factor
representations, which are not of type I, one does not get involved in
the algebraic type problem of factors. Or, to put it more succintly,
this widening of the view point should not place one in a situation worse,
than in the type I theory. The author is indebted to C. C. Moore for
the following suggestion of a collective characterization of our represen-
tations. One could try to show, that upon forming the kernels of the
associated representations of the group C* algebra, one obtains precisely
once each primitive ideal of the latter. Let us observe, that recently
R. Howe obtained results along these lines for a class of discrete nilpotent
groups (cf. [21]).

As far as the prerequisites for the reading of the present paper are
concerned, our exposition of the necessary results of the geometry
of orbits of linear solvable groups is self contained. On the other
hand, we assume a relatively advanced knowledge of the theory
of induced representations by G. W. Mackey. In fact, we shall use
the basic results of [23] and [25] often without special reference. For
a summary we refer to [2], Sections 9-10 (p. 50-63). "Also, some
preliminary familiarity: with the notion of holomorphic induction 1is
necessary (cf. the references of Section 4, Chapter I). The reader is
advised to consult carefully the list of notational conventions at the
end of the paper.

The results of Chapter IV, Sections 1-7 were announced in [33], those
of the rest of this paper in the author’s conference at the International
Conference of Mathematicians, Nice, September 1970.

The author is much indebted to B. Kostant for introduction in his
joint work with L. Auslander, and also for discussion in his seminair
at the Massachusets Institute of Technology, Fall 1968, of several parts
of Chapter IV,
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CHAPTER L

THE TRANSITIVE THEORY.

SumMARY. — Let G be a connected and simply connected solvable Lie group with
the Lie algebra ¢g. As already stated in the Introduction, in this chapter we assign
to each orbit of the coadjoint representation of G on ¢’ a family of semifinite factor
representations. Our discussion follows at many points the treatment of the type I
case by Auslander and Kostant in [1]. One of the major differences appears, however,
already at the start. The purpose of Sections 1-2 is to discuss certain factor represen-
tations of a group, which is central extension by a one dimensional torus T of a direct
product of a free abelian group of finite rank with a vector group. The necessity to
consider such groups arises in the following fashion. We denote by L the first derived
group of G (or L. =[G, G]); L is nilpotent and thus of type I. Let = be an irreducible
unitary representation of L; then the corresponding Mackey group My (c¢f. the begin of
Section 3 for the definition) has the indicated structure. Let I' be a group of this class,
U the centralizer of the connected center and U? the center of U. The main result of
this part (¢f. Proposition 2.1) states, that if x is a character of Uq, such that its restriction
to TcU"is not trivial, then the unitary representation, induced by y in T, is a semifinite
factor representation, and gives a necessary and sufficient condition that it be of type I.
Let = be as above, Gz its stabilizer in G, =n¢ an appropriately chosen projective extension
of = to G, and G¢ the corresponding central extension of G by a one dimensional torus.
The collection of the factor representations of this chapter coincides with the family
of all representations of the form éngG(V®nf), where V is a representation, arising by

lifting to G% a representation of My (= I') obtained as above by aid of a ¥, which on
T cU? coincides with the conjugate of the identity map of T onto itself, for all possible

A
choice of = in the dual L of L. and . In order, that G be of type I, in particular, M

A}
has to be of type I for all reL. In this case our procedure yields one or infinite fold
multiples of the collection of all irreductible representations of G. Section 3 gives a
description, not directly involving the Mackey group, of our representations. It is shown

A
(¢f. Lemma 3.5) that each r€L uniquely determines a closed subgroup K:2L, such
that = admits a proper extension p to K, and that our representations coincide with the

A
collection of all representations of the form infc e (for all possible choice of =€ L and of
Ky

peﬁﬂ, p|L = 7:). We give a necessary and sufficient condition that such a represen-
tation be of type I, and that two of them be quasi-equivalent (in which case they are
also unitarily equivalent; c¢f. for all this Lemmas 3.7, 3.8 and Remark 3.3). These
considerations do not at all depend on the assumption, that G be solvable, provided L
is appropriately chosen. In an effort to bring this to expression, in this section (but
only here) we allow G to be an arbitrary simply connected Lie group and take in place
of [G, G] a closed, connected, invariant and type I subgroup L, such that G/L abelian.
In Section 4, beside summarizing the necessary prerequisites of holomorphic induction
and of the Kirillov theory (this we take for granted), we present the definition of the
reduced stabilizer. Let g be an element of g’, G, the stabilizer of ¢ in G with respect
to the coadjoint representations, (Gg)o the connected component of the identity and
ggcg the Lie algebra of the latter. Since G is solvable and simply connected, (Gg)o,
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too, is simply connected, whence we conclude, that there is a well determined character y,
on (Gg)o such that dyz (I) = i(l, g) (l€g,). Let us put ég = ker (5| (Gg)o); this is an
invariant subgroup of Gy, and the reduced stabilizer G, of g is the complete inverse image,
in Gg, of the center of Gg/ G°rg. Section 5 reproduces the proof of an important result
of Auslander and Kostant establishing a relation between the obstruction cocycle belon-
A
ging to =eL and the Kirillov orbit of = in the dual »” of the underlying space of the Lie
A
algebra v = [g, g] of L. Using this in Section 6 we show, that if xeL corresponds to
the Kirillov orbit Lfcy (fev’), and ¢ is any element of ¢’ such that ¢ |b» = f, then
we have K = LGg, and King(‘ p €Ky, o| L = =) is of type I if and only if the group
Gg/Gg is finite. This condition can be shown (but we do not carry out this point) to be

equivalent to the rationality of the de Rham class of the canonical 2-from on Gg (for a
definition of the latter cf. e. g. [30], p. 256). The integrality of this form means, that

G; = G, and conversely; in order, that G be of type I in particular, this must be valid
for all geg’. The results of this section are used in an essential fashion, among others,
in Chapter IV to estimate the «size » of the totality of type Irepresentations in the central
decomposition of the regular representation (cf. in particular Proposition 8.1, Chapter IV).
Finally Section 7 brings the construction, along the lines laid down by Auslander and
Kostant, of our representations as (in general) holomorphically induced representations.

A _
For a geg’ let us denote by G, the collection of all characters of G, restricting on (Gy)o

to ys (cf. above). Let us put R =v, e, Gg; R is a transformation space of G. One

of our main conclusions is, that there is a bijection between the set of all unitary equi-
valence classes of our representations and points of ®R/G. Orbits, lying over Gg (¢ fix in ¢"),

in R are parametrized by points of G;. The underlying set of the latter admits a natural
identification with the dual of 63/ (Gg)o, which is a free abelian group of finite rank. In

the case of a type I group, since here G, = Gy, (_}g/(Gg)o is just the fundamental group
of Gg. But, for instance, in the case of the group of Dixmier quoted in the Introduction,
the situation is already completely different. This group belongs to the Lie algebra,
spanned over the reals by the elements { e;;.1 < j < 7} with the nonvanishing brackets

[31, e-z] = €7, [61, e:x] = €y, [61, ea] = — €3, [82, 35] = €gy [ez, er.] = — €.

For a general geg’ we have Gg = (Gg)o, while the rank of G;/(Gy)o is two. Thus the
dimension of the torus, parametrizing the representations belonging to the same G orbit
in ¢/, is in general different from the first Betti number of the latter.

1. Prorosition 1.1. — Let Z be a free abelian group of finite rank,
and let us consider a central extension Z of Z by a one dimensional torus T.
Let 7 be a character of the center 77 of 7., which, when restricted to T, reduces
to the tdentity map of the circle group onto itself. The unitary represen-
tation .

ind y=TU
747
of Z is a factor representation of finite class which, on T, equals to a multiple
of 7. U is of type 1 if and only if the index of Z7 in Z is finite.
Ann, Ec. Norm., (4), IV. — Fasc. 4. 59
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Proof. — a. We recall first (cf. [2], p. 188), that there exist a skew-
symmetric bilinear form o from ZXZ into T (identified with the group

of all complex numbers of absolute value one), such that Z is isomorphic
to the group of all pairs (z, u) (z€Z), u€ T) with the law of multiplication

(zu) (@, u)=(+2,uu.a(z2)).

Given a subgroup I of Z, we shall write I for the subgroup { (y,u); Y€, u € T}
of Z. Let us form now the subgroup Z, = { z; 2 €Z, (« (z, y))* = for all

y€Z) of Z; one verifies easily, that Z, coincides with the center Z° of Z.
We denote by Z, the subgroup of all elements { z; « (z,y) = 1 for all y

in Z}, and by y. the restriction of y to Z,. Finally, we write & for the
set of all characters of Z,, which on Z, restrict to y,.

Lemma 1.1. — Putting

V = indy, and U, = ind ¢ (ve¥)
A2 7,47

we have

V=20TU,

veF
and U,, when restricted to Z,, equals to a multiple of ¢.

Proof. — Let us observe first, that ZO/Z is finite; in fact, it is isomor-
phic to Z,/Z,, which is of a finite rank and any element in it has the order 2.
We have thus

1nd = Z@cp

LAZ
1 0 oeF

whence, through induction by stages we conclude, that

V=indx1=ind<inq X1> pER 1ndcp ZEBU@

M2 ZoMZ \Z M T CPEJ
Finally, since 7, is the center of Z, U, on 7., restricts to a multiple of ¢.

Q. E. D.

b. Let @& be a countable abelian group and 3 a skew symmetric bili-
near form, with values in T (= circle group), on AXA@. Similarly as



REPRESENTATIONS OF SOLVABLE GROUPS LIE 467

above, we write @ for the group defined on the set of all pairs
{(a, u); a€@, u€T} by the law of multiplication

(a, u) (b, v) = (a + b, u.v.3 (a, b)).

We denote by 7, the character of TC @ defined by %, ((0, u)) = u.

Lemma 1.2. — With the above notations, the unitary representation
W =ind y, can be described as follows. There is a unitary map from the
Tha

representation space H (W) of W onto L? (@) (@ being taken with the
discrete topology), such that the von Neumann algebra R (W) generated
by W goes over into the set of all bounded operators on L* () which, with
respect to the natural basis can be expressed in matrix form as

{ay =B (@ y);z,ye@} (a.€C,zEQ).

The commutant of R (W) goes over into the set of all bounded operators,
which can be written as

{by—= By, 2); T,yel.

Proof. — In the following we shall write ¢ and u in place of (a, 1) and
(0, ) resp. (a€@, u€T) whenever convenient. '

10 Choosing an invariant measure on @, by virtue of our definition

of @, there is a natural isomorphism between the Hilbert spaces L? (@)
and L* (T) Q@ L? (A). Let L and R be the left and right regular represen-
tation resp. of @ on L?(@). Since (0, u)™ (a,v) = (a, u.v), writing R
for the ring, generated by the regular representation of T on L?*(T),
we see at once, that R(L|T)=R® Ic(R (L)) from which, taking
into account that R’ = R, we conclude, that any operator in the left
ring R (L) of & can be expressed as a matrix

1 {Ary; 2, yeA)

the entries taking their values in R. Similar cbservation applies to the
right ring.

20 For weT and f€L?(T) let us write L, f(u)=f(wu). Since
(z, 1) (z, u) = (z + &, uB (3, ), we can conclude, that for feL? (@),

CEAN@w=Ugealf(@+zu [LE)=L({1DM]
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In this fashion the right ring of @ coincides with the set of all operators
in (1), which commute with any member of the family of operators

{L(z);z€@]. Similarly, puttingforz€ @ and feL? (@) = L(T)QL(A)
RES) (@ u) = L) f (@ + 2 1)

the left ring is the collection of all elements in (1) commuting with every
operator in { R (z); z€@}.

3° Let now A be an arbitrary element of (1), and let us write out the
condition, that it belong to the right ring. According to what we have
just seen, in order that this happen, we must have forallze @ and fe L*> (@)

LA @w=ALE/ @ v
But
LCEAN @)=Y Lo Az f G 1)

SE€A
and

AL@N @)=Y AnsLaco)f G+ 20 =3 (ArssLocn) G, 0).

GEA CEA
Thus A belongs to the right ring if and only of we have for all z, z, c€ @,

A.z‘, G—z Lﬁ (2,8) = LB (2, ) A1'+z,6

whence, putting z = 0, and writting A, = A,,, (y€A) we conclude,
that a necessary condition is the existence of a sequence { A,; y€@ | CR,
such that

2 Av,y = Ay o Lﬁ (, y)e

One sees, however, at once, that this condition is also sufficient provided,
of course, {A,; z€@ | i1s such, that (2) defines a bounded operator on

L2 (@).
Similarly one finds, that the operators in the left ring are representable
as { Ay o Lg(y, 25 2, y€A) |, and conversely.

40 We recall, that the representation space H (W) of W =ind ¥,
Tta
consists of the collection of all complex-valued measurable functions,

satisfying f (w.qa) = uf (a) for all u€T and a €@, for which
2If@F<+oo

provided « runs through a residue system of @ mod T.
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On any such function the action of W (a) (¢€ @) is obtained by trans-
lation on the right by a. Assume, as we can, that the total measure

of TEA, with respect to the invariant measure dt, equals 1, and let us
form the central projection

P=fTﬁR(u)df(u).

From what we have just said it is clear, that we have a natural identi-
fication of H (W) with PL? (@), such that W corresponds to the component
of the right regular representation in PL?(@). On the other hand,

PL? (&) is canonically identifiable with L* (). Putting P, = [ @L,dx (u),
T

we have, that P ={P,¢, ,;z,y€@]. Since for any A€R, P, A is a
scalar multiple of P,, bearing in mind what we have just seen in 3° we
conclude, that the von Neumann algebra R (W) generated by W coincides
in L* (@) with the collection of all operators having a matrix expression
of the form

{ay_ =B (x, )2, yed] (aye C for all yea).

The commutant of R (W), corresponding to the component of the left
ring of @ in PL? (@)~ L? (@) is given by the family of all bounded ope-
rators, which can be written as

{ay=B@ 2); zyea].

Q. E. D.
Remark 1.1. — Observe, that the reasoning employed above implies,
that ind ¥, is the largest subrepresentation of the right regular represen-

rta _
tation of A with the property, that on TC @ it restricts to a multiple

of the identity map of T into itself. Analogous statement holds true
upon replacing %, by ..

c. Lemma 1.3. — With the previous notations, R (W) is a von Neumann
algebra of a finite class.

Proof. — For A =1{a, ,B(z,y); z,y€e@ | let us put f(A) = a,. Ewvi-
dently, f defines a linear form on R (W). To prove our lemma, it is
enough to show, that Tr (AA*) =0 implies, that A =0, and that
Tr (AA*) = Tr (A*A) for all A in R(W). One sees at once, that
A* = {b,_, B (z,y) ], where b, =a_, (z€A@) and thus

AA* ={2a;_x Gy f@)BGEyY|  and A= {ZEH a2 (5 ) B, 1) g
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from which we infer, that
f(AA%) =] a. ! = [ (A*A)
proving our lemma. )

d. We recall (cf. the list of notational conventions at the end of this
paper), that given a family of operators J on a Hilbert space, we shall
write R (J) for the von Neumann algebra generated by the elements of J.

Let us form the subgroup @, = {z; (8 (z,y))* =1 for all y in A}
of @. Similarly as in (a) we write @, for the corresponding subgroup
of Q. Observe, that @, coincides with the center A" of A.

Lemma 1.4 — We have (R (W))F = R (W |&,).
Proof. — 10 By virtue of Lemma 1.2, if A belongs to
® (W) =R W)n®R (W)

we have
A= {ay—xﬁ(xiy)}= { bJ—xﬁ(y’x)}

from which we conclude at once, that a, = b, (x € Q) and that a. = (=, z)%a,
for all z and z in @. This implies, that if a, 1s nonzero, z is an element
of @,.

20 To obtain the identity claimed in our lemma, it is now sufficient
to observe, that by virtue of what we saw in the proof of lemma 1.2,
we have for any z€@,

WD) =RE@IBEW) ={d-:p@y);zyeal.

These two observations imply, that (R (W))" = R (W/|&,). The oppo-
site inclusion being trivial, our lemma is proved.
Q. E. D.

From now on we shall assume, that @, is finite, in which case @, is
compact. We write E for the collection of all characters of @,, which,

when restricted to TC @, coincide with 7, [¢f. (b)]. With this notation
we have

CororLLarY oF LEMMA 1.4, — Writing Wlao =Z 4P, and W, for
LEE
the part of W in P, H (W), W, is a factor representation of finite class,
and

W=Y®W,

Y €EE
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Proof. — To obtain the desired conclusion, it is enough to remark,
that by virtue of lemma 1.4 the center of R (W) is identical with the
collection of all linear combinations of the family {P,; 7 €E}|. R (W,)
is a factor of finite class since, by Lemma 1.3, R(W) is of finite class.

Q. E. D.

e. Lemma 1.5. — With the previous notations we have dim P, = m
(x €E), where m is the (finite or infinite) index of @, in A.

Proof. — We recall [cf. 4°) in (b) above], that W |@, is just the part
of R|@, in PL? (&). We write R, for the regular representation of @,
and recall, that R|@, is unitarily equivalent to mR,, where m equals
the (finite or infinite) index of @, in @, which is the same as the index
of &, in &. From here to obtain, that dim P, = m (y €E) it suflices
to observe, that @, is isomorphic to the direct product of the circle group

and of a finite abelian group.
Q. E. D.

f. Lemma 1.6. — R (W,) is a factor of type 1 or 11 according to whether &
is finite or infinite resp. (y €E).

Proof. — Let us consider the involution S of L* (A) = H (W) defined

by (Sf) (z) =f(— z) [f€H(W)]. One sees at once, that if
R(W)3A={a)’—x5(x’y);x’yea}'

we have
SAS = {by—=B (@, r); %, yea |

where b, =a_, (r€ @), and thus SR (W)S = (R (W))". If A lies in (R(W))%
a, 7% 0 1mplies, that u belongs to @, (¢f. 1° in Lemma 1.4). But since
x =1y (Q,) entails § (z, y) = B (y, z), we can conclude, that now SAS = A*.
Therefore, in particular, S leaves invariant the subspace P, H (W) (y €E),
and denoting its part in the latter by S,, we have

Sx R (Wy.) Sx =R (Wx))'-

In this fashion we obtain, that R (W,) is of type (L, I.) or (IL, IL,),
according to whether m = dim P, is finite or infinite. But since m is
the index of @, in &, and @, is assumed to be finite, we get the conclusion
of our lemma.

Q. E. D.



472 L. PUKANSZKY

Lemma 1.7. — For each element of E there is a factor representation W,
(. €E), such that W, |&, =1, and

ind 7o =Y, & Wy

Tha yeE

The factors R(W.) are of type 1. if & is finite; otherswise they are all of
type 11,.

Proof. — We have, similarly as in Lemma 1.1,
ind 7= Y @ 7
Tha, e
and thus

ind 7o = D@ ind z =D BW,
Tha ger @ta L CE
whence the desired conclusion follows by virtue of lemma 1.6.

Q. E. D.

Remark 1.2. — Similar result holds true if we replace y, by ..

g. Using the previous considerations, we can complete the proof of
Proposition 1.1 1n the following fashion.

10 Let us consider again the character i, of Z, [¢f. (a)]. The function,
assigning to z€Z, the complex number ¥, ((z, 1)), on Z, is obviously
a character of the latter; we denote it by 7. Let { be an arbitrary cha-

racter of Z extending 7, and let us define a function ¢ on Z by ¥ (a) = (z).u
if a=(x,u)€Z. One verifies easily, that ¢ (a) ¥ (b) = w (a, b) ¥ (a, b),
where ® (a, b) = a (z,y) if a= (z,u), b= (y,u). We have evidently
® (aa,, bb,) =  (a, b) if a, and b, are arbitrary elements in Z,.

20 We denote by Z° the group defined on the set | (a, u); a €Z, uET)|
by the law of composition

(a, u) (b, v) = (a. b, uvw (a, b)).

The subset | (a, 1); a € Z, | is a central subgroup of Z¢, to be denoted again
by Z,. We put M = Z¢/Z, and write ® for the canonical homomorphism
from Z¢ onto M.

Let us define the function W, on Z¢ by ¥, ((a, u)) = ¥ (a).u; ¥, is a
character of Z°. Denoting by R the right regular representation of M,
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we write Ry for the part or R in the subspace, having the projection
fu.R(u)dr(u)
T

[¢f. 4°) in (b)], of L2 (M). The representation (R,o®) Q@ W, of Z¢ is
identically one on the subgroup { (e, u); u€T ] = T, of Z° and, by virtue
of Lemma 1, [26] (p. 32b), the corresponding representation on 7= Z7°/T,
s unitarily equivalent to zu*(% yar

39 Let us put & = Z/Z,; we denote by p. the canonical homomorphism
of Z onto . There is a function 3 on A X @, such that for all z, y, in Z
we have 83 (1 (2), » (y)) =« (z,y). We form @ as at the start of (b)
with the § just defined. Define the map {:Z > @ by { ((z, u)) = p (2);
{is a homomorphism, and (cf. 1°) above) w (a, b) = 3 ({ (a), { (b)). Let us
put for (a, u)€Z : % ((a u)) = ({ (a), u)€A. By virtue of what we have
just said, 7 is a homomorphism of Z° onto @, and its kernel coincides
with Z; cZe (¢f. 20). Let ¢ be the isomorphism from @ onto M =Zc/’Z}
such that the diagramm

is commutative. Then R,oc is the largest subrepresentation of the

right regular representation of @ with the property. that on TcC @’ it

coincides with a multiple of 7, [for the latter ¢f. (b)], and hence, by virtue

of Remark 1.1, we have R,oz =1ind 7,. Upon forming, as in (d) above,
1ha

the subgroup @, of @, we find, that &, = p. (Z,) = Z,/Z;, and thus &,

is of finite order. In this fashion, using Lemma 1.7 and Remark 1.2,

with notations as loc. cit. we get, that R,oc = Z @ W, and thus also
1EE

Rio®) QW= B (W) ®@W..

1€
The representation, corresponding to (W, o2) @ W,, of Z=17¢|T, is a
factor representation of the type of W,; when restricted to Z, = 7%,

it coincides with a multiple of a character ¢ in & [¢f. (¢)]. Denoting it
Ann. Ec. Norm., (4), IV. — Fasc. 4. 60
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by U, and by &, the subset of & formed by the 9’s so obtained, we get,
that in the sense of unitary equivalence V =ind y, = ZEBUc On

ZAZ -
YETF,
the other hand, we have (¢f. Lemma 1.1), V = 2 P U, and U, is identical
. . gev,
on TCZ  to a multiple of ¢. Hence we conclude finally, that &, = &

and U, = U;. By Lemma 1.7 and by what we have just said U is
a factor representation of finite class. Itis of type lif and only if & = Z/Z,
1s of finite order. Since Z,/Z, is finite, this is the case if and only if Z/Z,
is finite, or, since Z/Z, is isomorphic to Z/Z,, U, is of type I if and only
if the index of Z* in Z is finite.

To complete the proof of Proposition 1.1, it is enough to observe, that y

as loc. cit. is contained in .
Q. E. D.

Remark 1.3. — Analogous statement holds true for a character y

of 7% which on T coincides with the conjugate of the identity map of
the circle group onto itself.

2. ProrositioN 2.1. — Let 7 be direct product of a veclor group and
of a free abelian group of finite rank, and let us consider a central extension I'
of Z by a one dimensional torus T. We denote by U the centralizer of the

center of the connected component of I'. Let y be a character of the center U*

of U which, when restricted to T U%, reduces to the identity map of the

circle group onto utself. Let us put lri(i .=V (7). With these notations,
ST

the unitary representation V (y) of I' is clz factor representation of type 1 or II.

It is of type 1 if and only of the subgroup U*T, (I', = connected component

of the identity in I') is of a finite index tn U.  Finally, we have V (y) =V (1)

if and only if v and ' lie on the same orbit of T in the dual of U’.

Proof. — a. We recall first (¢f. [2], p. 188), that there exist a skew
symmetric bilinear form B on ZXZ with values in R, such that, putting
B (x,y) = exp [(i/2) B (z, y)] (v, y€Z), I is isomorphic to the group, defined
on the set of all pairs (z, u) (z€Z, u€T) by the law of multiplication

(1', u)(y’ v):(x+y, u.v.ﬁ(:zi, y))

b. Given a in I', let us put (ay) (g)=7y (' ga) (g€U?). We claim,
that we have ay =7 if and only of a belongs to U. To this end let us
note, that

@ W)@, v) (@, 0~ =, @@ y)*.0)=(y ) O, (@@ y))
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for any pair of elements (z, u) and (y, v) inI'.  In particular, they commute,
if and only if, (3 (z,y))? =1. Let us assume now, that a = (x, u) and
that ay = y. Then, since I'5cU* and % | T = identity map of T onto
itself (T = { (0, u)}), we must have, in particular, (3 (=, y))* = 1 whenever
(y, v) belongs to I'4; in other words, @ must lie in U, proving our assertion.

Let us put U (y) = ind y; we have V () =£I/:% U (y), and U (y)|U* is

vt u

a multiple of y. 'We observe next, that to prove Proposition 2.1 it s

enough to establish, that U (y) ts a factor representation of type 1 or 11, and

that we have the first case if and only if UJU'T, is finite. In fact, since,

as we saw above, U is the stable group of y in I', ind U (y) = V (y) 1s a
uAl

factor representation of the type of U (y). Thus to complete the proof
of our proposition it suffices to show, that V (y) = V (') (in the sense
of unitary equivalence) if and only if y and y’ differ by an action of I.
Since V (y) | U® is a multiple of the direct sum of members of the (coun-

table) subset Iy of the dual of U% the condition is evidently necessary.
If, on the other hand, 3’ =ay (a€T), then V(y')=aV(y) =V ()
[aV(y) (g =V(y (a ga) g€T'] completing the proof of our statement.

c. If W is some subset of Z, we shall write sometimes also W for the
subset {(w,1); weW} of I'. On the other hand, W} will stand for
{z;2€Z, B(z,w) =0 for all w in W}CZ. ~

Let us put I', for the centralizer of I'yinI'.  'Writting Z, for the connected
‘component of zero in Z, and using the above notations we get easily
I, = (Z )£.T. If Z, 1s the radical of the restriction of B to Z,XZ,,
that is Z, = (Z,)t nZ,, we obtain in the same fashion U = (Z,)}.T.
Since (Z,) = Z, + (Z,)¥, we have

N.Ty=(Z)t+ 7). T=1U.

Clearly, Z, is the connected component of zero in (Z,)§. Let X be a closed
subgroup, such thet (Z,)i is the direct sum of Z, and of £. Then we have
also (Z\)f = Z, + X (direct sum). Let ¢:(Z,)i - X be the projection
onto X. Then the map W:U — X defined by W ((z,u) ={¢ (2) is a
homomorphism. Let us define the map w: U X U - T by '

o (a, b)) =5 (W (a), V(b)) (abel).
The law of composition (a, u) (b, v) = (ab, w (a, b).uv) defines a group U*

on the set of all pairs {(a, u); u€T,a€ U] (topologized in the obvious
fashion).
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Given a subgroup V of U, we shall write V* for its complete inverse
image in U°. Given a subset SC U, we shall often use the same notation
for {(s,1);s€S}cU’ We denote by T, the central subgroup {(e, u);
u€T} of U

By virtue of the definition of », we have

0] (a. a,, b. bo) = W (a, b) (a, b € U; d, bo € 1‘0),

implying that I’y [= { (a, 1); €T, { U] is an invariant subgroup of U
In fact, one verifies at once, that for «€rl’, and (b, u) € U* : '

(b, u) (a, 1) (b, u)~' = (badb—', 1).

d. Let us consider the subgroup I'ycU°. Since I'% = Z,.T, we have

I'¢ =T, T, = 3I% T,

and the map, assigning to the triple (7, a,u) (7€Y, «€l%, ue€T,) the
element o au of T'j, is a bijection between the set XxI1?XT, and IV.
[Observe, that here o stands for ((s,1),1)€U° if s€XCZ, etc.] We
write now y, for the restriction of 7 (the latter as in the proposition)
to I2cU% and define a map 7°:I'f - T by 7°(sau) =y, (a).u. We
claim, that 7° is a character of I']. In fact, we have

cau.tbv = o a< bur = ot (v~ a ) buy (s,7€2;a,bel%;u,veT,),
and by what we saw above, 7' @ = a. On the other hand
ov = (1, D) (1), 1) = (@ + 8@, 5 9)

and thus, writing « (5, ) = ((0, 8 (5, 7)), 1) we can conclude, that

r 4

cau.w bv =" a' v,
where

¢ =0+ tel, a =oa(s7).a.bel?  and v' = (s, 7). uv.
In this fashion, since vy, | T is the i1dentity map, we get, that
1 (@ au.tbv) =y (2 (@, 1) a.b ).u.v.5(s, 7) = 70 (@) U.0 (b) v = 3¢ (¢ au).y* (zbv)
proving our statement.

e. Let us denote by y the Lic algebra of I'y = Z,.TcCU. Denoting
by v the element of vy, such that exp () = (0, exp (it)) (LER), we can
identify v with Z, + Rv, such that [z 4 e,z + ¢'v] =B (3, z')v, and
that exp (z -+ cv) = (3, exp (ic)) €L,.
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Let I be a maximal abelian subalgebra of v, and let us put H for the
corresponding connected subgroup of I',. If d is any element of the dual

’

v of vy, there is a well determined character y, of H satisfying

va(expl) =exp [t (l,d)] (l€h). We recall finally. that ind %, 1s an
uAl,

irreducible representation of I'y, which we denote by V,.

Let us consider now the unitary representation W = ind y‘of U°. Our

I'iAte

next objective is to show, that if d€v’ is such, that ., |Ii=y, (=7 |I7),
then W is multiple of a representation ¢ of U?, such that ¢ |I'y is unitarily
equivalent to V,. To prove this, let us put K=ITH=ZXHT, and
let us observe, that there is a character y, of K, such that y,|I'| = y°
and v, | H=y.. In fact, to this end it is enough to take into conside-
ration, that 1° if a €Il and b€ H, then ab = ba, 2° I': =T''NnH, 3° by
virtue of our choice of d, y,|T'5 = y°|I'%. We put L = K/I'{ and denote
by 7 the canonical homomorphism from K onto L. Observe, that we
have

L =K/I¢ =T¢HT¢ = HI¢nH = H/T:

02

and thus L is isomorphic to a vector group. The unitary representation

ind 77 of K is of the form (S o 2) @ ¥, where S is a continous direct sum
IsAR

of all characters of L. with respect to the absolutely continous measure

on I, (cf. [26], Lemma 1, p. 325). Let ® be an element in L, and let us
put 9 = wos. We claim, that there is an element me&l,, such
that ¢y, =my,. In fact, since K=XHT, and since elements of X
and Iy commute with each other (both in I' and U¢) it is enough to find
an element m in Iy, such that my, = y. (¢ | H). We can write the right
hand side, by an appropriate choice of d' €Y', as 4, and thus it suffices
to show, that d and d’ are on the same orbit of I', in y’. But since

oI =1, we have y,|I%=y.|I% and thus d| Y=d |v%. Since

[v,Y] = Rv, we have the desired conclusion. Let us put p=iri(3 s
K e

By what we have just seen, &1%1 ©.y., 1s unitarily equivalent to ¢, and thus,

by virtue of what we said above about S, W = ind 7° = ind (S 1) @,
T AU K AUe

1

is unitarily equivalent to a multiple of p. Therefore, to complete our
proof of the above assertion, it suflices to show, that ¢ |I', is unitarily

equivalent to V, = ind 7,. To this end we shall use the following propo-
HAL, :

sition, which 1s a trivial consequence of Theorem 12.1 in [25] (p. 127).
Assume; that G s a separable locally compact group, G, and G, closed
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subgroups of G, such that G = G,.G.. Let y be a character of G,. Then,
putting 1" = 7| GiNG,, we have -

(86 7) 1 O =g abde

Taking U for G, K for G,, y, for y and I, for G, we get

(‘XL.G.2 - I{.l‘0 = .\:I‘E .[,0. . = S‘I‘(}.Tﬂ =Us = G,
GnG, =H and Ll GinGe = g

Therefore

I

I,=/1i ! Iy, = ind = \7‘
\o! 0 <12de)(d)l 0 Tl‘a Xd d
WhiCh iS the desired 00nclusi0n.

f- Let us put M = U¢/I';, and let us denote by ® the canonical homo-
morphism from U onto M. Recalling [¢f. (¢)], that U* = UT, = XI', T,
it is easy to see, that M is identifiable to the set { (s, u); c€X, u€T|
with the multiplication (o, u) (t,v) = (¢ + 7, wv f (5, 7)), such that
b ((x, u),v)) = (W (), v). We show now, that [l (M*) = (U*).T,. To
this end let us observe first, that putting £, = {s;0€X and (B (s, 7))" =1
for all = in X}, we have

M® = { (o, u);c€ 3, ueT).

In this fashion, to arrive at the desired conclusion it is enough to establish,
that (z, u) in' U belongs to U if and only if z€X, + Z,. Let us write
z=0+4z, (€L, 2,€Z,). Then for t€X and z'€Z, we have

EEr+2)=E 6906 @ 2)),

and, evidently, the right hand side is identically one for all = and 2’ if
and only if c€X,, and z,€Z,.

We observe, that M is a central extension of a free abelian group of
finite rank by a one dimensional torus. Let o be a character of M’

such that ® ((0, u)) = u. By virtue of Proposition 1.1 (¢f. also Remark 1.3)

ind ® is a factor representation of a finite class, and it is of type I if and
LR

only if M/M? is finite. By what we saw above, we have M/M"= U¢/(U*)'T,.
Therefore we can conclude, that

ind (we®)=/ind w\o® (= B, say)
‘(U.h)‘c.I‘MUE (M AM > '



REPRESENTATIONS OF SOLVABLE LIE GROUPS 479

is a factor representation of finite class, and it is, since U¢/(U%)".T, is
isomorphic to U/U*.T,, of type I if and only if U'T, has a finite index
in U.

g. Let us consider now the representation B @ W of U* IW =Pnr% 13
cf. (e) above]. The von Neumann algebra R (B @ W) it generates 1s a
multiple of R (B ® ¢) = R (B) ® B, where B is the full ring of the repre-
sentation space H (p) of g. Therefore, R (B @ W) is a factor of type I
or II, and we have the first case if and only if R (B) is of type I, or if and
only if UJ/UT, is finite.

By virtue of what we saw in (b), we shall have completed the proof
of Proposition 2.1 at once we can show, that R (B @ W) is unitarily
equivalent to R (U (y)), for an appropriate choice of w in the character
group of M’ [such that, as before, o ((0, u)) = u; cf. (f) above]. To this
end we shall use the following assertion, which 1s a trivial consequence
of theorem 12.2 in [25] (p. 128). Assume, that G is a separable locally
compact group, G, and G, closed subgroups of G, such that G=G,.G,. Let
1 and s be characters of G, and G, resp., and let us write

X’ = (X1 | G1 N G_,) (Xz | Gl nGZ)-
Then swe have
. ‘ lnd p & ® ind A2 = ind l.
G AG G AG GiNG: A G

Let us choose for G the group U¢, and for G, and G, (U?)’ T, and I'¢ resp.
We have :
G =2X%T,T. and G, =23IjT.

and thus
G[.G-g == ZI‘ng = Ue == G.
Also,
GinG, =37 T, =U"T, = (U9

Let 5 be an element of X,. Then (5, u) (W€ T) can be viewed as an element

of U'=2X,T% but also as an element of U =X, Ti. Let us define

the map w: M* - T by © ((5,u)) = ((5,1)). u; w is a character of M?

such that @ ((0, u)) =u (u€T). In fact, if t€X,, and c€T, we have
@, u)(¢v)=(+r7p5(s7).u),

and thus
o (@ 1) (5, 0) = 7, (@ + % D) E @ .00,
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On the other hand, in U® :
@EDED=E+752067),
and hence, since y | T = identity map,
2@ 1) (1) =3 (e +71)E(@ )

proving our statement.

Let us suppose, that y, = we ® (w being chosen as above). Then
v/ | T. is identically one, y' |[Ii=y* i =y, =7 |I5, 7' | E=w-®| L,
and thus, by virtue of the definition of ®, is the same as y lifted from
U%to (U%)". But then, by virtue of what we said above we can conclude,
that B @ W 1s unitarily equivalent to U () lifted to U’ and thus the
rings R (B @ W) and R (U (y)) are spatially isomorphic.

Remark 2.1. — Analogous conclusion holds true for a character

of U? which, on Tc U?, reduces to the conjugate of the identity map of
the circle group onto itself.

Remark 2.2. — Let us observe, that the previous reasonings imply,
that U =T%, an that U/T, U? is isomorphic to T',/T% (for this cf. also
Lemma 6.5 below). Hence V(y) is of type 1 if and only if the index of

the center of the centralizer of the connected component of the identity of
F'(=T,) in I'y s finute.

3. In this section G will denote a connected and simply connected Lie
group, and L a closed, connected, type I invariant subgroup of G, such
that G/L is abelian. Let us recall, that by virtue of a recent result of
J. Dixmier, a choice, of the indicated sort, of L is always possible (cf. [14]).

In the following, given two unitary representations p, and g., we shall
often write o, ~v g, to express, that they are unitarily equivalent, but
not necessarily identical as concrete representations. Given a set S
of equivalence classes of unitary representations, we shall denote by S,
the set of the corresponding concrete representations. For a summary
of the results concerning projective extensions etc. used in the sequel,
the reader is referred to Section 4 (p. 18) in [2].

. A
Let = be a fixed element in L; we shall denote by the same letter a
fixed concrete representation of the class =. Let G; be the stable group



REPRESENTATIONS OF SOLVABLE LIE GROUPS 481

A . .
of n€l. in G, and let us denote by 7° a projective extension of = to G,
such that

7 (a) ¢ (b) = a (a, b) = (ab) (a, be Gr) and a (al;, bb) = a(a, b) (I, .€L).

By virtue of our assumptions bearing on G and L, G:/L, being a closed
subgroup of the vector group G/L, 1s isomorphic to R“X2Z’; thus the
extension cocycle z is cohomologous to a skew symmetric bilinear form,
with values in T (= circle group, lifted from G:/L to Gz (¢f. [2], p. 188)).
We denote by Gi the group defined on the set G.XT by the law of
multiplication
(a, u) (b, v) = (ab, « (a, b).uv) (a, beGr;u,veT).

We assume, as we can, that « 1s continuous and take Gi with the product
topology on G.XT. One verifies at once, thet the subset { (I, 1); leL}
1s a closed invariant subgroup of G;; we denote it again by L. Let us

A
put M. = G;/L; M; is called the Mackey group belonging to n€L.. By
virtue of what preceeds, M. satisfies the exact sequence

central

1>T——M.>R*x<2Z!>1.

Lemma 3. 1. — Let A be a closed subgroup of G, such that A2L. If »
is a unitary representation of A, such that ¢ | L~ =, we have G2 A.

Proof. — Given a€G, let us put ag(x) =¢ (a'za) (a€A). Then
we have for any @ in A : an~ap| L~ | Lz, proving our statement.

Q. E. D.

We write ® for the canonical homomorphism from G onto M. = G;/L.
Given a subset S of G, we shall put 8 = { (s, u); s€S, u€T|. A being
assumed as above, we have

A

Lemma 3.2. — There s pE(A)n such that ¢| Lo, if and only if ® (A)

is abelian itn M_.

Proof. — a. We show first the necessity. 'We can assume, that o | L=,
Then there is a continuous map f: A — T such that =°(a)=f(a).¢ (a)
from where « (a, b) = f(a).f(b)/f (ab) (a, b€ A). We have furthermore
f(al) = (a) (a€A, l€L) implying, since G/L is abelian, f(ab) = f (ba)

and « (a, b) = « (b, a) (a, b€ A). But then
(a, u) (b, v) = (ab, « (a, b).uv) = (ba, = (b, a).uv) (I, 1) = (b, v) (a, u) (I, 1)
(a, beA,l=a ' b abel),

proving, that ® (A°) is abelian.
Ann. Ec. Norm., (4), TV. — Fasc. 4. 61
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b. Let us put F = G;/L, and let us denote by W the canonical homomor-
phism G; — F. We denote by [ the cocycle on F X & which, when
lifted to G;, coincides with «. Then M. can be realized as the group
defined on the set of pairs { (¢, u); c€F, wu€T| by the law of multi-
plication

(c, u) (d, v) = (cd, £ (c, d).uv) (c,d €7),
and we have
P (o) =((V()w) (2€Gs).

c. To show the sufficiency of our condition, let us now assume, that
® (A¢) 1s abelian. Then, writing T, for {(e,u); u€T}| CP (A?), there
1s a closed subgroup B of M;, such that ® (A°) = BXT.. Let 7 be the
projection of ® (A¢) onto B and let us put

(5 1) =, g () (beW (A)).
Then, writing & for 1/g we obtain
B (c,d) = h(c).h(d)/h(cd) (c, de ¥ (A))

implying, that « (a, b) = f (a).f (b)/f (ab), where [ (a) =h (¥ (a)) (a, bEA).
Putting, finally, ¢ (a) = 7° (a)/f (¢) (¢ € A), ¢ 1s a representation, restric-
ting on L to =, of A.

Q. E. D.

Given a subgroup U of Gj, such that U contains T = {(e, u) | C Gy
we shall write U/T for the canonical image of U in G;. If A is some
subgroup of M., we denote by A* its centralizer in M.

Lemma 3.3. — Let A and p be as in the previous lemma, and G, the stabi-

lizer of the image of ¢ in 1/\X We have G, .y (@ (A9))*)/T.

Proof. — a. Let a be some element of G, and let us assume, that ® ((a, 1))
commutes with ® (A¢). We show first, that this assumption implies,
that a belongs to Gr.. 'We denote by B the smallest closed subgroup,
containing @ and A, of G;. Evidently, ® (B°) is abelian and hence, by

virtue of Lemma 3.2, there 1s GE(ﬁ)L. with ¢|L = =n. Also, we can
find a character ¢ of A, such that oc~vo.(c|A) (p| L=1), and therefore

ap~g.a@|A)=9.(ac|A)=9.(¢|A)~p,
implying, that a belongs to G,.
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b. We assume next, that a g~ ; by virtue of Lemma 3.1 this implies
a€G;. We shall show, that @ ((a,1)) commutes with @& (A°). We
suppose again, as in (a) of Lemma 3.2, that p|L == and n*|A={fp
(cf. loc. cit.). Then we can conclude, that an’| A~ 7°|A. Given any
fixed @ in G-, an easy computation, the details of which we leave to the
reader, shows, that

(a 7) (b) = 0 (b) (= (@) = (b) ° (a)

where

nb)=a(a,a?).x(@?,b).a(@ ba (beGy).

By virtue of what we saw above we infer from this, that with a satisfying
apr~pwegetr(b)=1forallbinA,ora(a,a*)=a(a™, b)a(a"b,a)(bEA)
But this implies at once that (a, 1)~ (b, 1) (a, 1) = (a™* ba, 1), and thus
the left hand side is of the form ([, 1)(b,1) (l =a* b~ ' ab, b€ A), from
where the conclusion is clear.

Q. E. D.

Lemma 3.4. — Let us denote by A the family of all those closed, connected
subgroups, containing L, of G, to which © admits a trivial extension, inva-
riant under (G;), (= connected component of the identity in G). Then A
contains a well defined mazximal element.

Proof. — a. Let us start by observing, that the elements of A are contained
in G (¢f. Lemma 3.1). We put I' = M;, and show, that if A belongs
to A we have ® (A°)cI:. To this end we take into account, that
obviously ® ((G7),) = TI', and therefore, by virtue of our definition of X
and Lemma 3.3, ® (A°) is contained in the centralizer I'; of the connected
component of the identityinI'.  But since A, and hence also A, is connected
we obtain, that ® (A°)c(I',), = I'? [¢f. (¢) in the proof of Proposition 2.1].

b. To complete our proof of Lemma 3.4, it will now be sufficient to

establish, that the subgroup Il = ) (I'3)/T of G. belongs to X. But : 1°
Evidently I is closed and connected; 20 ® (II*) being abelian, = extends
to II trivially (¢f. Lemma 3.2); 3°) If ¢ is any such extension, by Lemma 3.3,
since ® (II°) and ® ((G;),) commute, we have (G;),CG,.

Q. E. D.

We denote, as in the previous section, the centralizer of the connected

center I'; of I' by U. If Il and pE(fI)c are as above, putting U = G,
we conclude by aid of Lemma 3.3. that U = @ (U)/T.
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Lemma 3.5. — Let us denote by B the family of all those closed, not neces-
sartly connected subgroups, containing L, of G, to which = admits a trivial
extension 5, the stabilizer of which contains Ul. Then B contains a svell

A
defined maximal element uniquely determined by ©€ L.

Proof. — a. Let A be an element of 83; we claim, that ® (A¢) is contained

‘ A . ‘
in U%  Let pe(A),, be such, that p|L =r=. Since G,D1, any two
clement of ® (A) and ® () = U commute. Hence, in particular,
® (A°) is contained in the centralizer of 1%, that is in U, and thercfore

¢ (A7) c U=
b. By virtue of what preceeds, to complete the proof of our lemma, it

suffices to show, that the subgroup B Sy (U3))T of G: is an element
of 8. But again, since ® (B°) = U? is abelian, = extends trivially to B.
If ¢ is any such extension, we have G, D1, since the elements of ® (B*) = U?
and of ® () = U pairwise commute.

Q. E. D.

LemMma 3.6. — Denoting by K the maximal element of the previous lemma,
and by ¢ a trivial extension of © lo K, we have W = G,. The maxrimal
element of Lemma 3.4 is the connected component of the identity in K.

Proof. — The first statement is clear since, by (b) in the proof of
Lemma 3.5, we have K Sy (U?)/T. Let I be the maximal element

of Lemma 3.4 [c¢f. (b), loc. cit.]. Since II = ® (I'2)]T, the desired conclu-
sion follows by observing, that (U%), = I';.
~ Q. E. D.

Remark 3.1. — Observe, that upon replacing = by a 7 (a€G), K and U
do not change.

Lemma 3. 7. — Let K and ¢ be as in the previous lemma. The unitary

representation ind ¢ of G is a semifinite factor representation. It is of
EAG

type I if and only if the group U/(G:), K is finite.

Proof. — We write again I' = M_; I', as just defined, satisfies the condi-
tions of Proposition 2.1. Let us observe immediately, that by virtue
of what we saw above, the group U/I', U: is isomorphic to U/(G;), K.
If 4 is a character of U? such that y | T coincides with the conjugate
of the identity map of the circle group onto itself, by virtue of Propo-
sition 2.1 (c¢f. also Remark 2.1) the unitary representation V (7) = ind v

' viAl
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1s a semifinite factor representation. Ilence the same holds true for
7 (y) = ind (7o ®), since we have < (y) =V (z)e®. Let us write p
KA GE N

for the character y o ® of K°. We have

" ®7() = =@, ind p = ind (1.7,

Let us denote by 7 and 7, the representations of K = K¢/T and of G, = G./T

arising from p=° and =° @ < (y) resp. We have o, = ind 7, and g, is
KA Gz

a semifinite factor representation of the type of V (y), restricting on L

to a multiple of = Let us form the representation T (¢) = inde, =ind 5.
Gz A G KAG

It, too, is a semifinite factor representation of the type of V (y). Hence
by a remark made above T (3) is of type I if and only if the group U/(G:), K
1s finite.

We have evidently | L = =. Therefore, there is a character ¢ of K,
o] LL=1, such that ¢ = ¢5. Then, if ¢ is any character of G, such
that ¢ | K = o, we have }\I/lfd{, ¢ =Y T (5), completing the proof of our

lemma.
Q. E. D.
Remark 3.2. — Observe, that the above proof 1mplies. that the repre-
sentation ind g restricts on L to the transitive quasi-orbit carried by
KA G

G = (cf. [2], Theorem 6.2, p. 58). More precisely, if { n({); e i} 1s a Borel
measurable field of irreducible representations on /I\,, such that = ({) is

of the equivalence class of { € L, then ind o | Liis a multiple of [@ = (0) dp (0),
KAG Je

where du. ({), is quasi-invariant under G and is carried by G = (cf. loc. cit.,
p. 7). v

We recall, that the unitary representations T, and T, of G are said
to be quasi-equivalent, if there is a %-isomorphism @ from R (T,) onto
R (T.) such that ® (T, (¢)) =T. (a) («€G) (¢f. [2], 5.3.2, Definition,
p. 106 and 13.14, p. 250). In this case we shall write T, ~ T.. Given

A
n€ L and K as above, we put

6 (m)={p;pek, p|L=m}.

P s > /\ ¢ 0
Lumma 3.8. — Assume, that for G.fE(\‘L" (n;)e (n, €L, j =1, ,2,> we have
T’:.

ind 5, ~ ind g,, where K; corresponds to w;, (j =1, 2) as K does to = in
K, AG K AG
Lemma 3.6. Then K, = K., and there is an element a of G such a 5, ~3..
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Proof. — a. Let us put T; =ind g; (j = 1,2). We start by observing,
that our assumptions imply, that Gn, = Gn,. In fact, we conclude
from T, ~ T, that T,|L ~ T, |L. With the notations of Remark 3.2,
T, | L is quasi-equivalent to a representation

[ &= () dps ©)

where dy.; ({) is carried by G=; (j = 1, 2). They can be quasi-equivalent
only if p., and p., are equivalent ([12], Proposition 8.4.4, p. 151 and 18.7.6,
p- 325). But then we must have Gr, = G ..

b. By virtue of Remark 3.1 we can now conclude, that K, = K, = K,
say.
¢. For some fixed el let ¢, K and U be as in Lemma 3.6. 'We put

T =1ind p. Let K be the set of all quasi-equivalence classes of factor
EAG

factor representations of K with its usual Borel structure (¢f. [12], 18.6.2,

p. 323). There is a standard measure p. on I%, uniquely determined up

to equivalence, a 1. measurable field {T Q)3 Cef(} of factor represen-

tations, such that T ({) is of the quasi-equivalence class of (€ In{, and

such that T| K :f@ T ({) dp () in the sense of unitary equivalence,
R

the decomposition being central, that is R (T | K) contains the ring of
diagonalisable operators (cf. [12], 8.4.2, Théoréme, p. 149 and 18.7.6,
p- 325). We are going to show, that p. is carried by G =, where = is the image

of o in IA{C K. Let us put A = G/K; let f be a Borel cross section from A
into G and da an element of the invariant measure on A. Then we have

TIK=fAEBI"(a)pda.

Let us put B=U/KCA and A = A/B (~ G/U); we denote by db and
di elements of the invariant measures on B and A resp. If ¢ is a Borel
cross section from A into A, the map w:AXB — A defined by
w (h,'b) =9 (1) + b 1s one-to-one and Borel, and hence establishes a
Borel isomorphism between AXB and A (¢f. [2], Proposition 2.5, p. 7).
The image of d db under ® is an invariant measure on A; we can assume,
that it coincides with da. We write g = fo ¢; it is a Borel cross section
from A = G/ into G. For an arbitrary (4, ) in AXB, the elements
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< g(A)f(b) and f (o (A, b)) belong to the same residue class according to K,
and thus we have [ (w (%, b))~ g (%) f(b) » and hence also

)

T|K=f\ @ g () f(b) pdh.db

in the sense of unitary equivalence. Let us put sz@f(b)pdb.
B

Since [ (b)€W = G,, we have U~vmyp, where m = 4 oo if 'ﬂlg K and
m=1if U =K. Writing T (1) = g (2) U, we obtain, that

T|K:f\€9T(A)d)\.

Let us denote by 3 the ring of all diagonalisable operators of the last
decomposition; we are going to show, that R(T|K) >3. To this

~ end we denote by C the subgroup G./UCA and put H = A/C. Let dy
and dc be elements of the invariant measures on H and C resp. We
denote by ¢ a Borel cross section from H into A and set h = god; his a
Borel cross section from H = G/G; into G. Reasoning as above with H,
C and ¢ in place of A, B and o resp., we conclude, that

ﬁ@T()\)d} = @h@)g@©Udnde.

Hx<C

Let us observe now, that if a belongs to U = G,, we have ap~v g,
where ¢, 1s a continuous character of K, the kernel of which contains L.
Moreover we have ¢, = ¢, 1f and only if @ and b belong to the same residue
class according to M. Let us put o, = 9, (c€C); by virtue of what
we have just said, if o, = ., then ¢, = ¢,. Observing, that C = G./U
1s countable, we set T, 22@ w.. The ring of diagonalisable operators

cec
of this decomposition, 3, say, is equal to R (T,). Let us put

T, =‘£€Bh(n)pdn,

and 3, for the ring of this decomposition. Since U~vmg, we conclude,
that there is a unitary equivalence between T | K and the m-fold multiple
of T, ®T.,, which makes correspond 3 and m (3, ® 3.) to each other. In
this fashion, to establish, that R(T | K) >3, it will be suflicient to show, that
R(T,®T,)>3,@3.. To this end we prove-first, that R (T, [L) = 3,. In

fact, the map a — a = (e €G) 1s Borel from G into L (cf. [2], p. b7, top) and
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hence the correspondence v — k(1) = establishes a Borel isomorphism betwen

H and the Borel subset G = of I, (cf. [2], Proposition 2.5, p. 7).  Let us write

dv ({) for the measure on ﬁ, which is carried by G« and there coincides

with the image of dr. 'With {T» 0); Ce I : as in Remark 3.2 let us put

T, :f@ = ({) dv ({); we write 3, for the ring of diagonalisable operators.
i

There 1s a unitary correspondence between T, |L and T,, which maps
'3, onto 3.,. Thus, to arrive at the desired conclusion, it is enough to

recall, that R (T) =3, (¢f. [12], 8.6.4, Proposition, p. 155 and 18.7.6,
p. 325). Since T, (k)€3,, we have T, (F)QI€R (T, X T.) (k€ K) and
hence 3, Q ICR (T, ®T,). On the other hand

I®3.cIQR(T.|L) =R (T, ®T) | L)cR(T, @ Ty,

and in this fashion finally 3, 3. CR (T, ® T.). Summing up the previous
discussion we have shown that, putting T (1) = g () U (A€A), the direct

integral decomposition into factor representations T | K :f@T (A) d is
A

central. Let us recall, that gis a Borel cross section from A = G/ into G.
From this, using a reasoning employed above we infer, that the map
A > g (M) 7, where < is the unitary equivalence class of p, establishes a

Borel isomorphism between A and the Borel subset G~ of K. Letus add,
that f( being Borel in K (ef. [12], 18.6.3, p. 324), G 1s a Borel subset
n

of I% We denote by d p. ({) the measure on K, which is carried by Gr,
and there coincides with the image of d. Putting

T@O=T@=9g®HU it Rat=g@)=

we obtain finally, that
TIK =f@T(c) dp. (2)
n

in the sense of unitary equivalence, the direct sum decomposition being
central, and T ({) is of the quasi-equivalence class of g (%) = = {, completing
the proof of the assertion formulated at the start of (c).

d. Using the previous considerations, we finish proving Lemma 3.8
as follows. With notations as in (a¢) we have by assumption T,~T,,
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and hence also T, | K~ T.|K [¢f. (b)]. Let t; be the quasi-equivalence

class of o; (j =1,2). We form the central decompositions

TIK=[TQd 0 (=12

By virtue of what we saw above in (¢), the measure ; is carried by Gr=;
(j=1,2). On the other hand, by virtue of T, | K~ T, | K, 1, must be
equivalent to @, (¢f. [12], 8.4.4, Proposition, p. 151) and hence G, = Gr..
In this fashion there is an a € G, such that a g, ~ 3, completing the proof
of Lemma 3.8.

Q. E. D.

Remarxk 3.3. — Let us observe, that by what we have just seen,

ind o, ~ind 6, implies, that these representations are unitarily equivalent.
KAG KAG

Let us put ® =U,¢:® (7). Given ~€® and a concrete represen-
tation ¢ of the unitary equivalence class of ©, we write 7 (t) for the quasi-

equivalence class of ind ¢ (for K ¢f. Lemma 3.6, with ¢ in place of p,
KAG

loc. cit.). Writing a< for the unitary equivalence class of ac (a€G),
the correspondence (a, 7) +> at defines & as a transformation space of G.
With these notations we have

Prorostrion 3.1. — The map 1 just defined takes its values in G. We
have 1 (7,) = 1 (7.) if and only if <, and =, lie on the same orbit of G.
Proof. — This is an immediate consequence of Lemmas 3.7 and 3.8.

Q. E. D.

4. The purpose of this section is to collect several facts concerning
real and holomorphic induction, and to present them in the manner we
shall use them in the sequel (cf. [32], Section 3, p. 442-446). 'We should
like to emphasize already at the start, that although we shall employ
later in an essential fashion two deep results of [1] (¢f. Lemma I1.3.1
and Theorem III.3.1, loc. cit.), we apply the procedure of holomorphic
induction, when compared with the treatment of [1], but to relatively
special situations.

a. Let G be a separable locally compact group, A a closed subgroup
of G and y a continuous homomorphism of A into T (= group of complex
numbers of absolute value 1). Let dg and da be an element of the right
invariant Haar measure on G and A resp., and let us define the modular
functions A; and A, by

d (g, 9) = Ac (90) dg and d (a, a) = A, (ao) da resp. (9.€G, a,€ A).
Ann, Ec. Norm., (4), IV. — Fasc. 4. 62
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Before proceeding we recall the following facts (c¢f. [5], chapter VII, § 2).
Let f (x) be an element of C (G) (= continuous functions, of a compact

support, on G) and let us put F (z) = f f(az) da. Then the corres-
’ A
ponding function on G/A, to be denoted by F (p) (p€ G/A) lies in C (G/A)

and any function of this sort can be so obtained. Next, if dv (z) is a
positive Borel measure on G satisfying dv (ax) = A, (a) dv (x) for all «
in A, there is a uniquely determined Borel measure dp. (p) on G/A such
that '

(1) f F(de()= f f @ dv @)

for all f in C(G). We shall sometimes denote dw (p) by dv/A (or u
by v/A resp.). For a in A let us set v (a) = A, (a)/A¢ (a). 1f l(2) is a
non negative locally integrable function on G satisfying!l (az) =7 (a)l(z)
(a€ A, x€G), then for the Borel measure dv (x) = [ (z) dv we shall have
dv (ax) = A, (a) dv(x). One defines the unitary representation U induced
by y, of G, in following fashion. Let & be the collection of all complex
valued Borel measurable functions on G satisfying f(ax) = (1 (a))'/?y (a) f(x)
for all @ and z in A and G resp., and for which | f () |* is locally integrable
with respect todz. By what we saw above, the measure dv, (z) =|f(z)|* dz
satisfies dv,(ax) = A, (@) dv; (r) and hence we can form the measure
.y = v,/A on G/A. Let & be the collection of all those elements in &
for which the total mass of G/A with respect to p, is finite. One can
define (¢f. [4], p. 80-83) on the quotient space, according to the
linear variety of elements with u,(G/A) =0, of & the structure of a
Hilbert space H (U) in such a fashion, that the square of the norm of
the equivalence class containing f€F is equal to 1., (G/A). Finally,
for go in G the operator U (g,) on H(U) is obtained from the map
f (@) — f(xg)) of F onto itself by taking the images in the quotient
space H (U).

For later use we add the following observation. Let us assume,
that there is a continuous homomorphism k () of G into the
multiplicative group of positive numbers extending 7. Then
10 There is a positive Borel measure dv (p) on G/A satisfying
dv (pg) = k (g) dv (p) for all gin G. In fact, to see this it suflices to
take dv (p) = k () dz/A. 20 For f€F the function |f(z)|*/k (z) (x€G)
is invariant under translation on the left by elements of A, and
we have

diy (p) = (If (@) [*/k (2)) dv (p).
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In fact, let h be some element of C (G); then we get with the previous
notations ‘

[ HE e ® = [1@I[@
G/A G
= | 1@ (If @) Plk @) k @) do

— [ 1@ (@ k@) o ).

G/A

Hence, in particular, we obtain

s (G/A) = G/A(I f @) [*[k (2)) dv (p)-

b. Let g be a nilpotent Lie algebra over the real field, and f a nonzero
element of the dual g’ of the underlying space of g (to be considered also
as an element of the dual of the complexification gg of g). We put
B, (z,y) = ([z,y],f) (x,y€9) and write again B, for the corresponding
skew symmetric bilinear form on gcXge. A complex subalgebra lj of g¢
will be called a polarization with respect to f, in symbols h = pol (f),
provided the following conditions hold : 1° lj i1s maximal self orthogonal

with respect to B,; 20 (a)lj 4} is also a subalgebra of gc, (3) for
z+ wye€l (z,y€yg) we have B, (z,y) >0 and B, (z,y) = 0 if and only
if z, yehng. Let G be the connected and simply connected Lie group
belonging to g. Assume, that K is a subgroup of Aut(g) such that
[K, K]cAd (G), and that fe€g’ is invariant under the contragredient
action of K on g'. Then there exists ly = pol (f), which is invariant under

the action of K on g¢ (cf. [1], Lemma II.3.1).

c. From now on, unless stated otherwise, g will denote a real solvable
Lie algebra and G the corresponding connected and simply connected
Lie group. Given a subalgebra g, C g, we shall write exp g, for the connec-
ted subgroup, belonging to ¢,, of G. We recall, that in our case exp g,
is closed and simply connected (cf. [20], Theorem 2.2, p. 137).

In the following, given a€G and l€g we shall put al = Ad (a) ! and
similarly, if g belongs to ¢’, ag will stand for (Ad (a™'))’g. Let now g
be a fixed nonzero element of g’, and G, its stabilizer in G. We denote
by (G,), the connected component of the identity in G,, and by g, its
Lie algebra. Thus, by virtue of the notational convention introduced
above we have (G,),'= exp ¢.. Let us observe now, that since (G,),
is simply connected, there is a character 7, of (G,), uniquely determined

by
rs(exp (D)) =expli(, 9)] (l€sy)  or dy, =1i(g|g).
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We write ég= ker (v, | (Gg)o). If @ is some element of G, we have
for all leg, :

xs (a. exp ().a™) = y, (exp (al)) = exp [ (al, g)] = exp [i (}, 9)] = xs (exp (D)

and hence ¥, (aba™) =y, (b) [b€&(G,),] implying, that G, is invariant
in G;. With the previous notations we introduce the following

DerintioN 4.1. — The reduced stabilizer of g is the closed subgroup of G,
defined as | a; a€Gy, aba~t b€ G, for all bin G,|. It will be denoted
by G,.

Let us observe, that G, could also be defined as the complete inverse
image of (G,/G,)* (= center of G,/G,) in G,.

A .

We denote by G, the collection of all characters of G, which, when

restricted to (Gg)o, coincide with y,. Let us put ?}g for the group of

all characters of G, which are identically one on (G,),. Given a fixed

A A . 9
element y, of G,, any y € G, can uniquely be written as ¢y, <cp€ Gr,,>.
We observe finally, that since G,/(G,), is a free abelian group [ ¢f. below (d)],
so is G./(G,),, and hence G, is isomorphic to a multitorus of a dimension

equal to the rank of G./(Gg)o-

d. The following lemmas are well known, but because of their role
in our subsequent considerations we include proofs for them here. Also,
the reasonings employed below will be often referred to later.

Let g and G be as above. We put d=[g,4] and L =expdCG;
observe, that we have L =[G, G] (¢f. [20], Theorem 3.1, p. 138).

Lemma 4.1. — Let A be a closed subgroup of G, such that AL is closed,
and ANL is connected. Then A[A, is free abelian.

Proof. — By virtue of our assumption ANL = A,NL, and hence
AL/A,L = AJAnL/AJJA,nL = A/A,.
Let @ be the canonical homomorphism from G onto G/L~R". Then
AJA, = AL/A, L = @ (A)/® (A,).

But ® (A) = ® (AL) being closed, the right hand side is free abelian.

Q. E. D.
Cororrary 4.1. — G/(Gy)o is free abelian.
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Proof. — We show, that G, verifies the condition imposed on A in
Lemma 4.1 . Since G is solvable, L =[G, G] is nilpotent and hence
the exponential map from d = [g, g] into L is onto. This implies at once,
that GoNL 1s connected by virtue of the fact, that if E is a nilpotent
endomorphism of a finite dimensional real vector space, and if exp (E)
annihilates an element, then so does E. Next, (Ad (L))" is a unipotent
group on g’ and thus the orbit LgcCyg’ is closed (¢f. Proposition 1.1, chap-
ter II).  Since, however, we have

GsL ={a;a(Lg)SLyg},
G.L i1s closed in G. Q. E. D.

Lemma 4.2. — A being as in Lemma 3.1 let us assume, that M ts a connec-
ted subgroup of L containing LNA. Then AM is closed in G.

Proof. — Let us put A, = exp a. We denote by b a supplementary
subspace to aNY in a, and by { a;} a complete residue system in A accor-
ding to A,. We write S, for the image, under the exponential map,
of b and set S = U a;.S,. Since d® (a) = d® (b), we have ®(S,) =® (A,)
and hence ® (S) = @ (A). Since A, = ANL is connected, ® (a;) = ® (a))
implies a; = a; from which we conclude, that ®|S is a bijection with
® (A). We are going to show now, that it is even a homeomorphism. To
this end let us assume, that {s,}is a sequence of elements in S such that
D (s,) - D (s,) (so€8S); we claim, that in this case s, —->s, iIn G. In
fact, since ® (A) = ® (AL) is closed in @ (G), ® (A,) is open in ® (A) and
therefore we can assume that, for a suitable j, { s, }Ca;.S, and s, €a;.S,.
From here to obtain the desired conclusion it is enough to take into account,
that ®|S, is certainly a homeomorphism with its image. By virtue
of what we have just seen, the map ¢:SXL — SL (= AL) defined by
o(s,l) =sl (s€8, leL) is a homeomorphism. But then, if M is as in
our lemma, we have, since A = SA,, that ¢ (S, M) = SM = SA,M = AM
is closed in AL and hence also in G.

Q. E. D.

e. Let us fix a gin g'; we put f= g|d (b =[g, ¢]) and assume, that

f5£0. Since evidently G,C G, and [G,, G,]C L, we can employ the result
quoted at the end of (b) above with K = Ad (G,)|d and L in place of K

and G as loc. cit. with the conclusion, that there is a complex subalgebra
hcdc such that h = pol (f) and G,.hcl. Assume now, that G, is a

closed, but not necessarily connected subgroup of G, containing G, L.

. A .
Given an element y of G, [¢f. (c) above] we can construct a unitary repre-



494 L. PUKANSZKY

sentation ind (h, v, g; G1) of G, as follows. (If G, = G, we shall omit
indicating it.) Let us put d = hnNd and D = exp (d)CL; d being inva-
riant under G,, D is normalized by the latter, and hence G, D is a subgroup
of G. 'We observe next, that it is a closed subgroup of G. To prove
this we show, that G, and D satisfy the conditions imposed on A and
M resp. in Lemma 3.2. Since G, L is closed (cf. the proof of Corollary 4.1),
so is G,L. 'We have also (cf. loc. cit.) G,nL = G,NL = exp (g, ND).
by being maximal self orthogonal with respect to B, [¢f. (b)] we have evi-
dently g,NdCh and hence g.Nd¥Cd and finally G,nLC D, which proves
our statement. Since d = hNV is self orthogonal with respect to B,
there is a character 7, of D uniquely determined by the condition, that

2rexp @) =exp[i, )] (<)

Let us put A = G, D and observe, that there is a character ¢ on A, such
that ¢|G, =y, ¢ |D=1y,, We have, in fact, G.nD = exp (g, Nd),
and thus evidently v |(G,nD) = %r |(GenD). In this fashion, to arrive
at the desired conclusion it is enough to remark, that putting, for a fix
in G, (ay,) (b) =y, (a* ba) (b€D), we have ay, =y, Taking in (a)

G, for G and ¢ for y resp., let us form the representation ind ¢. We
AAG

denote again by %, the homomorphism of H = exp (h) CLg into the
multiplicative group of nonzero complex numbers, determined by

xrexp @) =exp[iLH]  (Lebh).

Let us put e = ) -hnd and E = exp (¢). Let a, be a fixed element
in G, and f some function in F-[c¢f. (a)]. If h, h,€H and k, k;€E are
such, that hk = h, k,, we have

Ly () f (kao) = 7 (h) f (Ky o).

In fact, since HNE = exp () ne) = exp (d) = D, there is an element ¢
of D such that h, = h¢ and k, = 2~ k, from which the conclusion follows

by virtue of f(k; @) = 7,(2) f(ka,). Oneshows easily, thath +e=h+h=e¢c
implying, that EH is an open subset in Eg. We denote by d¢ the family
of all those elements of &, for which the map kk — ¥, (k) f (ka,), for each
fixed a, in G, is analytic on HE. One can show, that the image H of ¢
in H (U) is a closed subspace (cf. [11], 1.9); it is evidently stable under U.
We define ind (), g; G,) as the part of U in H.

f- Let us assume now, that g is nilpotent. We choose a nonzero element f
in §' and a subalgebra ) = pol (f)Cge. Let G be the connected and
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simply connected group determined by g. We shall denote by Ind (}, f)

the unitary representation of G, which we obtain by forming first the

representation ind i, and taking, imitating the procedure followed above
DAG

at the end of (e), its « holomorphic part ». It can be shown, that Ind (b, f)
is irreductble and, up to unitary equivalence is independent of the particular
chotce of  and even of f, provided the latter is restricted to a fized orbit of G
in §'. Conyersely, if Ind (., fi) and Ind (b, f) are unitarily equivalent,
we have f, = af, with somme a in G (cf. [22] Theorem 5.2 and [1],
Lemma II1.1). Finally, any nontrivial irreducible representation of G
is unitarily equivalent to some of the form Ind (b, f) (¢f. [22], Theorem 5.1).
Summing up, the map, assigning to the orbit Gf (f£ 0) the equivalence
class of the irreducible representation Ind (l), f), and to the orbit of the
neutral element in g’ the trivial representation of G, establishes a bijection

between the orbit space §’/G and the dual G of G.

g. We shall also use the fact, that

Jdnd (ind (b, 2, g3 G)) =ind (h, %, 9)  (cf- [11}, 2.1).

h. We assume again, that G is a connected and simply connected Lie
group with the Lie algebra g. We let Aut (G) operate on g by setting,
for « in Aut (G) and lin g : al = (d«) | (de = differential of « at the unity
of G). If gis some element in g’, we shall put ag=[(da)T*'g We
have « (ag) = @ (a) « g, from which we conclude, that « (G;) = G, and
hence also a ((G,)s) = (Gay)o and «(gy) = §ae. Using the notations
of (c) above, we have 74 o 2 =7, on (G,), implying first, that «(G,) = Gog
and hence also 2 (G,) = Gy, From all this we deduce, that if ;y is some

A 1 — A
element of G, then, defining ay by y (cx (x)) (2€Gyy), %y belongs to Gog,
A
and the map, assigning ay to 7 € G, [« fixin Aut (G)] is a bijection between
A
G, and Gy,. If p is some representation of G, we shall put
@) @=¢(a@ (@O

The following lemma will be often used in the sequel.

Lemma 4.3. — With the previous notations we have

aind (b, 7, ) = ind (b, @y, @ g).
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Proof. — Let us put hy =al, y, = oy, ge =« g. We shall distin-
guish notions, associated by the construction of (e) with the triple

(B1, 71, &), by the index 1. Putting, for h in &, (V) (2) = h (= (),
we are going to show, that VF = F,, and p, (G/A) = py, (G/AL). To
this end we observe first, that« (A) = A,. In fact, by definition A = G, D;
as already noted above o (G,) = G, but we have also « (D)= D,,
since D =exp (d) and «(d) =« (hnd) =ahnd =h,Nd = d,, proving
our assertion. From here to show, that V& = &,, it is enough to
estabish, that if @ is some element in A and a, = « (a) €A,, we have
¢ (a) = @i (1) and 1 (@) =1y (a1)[¢f. (@)]. The first relation being certainly
valid on G,, we can assume, that a is in D and of the form a = exp (1) (d31).
But then

91 (0) =y, (@) = exp[i(xl « g)] = exp[i (, 9)] = 2/ (@) = 9 ().

As far as the second relation is concerned, we have by definition
1 (a) = A, (a)[A; (@) and hence it suffices to show, that A, (a) = A, (a4)
and A; (a) = Aq (a1) [ar = @ (a), a arbitrary in A]. Writing A, = exp o
we have

Ay(a) =det (Ad(a)|s) and A, (@) = det (Ad (@)] « (a)),

whence the desired conclusion is obvious since, putting 3 =da, we
have Ad (a,) =  (Ad @) 3~ and « (a) = B (a) by definition. One proves
similarly, that A; (a) = A; (a.). :

Let us write K = G/A, and K, = G/A,; we denote by y the homeomor-
phism from K onto K, assigning to A x the coset A; « (a). Given a Borel
measure T on K we shall write Y7 for its image on K,. We show next,
that if the right invariant measures da and da; on A and A, resp. are
appropriately normalized, we have Yy, = &y, for all A in &. This clearly
implies, that p, (G/A) = v, (G/A,) as claimed above. Let f be a function
in C(G) and let us form as in (a):

F (1) =fAf(ax)da (peK).

Since pys = waf/A [dvi (@) = | k () |* da, of. (@)] and (VK)(2) = k(2 (2)),
we have

fK F (p1) disva (pr) = f f@ |1 (4 @) do = f f @ @) k@] do ().
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Let ¢ be a constant such that edz = d « (). Assuming, as we can, that c
is also the ratio of da and of the image, under «, of da on A, = « (A) we can
conclude, since at the same time ., = v,[/A, that

[ ¥ () o () = ¢ i ( f f(x (@) 2 (@) da> aw @) = | ( f flax @) dm) diza (p)
= [Fap du e = f F(p) d (1) ®

which is what we had to prove.

From here to complete the proof of Lemma 4.3 it is enough to show,
that Vo = 3¢, [¢f. (e)]. Let p be some element of & and let us put
Py (hi ki) =y, (h) Vp (ka,) (hh€H,, ky€E,; a, fixed in G) and

P (hk) = 3, (b) p (kd\)

[heH, k€eE;d, =« (a)]. Since p belongs to ¢, P is analytic on HE,
and we have to show, that P, is analytic on H,E,. But this follows
at once from the easily verifiable facts, that H, E, = « (HE) and
P4 oo = P. )

Q. E. D.

Remarxk 4.1. — One proves similarly, that

aind (h, %, 95 Gi) = ind (xh, ay, 2 g5 2 Gi)  [cf. (¢)]
and

aTnd (1, f) = Ind (b, «f)  [ef. (D]-

5. The results of this section are due to L. Auslander and B. Kostant
(¢f- [1], Theorem IV.4.1). Here we follow closely the exposition given
by B. Kostant in his course at the M. I. T., Spring, 1969.

Let n€ L. be different from the trivial representation of L. By virtue
of 4 (f) there is an f€V, {520, and h = pol (f) CV¢ such that Ind (}), f)
belongs to the unitary equivalence class n. Below we shall also write =
for the concrete representation Ind (b, f).

Lemma 5.1. — With the previous notations, we have G = G,L.

Proof. — Given a € G we set af = (Ad (a™*) [¥)'f, and if ¢ is some repre-
sentation of L, we write (ag)(2)=2¢ (a7* za) (z€L). By virtue of
Remark 4.1, a Ind (h,f) is unitarily equivalent to Ind (a b, af) which,
by what we saw in 4 (f), implies, that a belongs to G; if and only if af
belongs to the orbit L f. But this is clearly equivalent to a€ G/ L.

A Q. E. D.
Ann, Ec. Norm., (4). IV. — Fasc. 4. 63
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Substituting G, in place of A in the proof of LLemma 4.2, we obtain
as loc. cil. a closed subset SC G, such that any a€ G, can uniquely be
written as a = sl (s€5, l€L, = G,NL) and the factors on the right
hand side depend continuously on a. We have also G = G,L = SL;
if a€ G; we shall write s (a) and [ (a) for the elements of S and L resp.,
with which a = s (a) [ (a). We observe next, that concerning h = pol (f)
as above we can assume, that it is invariant with respect to G,. To see
this, it suffices to apply the last remark of 4 (b) with L, d, Ad (G/)|d
in place of G, g and K loc. cit.. We put, as in 4 (e), d = hnV; evidently
G;dcd. The map a+> det (Ad (a)|d/d) (a€G;) is a homomorphism
of G, into the multiplicative group of positive numbers, containing in
its kernel L, = G;nL. From this we conclude, that there is a homo-
morphism ¢, of the indicated sort, of G, such that ¢ (a) = det (Ad (a™*)|V/d)
(a€Gy) and ¢ | L =1. We recall finally [cf. 4 ()], that %, is the holo-
morphic character of H = exp hCL¢ determined by

xr(exp () =(exp[i.LN)  (ebh).
With a continued use of the notations of 4 (¢) we have

LemMa 5.2, — For a€ G and g€ 3 let us put (¢ (a) g) (x) = (Y (a))/g (¢ :w)
[t = s (a)€S]. Then we have: a. ¢ (a)g€ I and P, (L/D) = e (L/D)
[ef. 4 (a)]; b. Denoting by ©° (a) the operator corresponding to ¢ (a) in H(m),
the map a+> ¢ (a) defines a continuous projective representation of G,
such that =° (a) 7° (b) = w (a, b) 7° (ab) (a, b€ G;) where © (a, b) =y, (l(rt))
[r=s(a), t=s(b)], and =°|L = =.

Proof. — a. Let us put g (zv)=g(t'za). If c€D, we have
g (Ba)=y,() g (x) (x€L). In fact, since t*ct€D, we can conclude,
that ¢’ (32) = g (¢ Ct.t ™ wa) =y, (7' 8t) g’ (x) ; but evidently v, (b~ Cb) =y, (S)
on D for any fixed b in G;. By what we have just seen, the expression
v, (h) g (kl,) (heH, k€ E; [, fix in L) depends only on the product hk;
hence we can write it as K (z) (z€HE). We claim, that the map
z+> K (z) is holomorphic on HE. In fact, :

K (hk) = 3, (h) ¢’ (kL)) =y, (-~ ht) g ¢ kt.1),  where I, =11,1.1(a)eL.

In this fashion the desired conclusion follows from the fact, implied by
g€ &, that hk — ¥, (h) g (kl\) is holomorphic, along with the observation
that the map z — t~* zt of HE into itself is also holomorphic. To establish
part 1 of our lemma it remains to be shown, that p,(L/D) = p, (L/D).
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Since evidently A,=1, A,=1, there 1s an L invariant measure dv (p)
on L/D, and by what we saw at the end of 4 (a), we have

it (L/D) = f/ 9@ do o)

Since G; normalizes D, G, operates on the right on L/D;if p = Dz (z € L)
and b is some element of G, we have pb = Db~'xb. We claim, that
dv (pb) = ¢ (b) dv (p). In fact, let dz and d be elements of the invariant
measure on L and D resp., & some element of C (L) and let us put, as in 4,

H (p) = [ h(32) d5. We have
H (pb) = f R (0 b=' xb) dd = det (Ad (b-") | d) f h (b= 3 xb) do.

Therefore, if dS is appropriately normalized

H (pb) db (p) = det (Ad (b1 | d) fL h (b= xb) dx

L/D

=40 | h@)de =y H (p) d
YO [r@ =40 [ HE @)
proving our assertion. Thus finally, since = (a) = = (1) :

pors UD) =¥ @ [ 190~ atl@) Fdop) = [ 19l @) dv ()

L/D L/D

= f |9 @) *dv (p) = p (LD)

L/D

proving the first part of Lemma 5.2.

b. Let a, b elements of G and g as above. Putting r = s (a), m =l (a),
t = s (b), n=1(b) we have, that ab = s (rt) [l (rt) t7* mtn] and therefore
s (ab) = s (rt). In this fashion

(p (ad) 9) (@) = (4 (s (D))" g (s (1))~ wab) = (Y ())"* (4 (B))'* g (I (r!) ()" zab)

which, since [(rt) € L, C D, is the same as v (I(rt)) (¥ ()" (4 (b)) g((rt)~* zab).
On the other hand, (p (5) g) (x) = (¥ b)) g ("*.ab), and thus

(¢ (@ (e (b) 9) (x) = (4 (@) (¥ (D))" (g (" 17" zxab),
implying
p(@p () =y (())p(ab) and  7°(a) 7 (b) = ys (L (1)) 7 (ab).

Q. E. D,
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6. Given an element g of g’ we shall denote by B, the skewsymmetric
bilinear form defined on gxg by B, (v, y) = ([z, y], g) (v, y€4) [¢f. also
4 (b)]. 1f gis specified by the context, we shall often omit indicating it.
Given a subspace « of the underlying space of g, we shall write a* for its
orthogonal complement in g" with respect to the canonical bilinear form
on X4’ and denote by af its orthogonal complement, with respect to B,
in §. Let us observe, that with these notations we have g} =g, = Lie
algebra of the stabilizer of g in G [c¢f. 4(¢)]. Let us put f= g|d and
(Gs)o = exp (g); then g, = d} (3 =[g, g]). The following three lemmas
were used by B. Kostant in his lectures referred to at the start of the
last section.

Lemma 6.1. — Assume, that g€g, f = g|¥ and let us put g, =V + g;.
If g€y’ satisfies g| 9= = g | 8= then there is an element a in 1., such
that ag = g.

Proof. — a. Let us observe first, that if / is any element in g, we have

exp(g=g—@d@D)g.
In fact, since

xp 0 =3, CELO

to obtain the desired conclusion, it suffices to show, that [(ad ())'} = 0
for j > 2. If k is an arbitrary element in g, we have

(k[@d @)V 9 =B(Lk])  with k =[@dD) L

but the right hand side vanishes, since l€g, = 3}, and [I, k,] €.

From this we conclude, that if a is any element in (Gy),, there is an !
in g; such that ag = g — (ad (I))’g. If, however, a lies in L, = (Gs)oNL,
we can assume, that [ belongs to ¥, = g,N¥.

b. If | and k are elements of g, and D, resp., we have B (, k) =0
implying, that (ad (3/))'g € g,; since evidently (ad (V)" gCd*, we conclude,
that (ad (3;))" gCgt. In this fashion, to complete the proof of our lemma
it will be enough to show, that dim[(ad (¥/))'g] = dim g2. Evidently,
the left hand side is equal to dim ¥, — dim (goN¥). On the other hand,
we have

dim g4 = dim g — dim g = dim g — dim» — dim »} + dim»d;

since, however,
dim »} = dim 3 — dim» + dim (g, N?)
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we obtain finally, that

dim g% = dim v, — dim (g, N?) = dim [(ad (v))'g].
Q. E. D.

The following lemma will be of much use in subsequent parts of this
paper.

LemMa 6.2. — For g€y’ let us put b =0+ g,. If g €4 satisfies
g| kz = g | ks, there is an element a of (Gy)o (f = g| V) such that ag = g.

Proof. — By (a) of the previous lemma, for any « in (G,), we have
ag = g — (ad (1))’g, where [ is in g,. On the other hand, (adg,)'g is
orthogonal to kz. In this fashion to prove our lemma, it will be enough
to establish, that

dim [(ad (3,))'g] = dim g3, — dim g

is the same as dim k%; but this is clear, since

dimk}* = dim g — dim k; = dim § — dim » + dim (g,N?») — dim g, = dim »} —dim g,

and g, =,
Q. E. D.

Remark 6.1. — If g and g, are elements of ¢, such that g|¥= g, |D,
we have G, = G, and G, =G, [¢f. 4(c)]. In fact, by virtue of our
assumption g, = g + u with w€d. On the other hand, clearly au=1u
for all @ in G implying G, = G,. Let 9 be the character of G determined
by the condition ¢ (exp (I)) = exp[i (I, u)] (l€g). We have evidently
Yo (@) = 9 ()Y, (@) on G, = G;, and thus for any a, beG, :

Xt’y’l (abaﬁl b—]) = x{; (aba_1 bﬁ‘)’
completing the proof of our assertion.

Lemma 6.3. — With the notations of Lemma 6.1 let us put

S ={a;aeGyag|s,=gla,s}
Then & = G, L,.

Proof. — We have evidently G, C % and by (b) in the proof of Lemma 6.1,
L, % and hence G,L,C%. If, on the other hand, a in G, is such, that
ag| 8y = gl gy, since ag|d=g|d, we have also ag|g:.=g|g- and
thus, by Lemma 6.1, there is an element b in L, with ag = bg implying
a€ Gg Ly and therefore GC G, L,.

Q. E. D.
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Let %, be the character of L, determined by
} %r (exp (D) = exp [i (, )] (Lery).
We denote by L, the kernel of vs- Since for any a in G, we have
(az) @)=y (@' da)=%0) (@eL),
L, is invariant in Gy.

Lemma 6.4. — Let us put© ={a; a€%, aba™ b €L, for all b in B}
Then © = G, L.

Proof. — Let us form A= G,/L;; we shall denote by ¢ the canonical
homomorphism from G, onto A. Since ay,=y, on L; for all a€Gy,
we have o (L;)CA? and thus L;C®. In this fashion the element
bl (b€G,, l€L,) of B will belong to G if and only if aba™ b~ lies in L,
for all @ in G,. Hence to complete the proof of our lemma it is enough
to show, that if for a, b€ G, the element aba~" b belongs to Ly, then it
lies in G, too, and conversely. But we have [G,, G,]€ G,NL;, the right
hand side being the connected subgroup exp (g,Nd,)C(G;)oNL,;, and
evidently 7,|G,nL,=y,| G,NL,.

Q. E. D.

In the following, for the convenience of the reader, we repeat several
things already touched upon in Section 2 (¢f. in particular Remark 2.2).
Let us assume, that I' is a central extension, through the circle group T,
of Z, 1tself isomorphic to R“X2Z’. We denote by I'; and U the centralizer

of the connected component I'; of I and of the center I'! of I, resp.

Lemma 6.5. — With the previous notations we have I'' =U% and

UL, Us =TT,

Proof. — a. We observe (cf. [2], p. 188), that there is a continuous
realvalued bilinear form B on ZXZ such that, putting

a (z, 2') = exp [(i/2) B (z, 2')] (z, 2 €Z),

I' is isomorphic to the group defined on the set of pairs (z, u) (:€Z, u€T)
by the law of multiplication (z, u) (w,v) = (z 4 w, « (z, w).uwv). We shall
denote by T also the subgroup { (0, u); u€T/| of I'' Given a subset S
of Z, S will also stand for {(s,1);s€S}. We write S} for the subset
{t;t€Z,B (t,s) = 0 forall sin S}. Let us put Z, = Z,n(Z,)i, where Z,
i1s the connected component of the neutral element in Z. Since
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(z, u) (w, v) (z, u)™ = (w, (« (3, w))*.v), we find readily, that U = (Z,)}.T.
On the other hand we have (Z,); = Z, + (Z,)+ and therefore, since
I'y = (Zy)%.T, we conclude that U= T', I, and hence alsoI'¥ cU% Finally,
if a is some element in U?CT', I, we can write « = bc (b€l'y, c€l',). Since
a commutes, in particular, with I'), we have b€l'icCl',, and thus a€l,
and even a €I, proving Ui = I'7.

b. To establish U/I';U? =T',/I'{ we observe that, by‘ what preceeds,
the left hand side is the same as I',I',/T',.I'Y. From here the desired
conclusion follows by noting, that Iy =I',nl, =TI',nT%.

Q. E. D.

LemMa 6.6. — With the previous notations let us put I'y = exp y. Letv
be an element of ¥ such that exp (Rv) = TcCI',, and assume, that d€Y’
is such, that (v,d) 52 0. Then I', =T,

Proof. — We can identify the underlying space of ¥ to R.v - Z, such
that
exp (20 + ) = (20, exp (ic))  (20€Zo, cER).

We have then for any (z, u)€l':
(z, u) (20 + c.v) = 2z, + (c + B (2, z0)) v.

In ovder, that (z, u) belong to I';, the expression
(zo + ¢c.v, (z, u)y~t d) = (20 + cv, d) + B (2, 20) (v, d)

must be the same as (z, + cv, d) for all z, + cv which, by virtue of our assum-
ption (v, d) 4 0 means, that z€ (Z,)t. In this fashion I';= (Z,)%.T =T,
proving our lemma.

Q. E. D.

Let us observe, that [G, G] = L is a closed, connected and invariant
subgroup of G (¢f. [20], Theorem 3.1, p. 138). It belongs to the subalge-
bra ¥ = [g, g] which, since g is solvable, is nilpotent and thus L is of
type I (cf. [8], Théoréme 3, p. 161). From this we conclude, that we
can substitute [G, G] in place of L in Section 3.

/\ .
Prorosition 6.1. — -Let = be an element of L, which belongs lo the

orbit Lfcd’ [cf. 4(f)]. Let K and U be as in Lemma 3.6 and assume,
that g is an arbitrary element of §' such that g|¥ =f. Then K =G, L
and W[/(Gz)o K s isomorphic to Gg[(jér.
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Proof. — a. The statements made being clear if f = 0, in the following
we shall assume, that < 0. By Lemma 5.1, G. = G;L. Let us form,
as at the start of Section 3, the groups G; and M; = G;/L by using in
place of the cocycle « loc. cit., the cocycle w of Lemma 5.2. Employing
the notations of the latter one verifies easily, that M; can be realized
as the group defined on the set of pairs { (r,u); r€S, u€T/} by the law
of multiplication (r, u) (¢, v) = (s (rt),  (r, t).uv) and if ® is the canonical
homomorphism from G; onto M;, we have

® (0, W) = (@, u)  (a€Gx).

b. Let us put I' = M, and assume, that U? is as in Lemma 6.5. We

denote by S the subset of SCG, (¢f. Lemma 5.2) such that G,L; = SL,.
With these notations we claim, that

U% = {(r, u); s€S, ueT}.
In fact, :

10 Let us define the map W from G, into I' by
V() = (s(a), xr (@) (a€Gy).

We claim, that W is a surjective homomorphism, the kernel of which
coincides with I:f. In fact, if r, t€S, and m, n€L, we have
rm.tn = s (r)[l (r).* mt.n]
and hence, since
_ xr (& ml) =y, (m),

W (rm.tn) = (s (rt), 77 C (D) 2 () 27 @) = (1, 7 (M) (&, 77 (@) =¥ (rm) ¥ (in).
In order to establish, that W is surjective, it 1s enough to show, that 7, 1
on L, = exp (¥;), or that f|d,5£0. We have ¥ = (add)’'f and hence
if f|9, =0 there is an ! in ¥ such that f= (ad(l))’f. This, however,
is impossible, if £ 0, since ad () i1s nilpotent. Finally it is clear, that
ker W' = ker (3| Ly) = f_lf.

20 Let us form, as in the proof of Lemma 6.4, the group A = G,/L,.
We denote by ¢ the canonical homomorphism from G, onto A, and by j
the isomorphism from I' onto A such that the diagramm

g
—_—A

N
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be commutative. Let A, be the centralizer of A, in A. We have by
Lemma 6.5, U = I'! and hence j (U%) = A:.

3% We denote by A the Lie algebra of A,, and by d the element of 1’ such
that ¢o (d) = g| g,. We observe, that if w € is such, that exp (Rw) = (T),
we have (w, d) £ 0. Infact, evidently j (T) = o (L,). Let!be an element
of b, such that ds (I) = w. Then

W, d) = (do (), d) = (, 95 (d)) = (L, ) #O.
Applying Lemma 6.6 with A in place of I' loc. cit. we conclude, that A, = A,.

40 Let us observe next, that with the above choice of d we have
P (Aj) = G;L;. To this end we note, that if & and  are as in Lemmas 6.3
and 6.4 resp., we have clearly © =g (A,); thus ¢ (&) = A;and & =o (A)).
In this fashion the desired conclusion follows from Lemma 6.4.

59 Summing up, we have j (U%) = A% and hence ¥ (G, L,) = U, from
where it is clear, if we put G, L, = SL,;(ScS) that Us = | (r, u); r €S, ueT|
as stated at the start of (b).

c. Given a subset M of G, let us write, as in Section 3, M¢ for
{(m,u);meM,u€T}|cCG;. Bywhatwesawabove we have ® (U%) = G; L.
But, by the proof of Lemma 3.5, the left hand side is the same as K¢,
proving, that K = G, L.

d. To establish the second assertion of our proposition we recall (c¢f. Lem-
1

ma 3.3), that U = ® (U) and (GS), = ® (I'y).  In this fashion U/(G), K
is isomorphic to U/I'; U? and hence, by Lemma 6.5, to I',/I'?. By 3° and 4°
in (b) above the last group is isomorphic to G, L;/G, L, Since
G,NL, = G,nL; this implies finally, that 1/(G.), K is isomorphic to
Gg/(_}_g, completing the proof of our proposition.

. Q. E. D.

Remark 6.2. — For later use we note, that the above reasonings imply
easily, that U = (Gy), G, L.

7. Let g be an element of §’ such that f= g|b#0. We assume,
that by = pol (f) [¢f. 4 (b)] is such, that G, hCl [cf. 4 (¢)]. Let us form the
representation © = Ind (), f) of L=[G, G] [¢f. 4 (f)]; we shall denote
also by = its image in .. If = and K are related as in Lemma 3.6, by

Ann, Ec. Norm., (4), IV. — Fasc. 4. 64
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Proposition 6.1 we have K = G, L. Putting d = hnd, we have G, dcd,

and the homomorphism a — det (Ad (a™*) | ¥/d) of G, admits an extension
¢ to K such that ¢ |L =1. Let us denote by #¢, the linear variety of
function on L, formed as #¢ in Lemma 5.2, but with lj = pol (f) as specified
above. Givene (2) €&, and a €K, we set (7' (a) ) (z) = (Y (a))” e (t* za)
[t=s5(a)]. We show as loc. cit. that : 1° <’ (a) transforms ¢, into itself
and gives rise on H(m) to a unitary operator < (a); 2° the map
a — 7 (a) (a€K) is a continuous projective representation of K, such that

7 (a) T (b) = ys (L (1)) = (ab) [a, beK;r = s(a), t = s ()]

A
Let y be some element of G, [¢f. 4 (¢)], and let us put
w@=xG@) () (aeK).

We claim, that <, is a unitary representation of K on H (). To this end,
with the notations just used let us note, that

7y (@) 7y (B) = x (1) T (@) 7 (B) = 7 (1)) 77 (L(r))) = (ab) = y (s (r])) = (ab),
whence the desired conclusion follows by observing, that s (ab) = s (rt).

Lemma 7.1. — With the above notations the representations <, and
ind (h, % g; K) [¢f. 4 (e)] are unitarily equivalent.

Proof. — For notations unexplained below the reader is referred to 4 (a)
and 4 (e) resp..

a. Putting A = G, D we get A, = exp (g, + d); also K, = exp (g, + D).
In this fashion, if a belongs to A we have

Ay (@) = det (Ad (@) | (s, + d))  and  Ag (a) = det (Ad (a) | (g, - 1))
and thus
n (@) = Ay (@)/Ax (@) = det (Ad (a) [3/d) = (a).

Hence there is a Borel measure dw (¢) on K/A satisfying dw (¢gk) = ¢ (k) dw (q),
and if & 1s some element of € we have

pr I8 = [ (1R @ P @) dw ().

K/A

b. We write again G, Ly = SL; [¢f. (b) in the proof of Proposition 6.1].
Let dv (p) be an element of the invariant measure on L/D.
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For gin &, we define the function G (z) on K by
G@=WO)"7zOg@) (x=1t;teS, yel).

To establish our Lemma, it will be enough to prove, that : A. G belongs
to JC and, if dw (q) is properly normalized, p (K/A) = p, (/D) for all g
in#,;B. Ifa=rn(reS,nel)isa ﬁxed element of K and we put

Y@= @Y@W=20)Y (@) g ya (L),
then G’ (z) = G (za) (z € K).
c. Let us prove first assertion (A) formulated above.
1o 'We claim, that if a is some element of A, we have
G (az) = (¥ (0))"* ¢ (a) G ()

on K. In fact, if a=rm, 2=ty (r, teS; meD, yEL) then
ax = s (rt) [l (rt)t™* mt.y]; in this fashion

G (az) = (4 (s (r))'* 2 (s (1)) g (L (1)) ' mt.y).
Since g belongs to 4¢, we have

gLy = mt.y) = yr (L(r)) %r (M) g ()

and thus

G (az) = (Y ()" % (1) xs (M) (¥ D) 2 (D) 9 -
Since ¢ (r) = ¢ (a) and (r) v (m) = 9 (a) [cf. 4 (e)] we conclude finally,
that

G (a2) = (¢ (@) ¢ (@) G ().

20 We show next that if, for given dv (p), the measure dw (¢) on K/A
is appropriately normalized, then we have

P (K/A) =fm(l G () Y (@) dw (9) =fL/DI 9 @) ° dv (p) = pg (L/D).

Since G, normalizes D, G, operates on L/D by the rule
pb=Dbtxb=b1Dxb (p =Dz, beGy).

Reasoning as in (a) of the proof of Lemma 5.2 we show, that

dv (pb) = ¢ (b) dv (p) (b€ G,). Let us denote by y the homeomophism
from L/D onto K/A which assigns Az to D2 (z€L). One sees at once,
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that if b and [ are elements of G, and L resp., we have
TP =1@?>b and Y@EH=71@IL
Therefore the image dv’ () of dv (p) under vy satisfies dv’ (gk) = ¢ (k) dv’ (q)

for all k& in K, and hence we can assume, that it coincides with dw (¢). To
obtain the desired conclusion it is enough to remark that, writing H (¢)

and h (p) for the functions |G (z) [*/¢ (z) and | g (y) |* on K/A and L/D
resp., we have H (y p) = h (p) (p€L/D).

3° To complete the proof of assertion (A) in (b), it suffices now to show

that, for any fixed a, in K the map hk — y, (k) G (ka,) (h€H, k€E) 1s
holomorphic on HECE¢.  Assuming a, = rm (r€S, meL) we get

kay = krm =r (r—' kr) m,

and thus
G (kao) = (Y (1) % (r) G (r~ kr.m)
and
xs () G (kao) = (Y (1)) x (r) s (=" hr) G (r—* kr.m)

from where the conclusion follows as in (a), Lemma 5.2.
d. We complete our proof of Lemma 7.1 by establishing assertion (B)
in (b) above. Ifa =rmandz =ty (r, t€S; m, y€L) we have
za = s (r) [l (tr) t* ya];

hence

G (xa) = (§ (s (@))% (s () g A (tr) r~* ya)
= @) (@) 2 (s (tr) s L (Ar)) g (" ya) :
=@ OO @ @ @7 gyl =0 O) 209 @ =G @).

Q. E. D.

Lemma 7.2. — With the above notations assume, that lj; = pol (f) is such

that Ggh;ch; (j = 1,2). Then the unitary representations ind (b, %, g; K)
and ind (hs, %, g; K) are unitarily equivalent.

Proof. — Let us denotes by M the Lie group defined on the set
{ (b, 1); beG,, l€L | by the law of multiplication

(b, 1) (bs, L) = (bb, b7 Ib, L,).

We assume first, that #¢, and = are as in the proof of Lemma 7.1. For g
in ¥, and m = (b, [)€M let us write (U’ (m) g) (z) = (J (b)) g (b~* xbl).
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Proceeding as in (a) of the proof of Lemma 5.2 one shows easily, that
(U’ (m) g) (x) lies again in #€, such that its norm is equal to that of g.
Denoting by U (m) the corresponding unitary operator on H (x), a simple
computation proves, that the map m i+ U (m) is a continuous unitary
representation of M. 'We observe finally, that if 7 is as at the start of this
section we have for « = rm (r&S, m€L) that < (a) = U (r, m).

Let us repeat the above construction by substituting in place of ) the
subalgebras ), (j = 1, 2) of our lemma; we denote by U;(j =1, 2) the
representations of M arising in this fashion. Next we make use of the
crucial fact, established in [1] (¢f. Theorem III.3.1, loc. cit.) that U, and U,
are unitarily equivalent. Bearing in mind the connection, just pointed
out, between = and U we conclude from this, that the unitary equivalence
class of the projective representation © of K is not affected by a change
of h=pol(f) employed in its construction. Since by definition
, (a) =y (t) 7 (a) [t = s (a)] the same observation applies to 7,, and hence
the assertion of our lemma is implied by Lemma 7.1.

Q. E. D.

Cororrary 7.1. — With the previous notations, the representations
ind (hy, ¢, g) and ind (b, ¥, g) are unitarily equivalent.

Proof. — By virtue of Lemma 7.2, it suffices to observe, that

ind (4, 1, 9) = Ind (ind (4, 7, g: K)) G =1,2) [f.4(g)].

Remark 7.1. — Before proceeding we summarize some notations and
results of Section 3. As above (¢f. the observations preceeding Propo-

. . A
sition 6.1) we assume, that loc. cit. we have L =[G, G]. Given n€L we
denote by K and U, the group K and U resp. as in Lemma 3.6. We set

® (n) = { 0; peﬁﬂ, el Ki=m %; ® (m) is nonempty and if {is a concrete

. /\ . . . . .
representation of the class p € K, ind { is a semifinite factor representation,
K AG

the type of which is I if and only if the group U./(Gz), K is finite (¢f. Lem-

ma 3.7). Weput ® = U, c; ® () and define the mapn: & — G (= set

of all quasi-equivalence classes of factor representations of G; cf. [12],

18.6.2, p. 323) by v (p) = quasi-equivalence class of éndG CCe({el)e
‘E/k

p€® (n)]. ® is a transformation space of G and we have 7 (p;) = 7 (pa)
(p,€®, j =1, 2) if and only if there is an element a in G such that -
@ oy = pa (¢f. Proposition 3.1).
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If = 1s the unitary equivalence class of Ind (b, f) [¢f. 4 (f)] then, by Propo-
sition 6.1, if g is an arbitrary element of g’ with g|d =/, we have
K.=G,L and U,/(G:), Kz = Gg/ag. Given ge€g’, unless specified
otherwise, © will stand for the unitary equivalence class corresponding

to Lf [¢f. 4(f); f= g|¥]; in particular usually we shall not explicitely
indicate the relation between g and T.

Lemma 7.3. — Let g be an element of ¢ with f = g |00, h = pol (f)

_ A
satisfying Gy hclh and y€G,. Then ind (h, 7, g) is a semifinite factor
representation. It is of type 1 if and only if the group G,/G, is finite.
Proof. — Since, if ind (h, 7, g; Kz) =, we have ind { = ind (h, ¥, g)
KA G
lef- 4(g)], by virtue of Remark 7.1 it is enough to establish, that
{|Le({n}). This, however, is implied at once by Lemma 7.1.

Q. E. D.

Remark 7.2. — Let us write R for set Ugzeq Gg; an element p in R is

determined by a pair (g, ¥) (ge g, Xeég>. For a complex subalgebra h
of dc we put hj = pol (p), if h = pol (g|d) and G, hcl. Also, we shall
write, with such an }, ind (), p) and ind (h, p; Kx) in place of ind (b, ¥, g)
and ind (h, v, g; Kz) resp.. By virtue of Corollary 7.1 and Lemma 7.3,

the quasi-equivalence class of ind (), p) is an element, well determined
by pe®, of 6; we shall denote it by £ (p). Similarly, ind (h, p; K;) is

an element of <ﬁn>c, the unitary equivalence class of which belongs to
& (n) and depends on p only (c¢f. the proof of Lemma 7.3); we denote
it by A (p). If g|3=0, K; =G and we define A (p) as the element,
corresponding to ¥, of G. For p= (g y)€®R and a€G we put

A _
ap = (ag, a) [a 1 €G, 1s defined by (ay)(b) =y (a" ba), b&G,.;

of. 4 (h)]; we have obviously a (bp) = (ab) p {(a, b€G). With these nota-
tions we have A (ap) = a A (p). In fact, this follows at once from Remark
4.1 substituting the inner automorphism b+ a.ba™" (b€G) in place of «
loc. cit.  Let us observe finally, that by what we saw above, the diagramm

R § >3

S

is commutative,
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Lemma 7.4. — For p € ® (r), the set 3\1(9) s an orbit of Us.

Proof. — Suppose, that p; = (g;, 1) are elements in ) (p) (j =1, 2); we
are going to show the existence of an element w in U, such that up, = p,. -
Let us assume first, that g, |¥ = g, |¥ (=f, say). Since, if f=0 our
statement is trivial, we shall assume, that f £ 0. We claim, that in this
case ¥. = ¥a. In fact, we have G, = G, (= B, say; ¢f. Remark 6.1).
Let ' be a character of B such that y,= ®"y,. We have then
o' | (LNG,) =1; let us denote by ® the character of K, = BL such that
w|B=w"and w|L=1. We infer easily from the proof of Lemma 7.1,
that if h = pol (p;) (j = 1, 2) then ind (h, ps; K;) is unitarily equivalent
to w.ind (h, pi; Kz). Since however, by A (p,) = A (p.), it is also unitarily
equivalent to ind (), p.; K;) we conclude, that ©’" =1 and thus 7, = %..
We write k. =4 g, =9 4 g, and observe, that (K:), = exp (k).
We have g, | k. = g. | k; since

1(g: ] ba) = d (11 | (Kz)o) = d (x2 | (Ka)o) = 1 (92| bn).

Hence, by virtue of Lemma 6.2, there is an element b of (Gf), with
bg, = g.. Let us add, that in this case also by, = ¥, = %.. In fact,
we have first b G, b = Gy, = G,, = G,. In this fashion it is enough
to establish, that for all $in G, : b 8b~ 8~ €G,, = ker (3, | (G,)o), which

is true, if we can show b 8b~'8'eL,=ker (y,|L;) (¢f. the proof
of Lemma 6.4). But with notations as in (b) of the proof of Propo-
sition 6.1 we have o (Gg) = A,, and ¢ (G,)c o (G,L;) = A, whence we
conlude, that[(Gy),, G,|Ckero =1L, We recall (¢f. Remark 6.2), that
U, = (Gy)o G; L. Hence, summing up, we have shown, if g, |d = g, |,
that p, and p, lie on the same U, orbit. From here we settle the general
case as follows. Writing again~ to indicate unitary equivalence, if
h;, = pol (p;) (j =1, 2) we have by assumption Ind (h;, fi) ~ ind (h,,
pi; Ki)|L~ind (b, pa; Kz)|L~~Ind (hs, f2), and thus Ind (b4, fi)
~ Ind (b,, fs). Hence, by 4 (f), there is an element [ of L such that
replacing, if necessary, p, by Ip;, we have g, |[d = g,|d and therefore we
can complete our proof as above.
Q. E. D.

Lemma 7.5. — With the previous notations we have £ (p;) = & (p2) if and
only if p: and p, lie on the same orbit of R.

Proof. — The condition being evidently sufficient, let us prove its
necessity. If & (p,) =& (p:) we have v (A (p:)) =n (A (ps)) and hence,
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by Propositon 3.1, there is an element a of G with a % (p;) = A (p,) in G
But a A (p;) = A (ap,) and thus our statement is implied by lemma 7.4,
Q. E. D.

We sum up the main conclusions of the previous considerations as
follows.

Traeorem 1. — Let G be a connected and simply connected solvable Lie
group with the Lie algebra g. Let p= (g, 7) be an element of R (cf. Remark
7.2) suchthat g |3 5= 0 (d=1[g,g]). Then the unitary representation ind (1), p)
of G, for any choice of ) = pol (p) (cf. loc. cit.) is a semifinite factor represen-

tation. It is of type 1 if and only if the index of the reduced stabilizer G,
[cf. 4 (c)] in the stabilizer G, of g is finite. For p;€®R and h; = pol (p;)
(j =1, 2) the representation ind (h., p.) is quasi-equivalent to ind (h),, p.)
if and only if p, and p. lie on the same orbit in R ; in this case they are also
unitarily equivalent. Finally, ind (h, p) on L =[G, G] restricts to the

. . . /\
transitive quasi-orbit corresponding to L (g|®) in L.

CHAPTER IL

GENERALIZED ORBITS OF THE COADJOINT REPRESENTATION,

SummARrY. — The factor representations obtained in Chapter I provide a central decom-
position of the regular representation only if sufficiently many orbits of G on ¢’ are locally
closed. This is certainly so, if G is of type I, but the group of Dixmier (¢f. Summary,
Chapter I) shows, that this can very well be the case even if the representation, belonging
to an element of ¢’ in the general position, of the transitive theory is not of type I. On
the other hand, for the group of Mautner, which is the connected and simply connected
solvable Lie group corresponding to the Lie algebra spanned over the reals by the elements
{e;; 1 =j<5} with the monvanishing brackets

[e1, €2] = es, [e1, €3] = — e, [ei, es] = O e, [e1, e5] = — 0 e, (8 = irrational).

all representations as in Chapter I are irreducible, but, disregarding a variety of lower
dimension in g¢’, no orbit is locally closed. A closer inspection of the central decomposition
of the regular representation for this group strongly suggests, that in the general case
one might obtain the ‘“ central components >’ by forming continuous direct sums of appro-
priate groups of the representations of the transitive theory. The purpose of this and the
next chapter is the verification of this conjecture. More specifically, in the present chapter
we define the geometrical principles of this grouping, which will be done by introducing

an appropriate G invariant equivalence relation on ® = U, g4 Gg (for the latter cf. loc. cit.
or Section 7, Chapter I). We recall, incidentally, that the factor representations of the
previous chapter are parametrized by ®/G. In Section 2 we establish the existence of
an equivalence relation R on g¢’, uniquely determined by the conditions, that any of its
orbit be G invariant and locally closed, and that any G orbit be dense in it. For a type I



REPRESENTATIONS OF SOLVABLE LIE GROUPS 513

group the 1 orbits are simply the orbits of the coadjoint representations. In the case of
the group of Mautner, the orbits of R are the closures of the orbits of the coadjoint repre-

: A
sentation. Let © be an orbit of W and let us put 8 (@) = V,c@ Gs In Section 5 we

show, that 8 (©) can in a natural fashion be endowed with a topology, which makes it
a principal bundle, with a structure group isomorphic to a torus of the dimension of the

rank of G,/(Gg)o (g arbitrary in @), over @, and G acts on 8 (@) as a group, the action
of which commutes with that of the structure group. We also show, that the torus bundle
8 () is trivial. Let po (9): © — 8 (®) be a cross section. If a is some element in G,
there is an element p. (a, g) of the structure group, such that we have apq(9) = 1 (a, 9)po (ag)
for all ge @. In Section 6 we show, that for an appropriate choice of our cross section
u (a, g) is independent of g. We use this in Section 7 to prove, that the collection of
the closures of G orbits defines an equivalence relation & on 8 (®). It will be the purpose

of the next chapter to establish, that the equivalence relation § defined on ® = vy G; by
the union of all 5 orbits for all possible choice of @ in g’/, will have the property indicated
before. Let usobserve, incidentally, that the $ orbits are homogeneous spaces of connected
solvable Lie groups. Let t be the canonical projection from 8 (@) onto ©. If © is acted
upon transitively by G, which is always the case if G is of type I, then for any 5 orbit O
in 8 (®), (O, <) is a simple convering of . (This is so also for the group of Mautner,
but has for reason the triviality of the structure groups) In Section 8 we show on the
example of a group of twelve dimensions, that in the general case the situation is completely
different. 'We construct examples of 8 (©), such that the structure group is onedimensional
and that either 8 (©) itself is a & orbit or, for any $ orbit O in $ (®), (O, <) is a finite
covering of @, and the degree of the covering can be prescribed.

1. In the following V will denote a finite dimensional vector space over
the field of the real or complex numbers. ‘We shall write g for a nilpotent
Lie algebra over the same ground field; G = exp g will stand for the
corresponding connected and simply connected Lie group.

We recall, that a linear representation of G on V is called unipotent,
if the range of its differential is composed of nilpotent operators only.
Let F be a subset of V and a (p) some compex valued function on F. We
shall say, that a (p) is locally rational on F, if for any point p, of F there
are polynonials P (z, p,) and Q (2, p,) on V, such that Q (p,, p,) # 0, and
for some neighborhood U of p, in V, where Q| U 0, on UNF a(p)
coincides with the rational function P (z; p,)/Q (x; p,). Note that, in
particular, a locally rational function on F is continuous in the relative
topology of the latter.

With the previous terminology we have

Prorosirion 1.1. — Suppose, that G acts via a unipotent representation
on V. Let V=V,DV,D>...0V,,=(0) be a Jordan-Hglder sequence
for G, and assume, that ¢v,€V;, — V; (1==j=m). Then there is a
sequence of subsets V= F,DF,D>...DFy = (0) with the following proper-
ties. For any j(1 =7 =M)F,; is G invariant and the dimension of any

Ann, Ec. Norm., (4), IV, — Fasc. 4. 65
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G orbit in F;_, — F; is constant; Fy is the collection of all fized points of G.
Let j be fixed as above, and let us denote by d the (positive) dimension of some
Gorbitin F;_, — F;. Thereis a subset 0 <j, <...<j,<mof{1,2,.. m}
and a system of m functions {P;(z; 2); 1 =j=m} on K¢X(F,_, — F))
(K being the ground field under consideration) with the following
properties : 10 For any fixed x in ¥, , — F;, P;(z, x) s a polymonial in
2= (24, 2, ..., 2q) €KY and the coefficients are locally rational functions
on ¥, —F; 20 We have P (z;2) =z (1 Zk Zd); 3° If j is some

integer between 1 and m and t = sup k, P; (z, x) depends on {z,; h =t}
. Jr<j
only; 4° For any z in F;_, — F; we have

m
Gzx = v;v=ZP,~(z;x).v,~,zeK'1. .

Jj=1

For each x, the functions { P; (z; x); 1 =Zj = m | are uniquely determined by
the condition, that they be polynonials in z€XK' satisfying conditions 20, 3°
and 4°.

Remark. — We are going to make the description of the above situation
much more precise in the case, when the representation in question is
the coadjoint representation of G (¢f. Section 4 below).

Proof. — Givenain G and v in V, we shall write av for the action of a on v.
In the following, to take a definite case, we shall assume, that K = R;
the case K = C can be settled similarly.

a. Given [ in g, let us put v = d/dt [exp (t])] v |,—, (v€ V). We denote
by =; the canonical projection from V onto V/V; (0 =Zj; =< m). Let us
write g ., for the Lie algebra of the stable group of m;(z) (x€V) with
respect to the action of G on V/V;. We have

Irjwy =1 Ll=0(V)}, 9= 3r028m®2 . 285,@x = 8=

and dim g, /8, = 1 or 0.

We denote by f (2) the function from V into the collection of all subsets
of { 1,2, ..., m} (empty subset included) defined in the following fashion :
j belongs to f(z) if and only if ENe Y EA Let & be the range of f.
For e€ &, we shall write d (e) for the number of elements (> 0) in e.
Observe, that d (f (z)) = dim (g/g,), and thus we have d (f (z)) = dim o (z),
where we set o (2) = G a. Letus put, forsome ein &, ©, = {z;f (z) = e };
then @, is invariant under G. In fact, if we write, for ¢ in G and [ in g,
al = Ad (a).l, then a exp (I) a™ = exp (al), and gz ) = ar,), proving our
statement.
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b. Let us fix an element e of & Our next objective will be to establish
the existence of a joint parametrization for the G orbits in ©,, as indi-
cated in the above proposition for F; , — F;,. Evidently, we can assume
d(e) > 0.

Let {l;; 1 =Zj~<L=dimg| be a basis in g, {v,; 1 =Zj = m | a basis
in V', such that (v;, ) = &; (1 =i, j =~ m). Letus put ay (z) = (L2, v;),
and A; (x) for the j X L matrix {ay (z); 1 =<1, 14k4L} (ze ©, fixed).
We have by definition j€e = f (2) if and only if there is [ in g such that
le = v; (V;) implying, that j belongs to e if and only if

rank A; (x) = rank (A;— (z)) + 1.

Assuming e = {0 < j, <ju<...<joZm{[d =d(e) > 0] we have in
this fashion rank (A; (2)) =r (1 =Zr Zd). Let

M, () ={ by (@);1—=i,k=r]

be an rXr nonsingular submatrix of A; (), {y/”(v); 1==7=r] be
rational functions on V such thatVb“’(u) " () =2¢, (veV), and let

7
us put

L@ =257 @) L,

where we have denoted by 0 < a, <...< @, <L the coloumn indices
of A; (z), corresponding to M, (z). Observe, that by virtue of our cons-
truction, L, (z) z =v; (V;) and { L, (2), ..., La(2) } 1s a supplementary
basis in §r, @ 1O o

c. Let us put

9, Gx) =exp (tL; (@) [teR;1=j<d]
T = (tl, t?, ooy ttl)e Rd and g (T; .’II) = g1 (ti; :I:) g‘z (tg; :L‘). oo gd (t,]; x).

‘With these notations we have
Gx=o0@={y;y=g(T,2)2, TER"}.

To this end it is enough to show, that if g is a subalgebra of codimension 1
of g, and if leg — g and G = exp g, the map ®: RX G — G defined by
® (t, g) = exp (tl) gis a homeomorphism. Through a repeated application
of the said assertion we can then conclude, thet the map ®, : R‘X G, -~ G
(G, = exp §,) defined by @, (T, g) = g(T; z) g 1s a homeomorphism.
Let g=¢4:28:.D...26,=0 be a Jordan-Holder sequence for g
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such that g, ,=19, and assume, thatl;e€g; — g, (I, =10). Writing
xy = log (exp x.exp y),

m
x=2x/l,-, (x, y€9),
=1

a simple inspection of the Hausdorff-Campbell formula yields that
@ = 2 + 11 |
(xy)l =wi+yf+¢i (x/'+1’ ey TL3 Yty ooy yL) (1 é]éL—l)

where the functions {{; } are polymonials. Therefore, to obtain the desired
conclusion it is enough to observe, that for a given system { g;;1 =] =L}
in R, the set of equations

g = + 0, gr—1 =04y, + Yr_: (15 0).
Jr—2 = 04 Yr—2 + ‘~PL~2 (0, Tr; Jr—1, 0),

admits a unique solution in z; and {y;; 1 =Zj L — 1.

d. Let us write (x€ ©,, fixed) :

m

g(T; @)z =D Q; (T, 2) vy,

j=1

Evidently, the functions {Q;(T;a)} are polynomials in T€R® For
aj(1ZLj=m) let us put h =supk. We have

Jr<j

j
(g (T;2)x) = g, (L3 2) ... gn (a3 @) 7; (2) =Z Qx (T; 2) 7; (i),

k=1

Hence Q; (t; ) depends only on (t,t,, ..., ). If j =j, we observe,
that since L () x = v, (V,,) we obtain '

9 (s @) 7y, () = b 7 (7)) + 7 (@)

thus Q,, (T;2) is of the form t + Ry (i, ts, ..., ti_s; ), where R, 1s a
polynomial. Let us set z, = Q;, (T;2) (1k=_d); there is a system
of polynomials { Gy (21, 22, ..., 243 2);1 Zk=d} such that

b=z + Ut (2, 25 ..., 213 D)

and the coefficients of ¢y are polynomials in those of { Q, ]. Substitu-
ting these expressions for #, in the remaining members of the family { Q; |,
we obtain a system of functions { P; (z; 2); 1 = j = m| having the follo-
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wing properties : 10 For each j, P;(z;2) is a polynomial in z2=(z,,z,,... z4) € R%;
20 We have Py, (z;2) =z (1 ZLk<d); 3° If t =supk, P;(z; ) depends
on {z;1Zk<t} only; 40 We have =

m

o(x) ={v;v =2P,- (z; ®) v, ze R4 ).

j=1

In addition, it is clear from our construction, that any coefficient of a
product of powers of the z’s in P;, as function of the components of z,
is of the form P/Q, where P and Q are polynomials on V [Q (z) 5 0].
If U is a neighborhood of x in V, such that on U all denominators are
different from zero, then we have analogous statements, with the same P;’s,

for any other element z in UNn ©..

e. Let us assume now, that for a given element x of V there are two
sets of polynomials {P; (z); 1 <=7 = m} and { Q; (2); 1 =7 =< m | leading
to a parametrization of o (2) as above and such that P, (z) =z,
Q,(z =z (1=k=d). We claim, that P,=Q; (1 <7< m). To this
end it evidently suffices to show, that =104 (1=k=d). But this

follows at once from the observation, that if t = sup k, we have
Jk<i

t = dim =; (o (x)) (0 Lj<m).

To complete the proof of Proposition 1.1, let us assume, that the
number of elementsin & [cf. (a)]is M+ 1. To obtain the sets { F;;1 -7 M|
it will be enough to take Fy = ©@,, ¢, being the empty set in &; other-
wise let { ©;;1 = k= M} be the family of sets { ©@,;e5£ e, ] arranged
in some order, and let us define

F;=(Vi> ©@)UFx  (0=j=M—1).
Q. E. D.

Remark 1.1. — Let us assume, that G as in Proposition 1.1 is given
as an invariant subgroup of the group A, such that the representation
of G considered above arises by resticting to G a representation of A on V.
Let us suppose in addition, that we have AV;SV; (0=j<m). Then
we have also AF;SF; (0j=M). In fact, to prove this it suffices
to establish, that f(ax) = f(2) for all 2 in V and @ in A. For a€A and
- leg we define al by a exp (I) a* = exp (al). Then the desired conclusion
is implied by the observation, that . = @fzw (07 = m; cf. (a)].

Remark 1.2, — Given a Jordan-Hélder sequence {V;}, a sequence
of elements {¢;;1 =7 m}, satisfying ¢v;€V,_, — V;, will be referred
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to as a Jordan-Hélder basis in the sequel. This, by virtue of Propo-
sition 1.1, determines a unique parametrization, with the properties as
specified loc. cit., of any orbit G x; we shall call it simply the canonical
parametrization and the indices in f () [¢f. (a)] the indices of this para-
metrization.

Assertions, similar to the following Proposition 1.2 have been widely
used in the literature but, as far as the present author can ascertain it,
these have never been proved.

Prorosrrion 1.2. — Let V be a finite dimensional real vector space, A
a closed connected subgroup of GL (V). Assume, that A can be swrilten
as LM, where M s an invariant unipotent subgroup, L a closed abelian
subgroup of the form HT, where H and T are connected groups of semisimple
endomorphism having real and complex e¢igenvalues of absolute value one
resp.. Let x be a fixed element of NV, A, the stabilizer of x in A, and { a, |
a sequence of elements in A such that a, x — ax (a€ A). Then a, - a mod (A,)

Proof. — a. Lemma 1.1. — The assertion of Proposition 1.2 s valid,
if A utself is a unipotent group (that is A = M).

Proof. — With the notations of (¢) in the proof of Proposition 1.1,
if yis in Az, we have y= g (T, )2 (TER?, and by what we saw
in (d) loc. cit., T is uniquely determined by y and depends continuously
on it.

Q. E. D.

b. Lemma 1.2. — Let Mg be the complexification of M acting on Vg.
Then we have (Mg )NV =M a.

Proof. — Let V=V,DV,;D>...D0V, = (0) be a Jordan-Hélder sequence
for M and v;€V,., —V; (17 m). Then {(V))g; 0=Lj=m} is
a Jordan-Holder sequence for Mg in Vg.  Let

Mz = y;y=2P,— ) vy, zeRd} and Mcx={v;v=2Q,- () v;, ue C*
j=1 j=1
be the corresponding canonical parametrizations (c¢f. Remark 1.2 above).
To establish our lemma, it evidently suffices to show, that P; (u) = Q; (u)
for all ue C® and j. To this end it is enough to prove that the indices
of these two parametrizations (cf. loc. cit.) coincide. Let m; be the cano-
nical projection from V onto V/V;; we denote by the same symbol the
canonical projection from Vg onto Vg/(Vj)ec. To obtain the desired
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conclusion, writing M = exp m and remembering what we saw in (a) of
the proof of Proposition 1.1 it suffices to observe, that evidently

(mE)rjw = (Mryde (O =j = m).

Q. E. D.

c. Let Vo =W DW,>...OW,, = (0) be a Jordan-Hélder sequence
for LMg. Since, by assumption, L consists of semisimple endomorphisms
for each j (1 <7< m) we can determine w,€W;_, — W, such that
wj=¢;(l)w; (leL). Let ©®,= F,, — F, be as in Proposition 1.1,
belonging to Mg and Vg in place of G and V loc. cit.; we recall (cf.
Remark 1.1), that A @, C®,. We consider the corresponding cano-

nical parametrization Mg 2 = ZP,— (u;z)w;; ueC*) for xr€®, with
=t

the indices 0 <y <. <...<ja=< m. Let E be the complement of

this set in {1,2, ..., m} and for j in E let us put A;(z) = P;(0;2).

With these notations we have

Lemma 1.3. — For any l in L. and m in Mg we have \; (Imx) = o; (1) &, (x)
(xe @/;, ]E E)

Proof. — Since Mg max = Mg 2, we have by the uniqueness of the cano-
niecal parametrization P;(z;2) = P; (z; ma) and thus, in particular,
Li(mx)=2%;(z) (z€®;,j€E). On the other hand, we have Mglx =1{M¢ z
and in this fashion for each u€ C? there is a u'€ C* such that

Piw;2)o; O=P; (W'sle) (1=j=m)

from where, putting j = jx (1 < k = d) we get, that u), = 9; (I) u;. There-
fore finally
b (lr) = P; (05 1) = ¢, (D P; (0; 2) = ¢, (D %, (),

completing the proof of our lemma.
Q. E. D.

d. Using the preceeding observations, we can establish Proposition 1.2
in the following fashion. Let us put Ly={l;l€L,lz€eMaz| (x as in
the statement of our proposition); since M z is closed in V, Ly i1s a closed
subgroup of L. Assuming { a, |, @ in A such that a, x — az in V, we write
an = lym,, a =1Im (m,, meM; l,, l€L) and observe, that to obtain
the conclusion @, — a (mod A;) it suffices to prove, that [, -1 (mod Ly).
In fact, if this 1s the case we can write [, = k,r,, | = kr with k,, k in L
and r,, rin Ly. There are elements p, and p in M such that r, m,2 = p,
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and rmax = pxr and we have p,z— pxr 1n V. Therefore to arrive at the
desired conclusion it is enough to observe, that by Lemma 1.1
pr = p (mod My).

Assuming, that with the notations of (¢) above, ©, contains z, let us
denote by E’ the subset of E for which 2; (x) 32 0; we are going to prove,

that Ly= (") kerg, If /€Ly, we have lv=mz (m€M) and thus
jew
by Lemma 1.3, % (1) = ¢; (1) &, () = Ay () implying % (1) = 1 (j€ E).
Conversely, if [ satisfies the last condition we have A;(lx) = ;(l)A;(x) =X ;(x)
for all j in E. On the other hand, if y is arbitrary in @, the orbit Mgy
intersects the hyperplane { Z u; wj} in the single point {27\1- (y) Wj}.
_ JEE jEE

Therefore if 4; (y,) = 4, (y.) (€ E) for a pair of elements y, and y, in @,
they must lie on the same Mg orbit. Hence, in particular, there is an m
in Mg such that lx = ma. But by virtue of Lemma 1.2 m can be chosen
in M, proving l€Ly. Let j be a fixed element in E’. Since %;(u) is
locally rational on @, D A z (cf. the begin of this section and Proposition 1.1)
we have

¢ () 2 (@) = 9; (L) A (M x) = 2 (@, ) — 45 (ax) = 9; (1) 2; (2)

and hence 9;(l,) > ¢;(l) if n > +4o0. If I, =hyty, | =ht (h,, h€H;
tny, t€T) we have also @; (h,) = ¢; (h) and ¢; (t,) — ¢; () for all j in E’.
But then also h, - h (mod HNL,) and ¢, -t (mod TNLy,) proving,
that l, = h,t, - | = ht (mod Ly).

Q. E. D.

Cororrary 1.1. — Let A, V and x be as in Proposition 1.2. Then
O = AzCV us locally closed.

Proof. — We define the map ® from A onto O by ® (a) = ax (a€A).
Let = be the canonical map from A onto A/A;; then there is a bijection ¢
between A/A, and O such that

0 ¢
“l \
A/Ax >0

?

be commutative. To prove our statement 1t suffices to establish, that ¢
1s a homeomorphism between A/A; and O, the latter being taken in the

topology it inherits from V. We infer from Proposition 1.2, that ¢ is
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continuous. On the other hand, if U is open in O, T (?p1 U)) —0 (U) 1s
open in A and hence so is 9 (U) in A/A,. '

Q. E. D.

CoroLrary 1.2. — Let V be a finite dimensional real vector space and B
a linear solyable algebraic group in V. Then each orbit of B ts locally closed

in V.

Proof. — It suffices to take into consideration, that the connected
component B, of B satisfies the conditions of A in Proposition 1.1 and
that B/B, is finite (cf. [30], p. 439).

Q. E. D.

2. Let g be a real solvable Lie algebra and G = exp g the correspon-
ding connected and simply connected Lie group. We denote by § a
fixed Lie algebra with the following properties : gC4g, [g, 8] = [§, §],
and § admits a faithful linear representation p, such that p (§) is an alge-
braic Lie algebra. To obtain § with the indicated properties we can
take, for instance, a faithful linear representation of g, and take the
algebraic closure of its image (cf. [6 a], Theorem. 13, p. 173). Let us

consider the connected and simply connected solvable group G determined
by §. G acts on g by inner automorphisms, and its range through this
representation is the connected component of a linear algebraic group
CGL (g); the same observation applies to the contragredient represen-
tation of G on g’. Therefore, if x is any element in g’, by virtue of Corol-

lary 1.2 above, G z is locally closed in g’. We are going to make use
of these observations to prove the following

Prorosition 2.1. — Let § be a real solpable Lie algebra, G the corres-
ponding connected and simply connected group; we assume, that G acts
on g through the coadjoint representation. There exists an equivalence
relation W on g, uniquely determined by the folloswing properties : 1° Any
orbit © of R is locally closed in §' and is G invariant; 2° For any p€©,
G p is dense in ©. In addition we have, that () Gp = © if and only
if G p is locally closed, (3) For each orbit © of W there is a connected and
stmply connected Lie group G, such that GCGy, [Gy, Gi] =[G, G] and,
for any p in ©, © = G, p.

Proof. — a. Let a be a fixed element of g’ and let us write ® = Ga.
We denote by ® the map from G onto @ defined by @ (a) = az (a€ @),

by 7, 7, © and p the canonical maps from @ onto E = @/L, from G onto
Ann, Ec. Norm., (4), IV. — Fasc. 4. 66
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é/é,,, from é/(}w onto J = G/GxL and from G onto J resp. (we recall,
that L =[G, G] =[G, G]). We put ¥ = no® and define ¢ and ¢ such

that the following diagramm be commutative

Zi“ g \h'&iﬂ.

/8L =
g $

b. Using the above notations we prove first, that ¢ is a homeomorphims
between J and E. 1f U is an open set in E, W being evidently continuous,

—1

iff'(U) =7 (¢ (V) is open in G and hence :]:(U) is open in J. On the
other hand, we know from Proposition 1.2, that ¢ is continuous and
therefore, if W is open in J, ¢ (W) = = (¢ (7 (W))) is open in E = ®/L,

completing the proof of our statement.

c. Let us denote by © the relative closure of G in @. Our next
objective is to show the existence of a closed, connected subgroup G,

of G, containing G, such that G, z = ©. To this end we write B for
the closure of the connected subgroup ¢ (G) in the connected abelian group

J = G/Gm L and show, that the connected component of the identity G,

n —pi (B) satisfies the requirement. Since both G z and © are L invariant,
1t 1s enough to establish, that

(G 7) = 7 (@ (Gy)) = 7 (O).
But by the diagramm of (a) we have
(@ (G) =¥ (G) =¢((G) =4 (@)=Y @)

since, by (b) above, ¢ is a homeomorphism, and thus = (G, z) = ¥ (G).
Let F be a subset of @ ; we shall denote by F its relative closure in @. If F
is such, that LF = F, we have = (F) = = (F), and hence

(@) =7 (Gz) =7 (Ga) =7 (@ (G) =T (G),

proving, that 7 (G, z) = © (@) and thus also G, z = @ (=Gazcd).

d. Let us observe now, that, if we replace « by another element y of @,
the construction of (¢) leads to the same group G,, and thus, in parti-
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cular, Gy = G, y. From this we conclude, that defining y~  provided
y€G @, we obtain on g’ an equivalence relation of the desired sort.

e. To show uniqueness, it will suffice to establish the following statement.
Let O, and O, be G invariant, locally closed subsets in g, such that any G
orbit contained in them is dense. Then, if O,N0, % &, we have O, = 0O,.
Let us put O, = 0,N0,; O, 1s locally closed in O,, and therefore there is
an open set U and a closed set F in O,, such that O, = FnU. If pis
some point in O,, we have G pC O, CF CO,, but since G p is dense in Oy,
F = O, and thus O, is open in O,. But if 0,0, and g lies in 0, — O,,
evidently G ¢ cannot be dense in O,. In this fashion 0, 0,, and thus
by symmetry O, = O,.

f. To complete the proof of Proposition 2.1, it is now enough to show,
that if G 2 is locally closed in g’, then G 2z = © [¢f. (¢)]. For this, however,
it suffices to repeat the above reasoning with O, = Gz and O, = ©.

Q. E. D.

3. The purpose of this section is to collect a few elementary facts,
which will be employed in an essential fashion in Section 5.

a. In the following G = exp g and G = exp § will have the meaning
as in the previous section.

b. Let z be a nonzero element of g, which we shall keep fixed. Let
us put @ = Gacy'.

If g is some element of ¢’ and f= g|¥, the subgroup G;CG norma-
lizes (Lg);CGe and hence, since G,CG; [for G, of. 1.4 (¢)], Gy (Lg)s
is a subgroup, to be denoted by H,, of Gc = exp gc. Since

Gsn (Le),=exp (*n3y)

is connected, H, is closed in G¢ (¢f. Lemma 4.2, Chapter I).
If ¢ and g, are elements in g’, such that g|d =g, |¥ =, we have
"~ Gg = G,, (cf- Remark 6.1, Chapter 1) and hence also H, = H,.

c. If [ and I, are elements in (3¢g)s, we have ([, [,], f) = 0, and hence,
since (Lg)s is connected, there is a continuous homomorphism ¢, of (Lg)s
into the group C* of nonzero complex numbers uniquely determined

ya
by do, =1 (f| dc)s). If y is arbitrary in G, [¢f. 1.4 (c)], there is a
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7' € Hom (H,, C*), uniquely determined by ¥’ |G,=17, 7’| (Le); = 9.

In fact, any element of G, leaves ¢, invariant, and in addition since
11(Gdo =1 [dze=i(9189]  and  Gen(Le), = (GeonLy = exp (3,n2),

we have evidently
1] (Gen(Le),) = 9] (Gen(Lg),)-

Let us put

A — - A
H, =§4’; y € Hom (H,, C*), ¢ l Gee Gy, V| (LC)fE ‘Pf}-

We also write

H, = | ; yeHom (H,, T), §| (H,)s = 1).

I?Ig is isomorphic to the dual of the free abelian group H,/(H,), = G./(G,),,

2 e . A
and H, acts, through multiplication, simply transitively on the set H,.

d. Let gand g, be elements of @ = G z and assume, that g, = ag (a€ ).
We are going to show, that H, = a H,a™'. We put o, (b) = aba™ (b€ Gg).
The indicated assertion is implied by the following series of observations,
the verification of which we leave to the reader [cf. also 1.4 (R)].
10 w, (Gg) = Gag, whence also 0, ((Gg)o) = (Gag)o; 2° Yago We=Ys ON
(Gg)o; 3° From 1° and 20 we conclude easily, that o, (Gg) = Gg;
40 w, ((Lg)s) = (Lg)ay- By aid of 3° and 4° we obtain finally

aﬁg a! = w, (Hg) = Hg..
From this relation we derive at once, thatif g, g, € ®, we have G,L¢ =G, Lec.
Let us observe, incidentally, that by virtue of what we saw in (b) above,
the same conclusion holds true if we only know, that g|d and g, |d lie
on the same G orbit in V.

In the following we shall denote by H the closed subgroup Gy Lg of Gg
(g = arbitrary element in ).
Let us observe also, that the above remarks, along with ¢, 0, = o,

) A A
mmply, that H, - w, = H,.

e. We set J = H/(H),, and write ® for the canonical homomorphism

of H onto J. Let us put

H=2300={yyeHom (& T), 7| (H.=1.



REPRESENTATIONS OF SOLVABLE LIE GROUPS 525

Given ge® and kPGH write $, = &.I/[Hg, We observe, that the map
Y-, <¢€H> is an isomorphism of f onto H [ef. (e)].

A
f. We denote by B (@) the set U _gHe  Welet the group H act on

n . _ _ . A
8 (®) according to the following rule : if p=1(g%) <g€ 0, ye Hg> 1s
~ ) .
some element of B8 (®), and o€ H, we put ¢ p = (g, 9, 7). If we define
the map = from B (@) onto ® by = p = g we have to p =< p. Also,

() -1
by what we saw in (c) and (¢), H acts simply transitively on t (g) for each g
in ®. We let G, too, act on 8(®) by setting ap = (ag, ay) [p = (g, X)]

[cf. the end of (d) above]. We observe, that if ¢ is some element of i
we have evidently a 9 = ¢, and thus a (¢ p) = ¢ (ap), or the actions of G

and H commute with each other.

4. The purpose of this section is to complete Proposition 1.1 in the
special case, when V = g" and G acts on g’ yia the coadjoint representation.

Prorosition 4.1. — Let us assume, that § is a nilpotent Lie algebra
over the real or complex field (denoted by K). Then, assuming in Propo-
sttion 1.1 that V = g’ and that G acts on V via the coadjoint representation,
there is a collection of homogeneous polynomials {Q;(x); 1=j=M}
on V, such that F; = {z;2€V, Qx () = 0 for k =} and that for a suffi-
ciently large integer N, (Q; (2))Y Pi (z;2) (1 = k= m) is the restriction of
a polynomial function on K*XV to KX (F; , — F)).

Proof. — a. We can obviously assume, that the Jordan-H¢lder sequence
{V;;0=7=m} of loc. cit. arises by considering a Jordan-Hélder
sequence § = §,Dgn1D...D8 = (0) in g and by taking V, = g7 Cyg’".
Let l;€8, — 8,4 (1=]=m) and (l;, ;) = &;; then [;€g9t, — g+ and
we can suppose, that ¢; = [,.

b. Given an element x of g’, we denote again by B, the skew-symmetric
bilinear form B (L, L) = ([li, I.], 2) (I, l.€9) on gxXg [c¢f. 1.4 (b)].
Given a subspace l) of g, we write hi for its orthogonal complement in g
with respect to B,. ,

Let us put R (z) = (g)f, and g; (x) =g, + R(2) (07 = m). Since
obviously g . = (8, (%)%, [¢f. (a) in the proof of Propesition 1.1] we
have j€f(x) if and only 1if g; , (x)ggj ().

c. Let e and g be different elements of & (cf. loc. cit.); we shall define
an order relation between them as follows. We set g < e if e = @ (empty
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set); otherwise we define g << e if either d (g) > d (e), or

d(e)=d(9) =4, e={0<j, <]2<<]dém},
g={0<k <k <...<ki<Zm}

and o = sup 3 with jg = kg implies, that k.1 << Jois.
We set Q. (z) =1 if e = J; otherwise let us define

Qe (@) =det {([l, ], 2); i, jee]..

With the above notations we shall now prove the following assertion.
Assume ¢ = f(z); then e is the smallest element in &, for which Q,(x)£0.
To this end let us observe first, that Q. (z) 2 0. In fact, since obviously
li€g; (z) — g;_. (z) (jEe), the system {[;; j€e} is a basis in g mod (R (z)).
Hence to complete the proof of the above statement it is enough to esta-
blish, that Q, (z) = 0 if g <<e. This is obvious if d(g) > d (e¢). Other-
wise, with notations as above we have, that { [, L, ..., L |Cy, (2);
since dim (g; (z)/R (x)) = «, this implies at once, that the system
{1;;7€ g} is linearly dependent in g mod (R (z)) and thus Q, (z) = 0.

Note, that in this fashion we can conclude, that

O, ={x;Qz(x) =0 for g <e and Q.(r)=0}.

d. Let e be an element of & different from @. Assuming

e={0<ji<j.<...<jaZLm}

we put
=1, (1=k=d).

For z in @,, let us define the system { I, (z); 1 =Z k=" d } by the condition,
that

d
B. (e le (@) =0u  and L@ = au (@) e.

=1

Then evidently I (z) € (g, (z))8, — (g;, (2))3, and Q. (2) Ik (z) (1 =k =d)
is the restriction to @, of a polynomial map g" — g. Therefore, to complete
the proof or Proposition 4.1, it suffices to substitute the system
{li (); 1 Zk =d}, constructed above, in place of the system denoted
in the same fashion at the end of () in the proof of Proposition 1.1, and
carry out the construction of the canonical parametrization of Gz as
loc. cut.
Q. E. D.
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Cororrary 4.1. — Wiuth the assumptions of Proposition 4.1, putting
O, =F,;, —F, for each ] (1 = j M) there is a map h of ©; inio itself,
such that, for a sufficiently large integer N, (Q; (z))" h (z) is the restriction
to ©; of a polynomial map of §' into itself, such that for any x in ©; :
10 h(ax) = h (z) (a€G); 2° h (2)€GC a.

Proof. — We assume, that @; = @, (e€ &) and write E for the com-
plement of e in {1,2, ..., m}. Then, by virtue of Lemma 1.3, and of
the above proposition it suffices to define

h@ =31 @1 @e®.).
i€E
Q. E. D.

Remark 4.1. — For later use we observe the following. Assuming
d (e) > 0, let us write P, for the hyperplane {I'; (I;,I') = 0,j€e} in g'.
Then, putting V. = P.N ©,, we have evidently A; () = z;ifz€ V. (JEE).
In particular, as 2 y;l, describes the Zariski relatively open set V.,

JEE
we obtain each orbit in @, precisely once by considering the varieties
of the form {z;x€¢’,); () =y;,JEE}.

Prorosition 4.2. — Let ©; be as in Corollary 4.1, and let us assume,
that d = dim o (x) for x€®; [0 (2) = Gz]. Then there exists a positive
integer N, a map 1 from K*X ©; into g, and a map R from © ;X ©; into K*
such that (Q; (2))YU(T, =) [(Q; ()" R (y, z) resp.] is the restriction to
Kix©; [to ©;X©; resp.] of a polynomial map on KX g' (on ¢’ X g’ resp.)
such that : 1° For each fixzed x in ©;, the map [T — exp [l (T, )] 2] is a
bijection between K* and G x; 2° If y€Ga and y = exp [l (T, x)] z, we
have T = R (y, z).

Proof. — We suppose again, that ©; = ©,. By virtue of (¢) in the
proof of Proposition 1.1, to obtain [ (T, z) it suffices to consider the
system {l;(2); 1 =k=d| determined in (d) above, and write down
the product exp [t I, (2)]exp[tals ()] ... exp[tala(x)], through a repeated
application of the Hausdorff-Campbell formula, as

exp[I(T,2)] [T =(tytby ..., )eKd]

Let us assume, that
e={0<ji<jp<...<jaLm},
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Putting for @.3y =Zyjl’1,,

j=1
Re (@, 2) = Yje + Yk Wjos Yjos - - -5 Yjies3 T)

[cf. (d), proof of Proposition 1.1], to obtain the map R with the properties
specified above, it is enough to define

R@,x)=[R: @ x),...,R.(, ) ‘ (x,ye®,).

The following result will be used in Chapter IV only.

Lemma 4.1. — There is a bound K (m) depending on the dimension m
of § only such that, with the notations of Proposition 1.1 and 4.1, N can
be chosen not to exceed K (m), and then the degree in x of (Q. (z))" P, (z; 2)
does not exceed (2 m + 1) K (m).

Proof. — Given a polynomial P in the groups of variables z, y, ...,
we shall write deg, P, etc. for its degree in the components of z, y, etc. resp.
We fix e in & such that d = d (¢) > 0. Let us observe, that this implies
m = dim g > 2.

a. We observe, that by virtue of (d) in the proof of Proposition 1.1,
for each j, 1 = j = m, there is a polynomial F;(T;a, z) on K*xXK*Xg/,
such that deg; F;, deg, F; = m — 1, deg, F; =1, an that putting

a@) ={ax(@);1 <L, k=d}eK?”
[c¢f. (d), Proposition 4.1], we have
Q; (T;2) =F,; (T; a (2), 2).

b. Let us set z, = F;, (T; a, ). Then we get t, = Gy (z; a, 2) (1 ==k=4d),
where G; is a polynomial on K¢XK”Xxg'. Let us show, that for each F,
deg, Gr == m™. To this end we observe first, that if L, 1s such, that
deg, G; = Ly for 1 == j = k, then deg, Gsss == (m — 1) (Lx 4+ 1). In fact,
we can write 2w = Ui + Higo (T a, @) where, by virtue of (a) above
deg, Hiyy == m — 1 and degy Hi =~ m — 1. The desired conclusion follows
by taking into account, that G, arises upon replacing the variable ¢;
17k in z4s — Hii (T; a, ) through G;. Next we note, that
deg, Gy = 0 < m — 1. Hence we obtain, that deg, Gy =~ m™ (1 == k = d)

by observing, that if we set L, =m — 1 and L;, = (m — 1) (L; + 1),
then L;==m/(j=1, 2, ...). Since d<<m we get finally, that
LiZLa< Lnp=m"(1<Lk<d). One proves similarly, that deg, G.="m™.
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c. Upon replacing in F; [cf. (a)] tx through G, we obtain a polynomial
P; (z; a, ) such that P;(z;a (2), 2) = P, (3;2). Since

deg. F; =1 <m—1, deg. F; =m—1, and degr Fj=—m—1,

using (b) we conclude, that deg,P;, deg, P; =~ (m — 1) (m™ -+ 1).

d. Let F (a, ) be the coefficient of some power of z in P, (z; a, x).
By (c) it is a sum of terms a"2* with |r|, | s| =" K (m), where we put
K (m)=(m — 1) (m™ + 1). Werecall, that we have ay (x) = by (2)/Q. (),
where by (2) and Q. (z) are homogeneous of degree < m (1 =1, k= m).
Taking @ = a () [¢f. (a)] we conclude therefore, that a” 2° is of the form
h (2)[(Qe (2))*", where h (z) is a polynomial, the degree of which is not
larger than |s|+ m|r|4+ m(K(m) —|r]) < (2m+ 1) K(m) thus we
get, that (Q. (x))""™ P, (z; 2) is a polynomial in z, the degree of which
does not exceed (2m + 1) K (m) (1 =] = m).

Q. E. D.

5. The purpose of this section is to define on B (@) [¢f- 3 (f)] the struc-
ture of a differentiable manifold, which turns it into a principal bundle

~ : - ~
over ©, with the structure group H, acted upon smoothly by G, such that
the actions of these groups commute.

In the following we shall assume, that for g€ © : —Ggg (Gg)o, and write m

for the rank of G,/(G,),. Observe, that H is isomorphic to T™. By
a smooth map from a C” manifold into another we shall mean a C” map.

5.1. Prorosirion 5.1. — Let a be a fived element of J [cf. 3 (e)]. There
is a smooth map o from ® into H such that : 10.® (5 (g)) = a; 2° For any g
in ©, o (g) lies in H,.

Proof. — a. We denote by m the canonical projection from g’ onto

¥ C(dc)’. Let us choose a Jordan-Hélder sequence for the action of G
on (0g)’. By virtue of Remark 1.1, replacing G loc. cit by Lg and V
by (d¢)’, we can conclude, that there 1s a j(1=;= M) such that
0 <®>C®J - Fj_] - F,

b. Let b be a fixed element of H such that ® (b) = a. We have for

any f€r (®>C®jc(hc)' : b' f€Lgf. With the notations of Propo-
sition 4.2 (with G = Lg, K = C) let us form the function

L) =LRO D)

Ann. Ec. Norm., (4), IV. — Fasc. 4. 67
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for a sufficiently large integer N (Q; (f))¥ I (f) is the restriction of a poly-
nomial map, from ()’ into dg, to = (®). Putting d (f) = exp [l (f)]
we have d(f) = b~'f, and therefore setting o (f) = bd (f), the smooth
map ¢ (f) from = (®) into H will have the following two properties :
100 (5 (f)) = a; 206 (f) f = ffor all fin = (®).

c. Let us define now the smooth map o from @ into H by o (g) =5 (f)
if f=g|?, and g (f) as in (b) above; we show next, that it satisfies the
conditions of Proposition 5.1. We have evidently ® (s (g))=a on ®.
On the other hand, since o (g)€ H = L¢ G, and o (g)f=f, we have
also ¢ (g)€ Hy = G, (L¢);. ‘

Q. E. D.

Remark 5.1. — Observe, that we have actually proved, that o (g) in
Proposition 5.1 can be chosen in such a fashion, that it depend only on
the projection of g onto ¥’

5.2. a. Let {a;; 1 = j = m | |m = rank of G,/(G,), for g€ ®] be a basis
in J = H/(H), ~ G,/(G)o. For each j we denote by o; a smooth map
from @ into H, related to a; as is o to @ in Proposition 5.1. Putting,
for w in C*, arg ® = w/| ® |, we define a map « from 8 (@) into & x T
by setting, for p = (g, 1) €8 (©) :

@ p = (g; arg (z (@1 (9))), arg (x (72 (9)))s - - -» arg (x (@m (9))))-
We observe, that « is a bijection between the underlying sets of 8 (©)
and @ X T™ resp. In fact, if we have forp = (g, ¥), p’ = (g, ¥/) in 8 (®) :
% (p) = « (p'), then, by definition, g = ¢, %, 1'€ IAL, and
arg (1 (o, (9) = arg (¢' (@, (9))) (L =j=m).

By 3 (f) there is a ¢ in /j such that ¥ = (9o ®)y; since ® (3, (g)) = aj,
this implies at once, that ¢ (a;) = 1 for all j, and hence =1, y =y’
and finally p = p’. In this fashion, to establish, that « is a bijection,
it is enough to show, that it is surjective. But with the above notations

arg (9 @) ) (o, (PN =9 (@D arg (z (e; (9) (A =j=m)

and hence the desired conclusion follows from the fact, that ¢ (a;), for each j,
can arbitrarily be prescribed in T.

b. Let {a,; 1=j < m}|be a second basis in J. Distinguishing notions,
introduced above, relative to this new basis, by a prime, we show, that the
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map o’ o a is a diffeomorphism of & x T with itself. To this end let us
write for each j:a, = a™.a™...a}y. Then we have also

Y m

a5 (9) = (@1 (9))"- (22 (9))5- - - (5 (9))"- h; (),

where h; (g) is a smooth map from @ into H, such that, for each g, its
value lies in (H,)s = (G,)o (Lg)s. Let us write 1, for the element of

Hom ((H,),, C*) determined by . | (Gy)e = ¥, and 7, | (Le)r = 9, (cf. 39).
Putting

9, (9) = % (hy (9) and 0 = (01, Wy, ..., 0y)ET™, ceey
we conclude, that
(a1072) (g, ©) = (g, o), where o) = wu.. .0 arg (9, (9)).

In this fashion, to complete our proof, it suffices to prove, that for each j,

the function @; is smooth. Let g, be a fixed element of ® and let us
choose a basis {l;; 1 = j =~ N | which is supplementary to §,in §. We set

() =exp(tl), T=(,t ....00€RY and  ¢(T) =g (L) g (). .. gx (tx).

There is an open sphere O around the neutral element in RY, such that
the map [T — a (T) g,] 1s a diffeomorphism between O and some neigh-

borhood of g, on ©. In this fashion it is enough to establish, that

?; (g (T) go) 1s smooth on O. But this is clear from the observation,
that

97 (9 (T) 90) = xsme (1 (9 (T) 90)) = 74 ((9 (T h; (9 (T) 90) g (T))-

c. Using the above remarks, we can now define the structure of a diffe-
~ rentiable manifold on B (®) by the condition, that the map « [cf. (a)]
be a diffeomorphism between 8 (®) and @ x T

d. Let us show finally, the the map from Gx 8 (®) onto 8 (@), which
assigns ap to (a, p), is smooth. To this end it 1s enough to establish, that

the map (a, q) ~> 2 (a2 () (g€ ® xT") from Gx ® xT" onto @ xT" is

y A .
smooth. If ¢ = (g, ) we have « (q) = (g, y), where y € H; is determined
by w; = argy (3;(g)) (1 = j = m). We have then

’

a(ad)(q) = (ag, »'),  where o} = arg(ay (o (ag))).
But
ay(ci(ag) =y (a'o;(ag)a) and a'g;(ag)a=0a;(9)k;(a g),
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k; being a smooth function from G x @ into H, such that for each g kj(a, g

lies in (H,),. From here we can complete the proof as at the end of (b)
above.

6. — 6.1. a. A smooth mayp p (g) from @ into B (@) is called a cross
section, if Tp(g)=glge®;cf. 3 (e)]. Each cross section determines
a smooth map p. of G x @ into i} by the condition, that ap (g) = i (a, g) p (ag).
One verifies by an easy computation the identity u (a, bg) v (b, g) = |~ (ab, g)
(a, beG; ge®). Furthermore, if p, (g) is another cross section, there
is a smooth map ¢ (g) from ® into ﬁ, such that ¢ (g) p, (g) = p (g) (g€ ®).

Putting, similarly as above, ap, (g) = 1 (a, g) p1 (a, g), we find, that
e (@, §) = 1 (a, 8) [¢ (ag)/e (g)]. Finally, if a belongs to G, we have

w(a, g =1 <= unity in ﬁ) In fact, to see this it suffices to recall,

A — A
that € H, means, that ¢ | G,€G, and ¢ ] (Le)r=¢s [cf- 3(c)] and
therefore, if @ belongs to G, we have a ¢ = ¢. Hence, writing p (g) = (g, {)
we get
ap (9) = (9, ay) = (9, ¥) = p(9) = - (a 9) p (9)

and thus @ (a, g) = 1, proving our assertion.

b. In the following we shall consider some special examples of cross
sections, which will be of interest later. Suppose, that {o; (g); 1 =] = m|
and « have the same meaning as in 5.2 (a). Let us observe, that for

cach g€ ® there is an element v, (g) of ﬁg, uniquely determined by the
condition, that y, (g) (5, (g)) > 0 (1 =Zj < m). Setting p, (g)= (g, %o (8)),
we get a cross section. In fact, the only thing which requires verification
is that the map [g+— p, (g)] is smooth which, however, follows at once

from « (p, (g)) = (g, 1)€® xT™ (1 = unity in T™). Let us put

apo (9) = 0 (a, 9) po (9)-
If ¢ 1s some element of ﬁ, we shall write ¢ for the element of J, such that
8o® =0 [cf. 3(e)]. We recall, that y, is defined on (Hy)o = (Gg)o (Lg)s

by the condition, that ¥, | (Gs)o =17y, and ¥, | (Le)r = ¢r [c¢f- 5.2 (D)].
With these notations we find, that

B (a, 9) = arg (xs (' o; (ag) a (@, (9)™)) (P (5 (9) = a;€J for 1 =j = m).
We have, in fact, aj, (g) = (1 (@, 8))g %o (ag), whence
%0 (9) (@7 97 (ag) @) = Do (4, 9) (4)) %o (a9) (o (a9))-
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By virtue of y, (g) (5, (g)) >,Oa we infer, that
o (a, 9) (a)) = arg y, (9) (@' ) (ag) @) = arg yo (9) (a* o (ag) a (v (9))™).

We observe that the argument inside 7, (g) belongs to (ker ®) n H, = (H,),;
hence we obtain finally, that

Do (a, 9) (a)) = arg y; (a' o; (ag) a(o; (9)) ")  (aeG, ge®;1=j<m)

Let us suppose, as we can (¢f. Remark 5.1) that o;(g) depends on
f=m(g) = g|¥ only; then, if a belongs to (Gy),, we have p, (a, g) = 1.
In fact, as above :

%0 (9) (@ 05 (ag).a) = o (a, 9) (@) %o (ag) (@7 (ag)).

But the left hand side is equal to y, (g) (s;(g)) > 0 since, if a€(Gy),

and b€ G, L, we have aba™ = b mod (L) (c¢f. the proof of Lemma 7.4,
Chapter I), whence the desired conclusion is clear. If we assume finally,

that o, (g) if of the form b, d; (g) [b,€ H, d, (g) € L¢; cf. the proof of Propo-
sition 5.1] then we can even infer, that

Do (a, 9) (@) = arg ¢ (a* o (ag) a(e; (9))™)s

and thus ¢, (a, g) depends on f = = (g) only. In fact, to see this it suffices
to verify, that

ata;(ag)a(e;(9)" = a*o;(ag) a(o;(ag)o;(ag) (@; (9~

belongs to L¢ =‘[(~}c, C‘rc]; but this is clear, since now
oj(ag) (5; (9~ = b; d; (ag) (d; (9) " b7’ €lc (1 =)< m).

c. We shall call the function @ (a, g), determined by the cross
section p (g) [cf- (a)] the obstruction cocycle belonging to p (g). Let us

-e-

denote the group of all smooth functions from GX@ into H, satis-
fying . (a, bg) p- (b, g) = 1 (ab, g) (a, b€G; g€ ®), by Z' (®), the sub-
group of all elements of the form ¢ (ag)/e (g), where ¢ (g) i1s a smooth

function from @ into ﬁ, of Z* (@), by B* (®), and let us put
Ht (@) = 7' (®)/B! ().

Then, by (a), the set of all obstruction cocycles on @ determines an
element of H! (®), which we shall denote sometimes by [@]
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6.2. Prorosirion 6.2. — There is a cross section from © into B8 (®) such
that the corresponding obstruction cocycle is independent of the component,

P4 . . . ~ e
in O, of its argument, and thus gives rise lo an element » € Hom <G, H>
Through an appropriate choice of our cross section we can arrange, that

the kernel of w contain the closed subgroup (Gy), Gy L of G (g = arbitrary
in ® and f=¢g|V).

Proof. — a. Let us put ®, = 7 (@)cd. According to what we saw
in 6.1 (a) and (b), to establish our proposition, it suffices to prove the
following. For a in G and fin @, let us define

v(a, f) = 95 (at o (af) a (= (F))™)s

where o (f) = bd (f) (b€ H) is as in the proof of Proposition 5.1. Then
there is a smooth function ¢ from ®, into C* and an element

of Hom (G, C*), such that
v(g,)=w @@ @) (acG fed)

b. To establish the assertion just formulated, we prove first, that there
is a smooth function p. (f) from @, intc C*, such that

v N=pe@ (el fed,).

Let us put @ ¢ = Gea (2€® fixed) and (@), = 7 (Og)cVs. Weshow
now, that we can find a smooth function p from Le X (®¢), into C*, such
that ¢ (a, bf) ¢ (b, f) = ¢ (ab, f) |a, b€ Lg; f€(Oc).], ¢ (a, /) = 1if a€ (L),
and p, when restricted to L X ®,, coincides with v [as in (a)]. To this end
we observe, that the map d (f) from @, into L, introduced in 5.1 (b) and
which satisfies d (f)f=b"'f (fe @), can be viewed as the restriction
to ®,c(®¢), of a map [to be denoted again by d (f)] defined and having
similar properties on (®¢),. In fact, we remark first, that any Jordan-
Hélder sequence for the action of G = exp § on Yg is invariant under the
action of Gg = exp §¢, and hence, with the notations of 5.1 (a), we can
conclude, that (@c>1c®j. Our second remark concerns the fact, that

if bis a fixed element of H, then for any fin (®¢),, bfcLcf. In fact,
if f=mn(g), g = ax (a€Gg, x€Y4’) then, since

H— = Gz‘ LC c Gy Lc C (Gc)a.z' Lc = LC (GC)WL‘
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we have bg€L¢ g, and hence also bf€Lgf. In this fashion, to obtain
the desired extension we can proceed as in 5.1 () and put

d(fy=exp[LRO [N [fe(®c)i].

Defining o (f) by bd (f) [f€(®¢)] we set on Le x (@), :
o(a f)=9s(aa(af)a(@()™).
It is clear, that ¢ on Lx (@), coincides with v, and also, that it satisfies
0@ b)p (b, f)=rp(ab,f) [a beLe, fe(®c)il.

Therefore, to complete our construction, it suffices to show, that ¢ (a, f) = 1
if a€(Lg)y. But then we have

o@fN=9r(@No,@()a@)™) =0,@)eos(@=1
since o (f).f=f [fe (@), ].

Our next objective is to establish the existence of a smooth function
from (@¢), to C*, such that ¢ (a,f) = (af)/i- (f) [a€Le, f€(Dc).].
Then, restricting the last relation to LX® we shall have obtained the
analogous conclusion for v, announced at the start of this point (b). To
this end we recall first, that by virtue of Corollary 4.1 there 1s a map h

of (@¢),c®; into itself, such that, for a sufficiently large integer N,
(Q)Y h is the restriction to (&), of a polynomial map of Vg into itself,
and such that : 1° h (af) =h (f) (a€L¢), 2° h (f)€Le f [f€(@¢).|. Using
the notations of Proposition 4.2 let us put 8 (f) = exp [L (R (f, h (), h (f))];
this is a smooth map of (@¢), into L and we have & (f) k (f) = f. Next
we show, that w(f)=p (8(f), h(f)) satisfies ¢ (a, f) = p (af)/n- (f) on
ch(‘fbc)l. In fact, since

o (af) h (af) = af = a 3 (f) h(f)
there is an element d, in L¢g such that
dbh()=h(f) and (af) =ad(f)d
In this fashion, using that ¢ (a, f) = 1 if a€(Lg), we get that

w(af) = p (3 (af), h(af)) = p (ad (f) do, h () = p (a, 3 (f) do h(f)) p (3 (f) dos h(f))
=0 Ne @) dh(f)p o h(f)) =p(af) ()

and thus ¢ (a, f) = w (af)/i~ (f), completing the proof of our statement.
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¢. Using the previous observations, we shall finish the proof of Propo-
sition 6.2 as follows. Let us put

v(a N=v(aNe@)kNOr: (et fed)

where 1 is as above in (b). We have on Lx ®, that v, (a, f)=1, from
where we conclude easily, that for any choice of d, d’ and d” fix in L :
vy (dad’, d” f) = v, (a, f) on Gx®,. To complete our proof it evidently
suffices to establish the existence of a smooth map ¢ from @, into C*
and of a € Hom (G, C*), such that v, (a, f) = o (a) [{ (af)/V (f)] [¢f. the
end of (a)]. '

Let us denote by A the group G/L, and by % the canonical homomor-
phism from G onto A. Since G is simply connected and L =[G, G]
(cf. the start of Section 2), A is isomorphic to a vector group. Also,
by what we saw above, there is a smooth function H from A X A into C*
such that v, (a, bfy) = H (% (a), . (b)) (a, beG; f, fixed in ®,).

We observe, that to obtain the necessary conclusion, it is enough to show,
that H (a, k) =1 (a) (9 (k + a)/¢ (k)), where n€Hom (A, C*) and ¢ is
a smooth function from A into C* satisfying ¢ (k 4+ b) = 9 (k) for each k
in A and b in the closed subgroup B =2 (G;) = G, L/L of A. In fact,
~ defining then ¢ (f) = ¢ (A (a)) for f= af, (a€(G), and putting ® = 70 %,
we obtain with ¢ and  so defined the desired relation for v,.

We have obviously H (a + b, k) = H (a, b + k) H (b, k) for any a, b, k
in A. Also H(a, b + k) = H (a, k) on A XA for any fixed b in B. From
this we conclude, that putting v (b)=H (b, 0) (b€B) we have
Y(b+ b') =7 (b)Y (b)) on BXB. |

We finish our proof by showing, that € Hom (A, C*) satisfies the above
relation for H, if and only if its restriction to B coincides with y. In fact,
the only point to be noted then is that y is obviously extendible to an
element of Hom (A, C*). Suppose, that we have

H(a, ) = () [¢ (a + B)/¢ (0];
putting ¢« = b€B, k = 0, we obtain
H (b, 0) = 7 (b) [¢ (B)/¢ (0)] = = (b),

since ¢ (b+ k)=o0 (k) (b€eB, k€ A). Conversely, let us assume, that
1 (b)) =H (b, 0). We put o (k)= H (k, 0)/v (k), and observe, that

o(k+b)=0(k) (keA, beB).
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In fact,

¢ (k+ b) =H (k + b, 0)/n (k + D)
= (H (& b)[n (k) (H (b, 0)/n (b)) = H (k, 0)/n (k) = ¢(k).

Finally we have

(@) 9 (k+ a) = (@) [H k4 a 0)/n(a+ k)
= H (a, ¥ [H (k, 0)/n ()] = H (a, k) ¢ (k)

for all @ and k in A, completing the proof of Proposition 6.2.

Q. E. D.

6.3. Let © be an orbit of ® on g’ (¢f. Proposition 2.1); we recall
(cf. loc. cit), that there 1s a connected and simply connected group G,D G,
such that [Gy, Gi] =[G, G] =L and G, z = © for any x in ©. Imitating
the procedure of Sections 3 and 5 above, we can define a bundle 8 (©)
over ©, which is similar to the bundle 8 (®) over @, through the following
steps. '

a. First we observe, that the closed subgroup G, L of G does not depend

on the particular choice of gin ©. Setting K = G, L (g€ ©®), we denote
by A the canonical homomorphism from K onto

[=K/K) =G/G)o (g€ O).
We put

o N A\ -o- _
K=IoAcK and Gg = { 3 x = character of Gy, x| (Gg)o=11.

One verifies easily, that for any g in ©, the map K¢ > ¢, = ¢ |G,
1s an isomorphism between K and a, Let us form the group H for
® =Gaz(z€0) [¢f. 3(d)]; we have H="G, Lg. We note, that HDK,
and obviously the map EBQJ +> " = {¢ | K is an isomorphism between H

-

N A _
and K [for T, of. 3(¢)] Similarly, the map H,3Y > ' = |G,
A A A

lfor H, cf. 3 (c)] 1s a bijection between H, and G,.

A -

We write now 8 (@) for the set U,cp G, Ifp€Kandp= (g, y)€B (O)
we define ¢ p by (g, 9¢%); given a in G (or in G) we put ap = (ag, a ).
 One sees at once, that a (¢ p) = ¢ (ap).

b. We employ next a local version of the construction of Section 5 to

define a differentiable structure on 8 (@), which turns it into a fiber bundle
Ann. Ec. Norm., (4), IV. — Fasc. 4. 68
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over @ with the structure group E, such that G acts on 8 (@) as a group

of smooth transformations, commuting with the action of K. We start
by observing, that given an element ¢ in I and a fixed element z of @,
there is a neighborhood U of the latter in @, and a smooth function
o:U - K, suchthat: 1°A (o (g)) = a, 2°0 (g) €G,, for all gin U. In fact,
for all g in © we have, if b is any element in K, bg€L g. Assume now,
that b€ K satisfies A (b) = a. To attain our goal it suffices to establish
the existence of a U as above, and of a smooth map d: U — L, such that
d(g)g=0b'g on U. Let {l;;1=j=N} be a supplementary basis
0 () in g (G, = exp g:), and let us put T = (44, &, ..., ty) €ER" and
a(T) =exp (t, ly) exp (ta ls)...exp (tyly). Themap T+ a (T) z is a diffeo-
morphism between an open sphere S around zero in RY, and some neigh-
borhood U of z on @®. In this fashion it will be enough to determine
a smooth map d’': S — L, such that d’' (T) 2 = f(T) z, where

f(D)= (@) b a(@)z

But to obtain this it suffices to take in the proof of Proposition 1.1,
V=g, G=L and define d'(T)= g(T; ) [c¢f. (d), loc. cit] where

fo=z + q)k o 2 - Zia3 )y Za= (@), [l =< dim(Lz)]

provided f (T 2 (TeS).

Let us choose a basis {a;;1=j=<m} in the free abelian group
I (~ G./(Gs)o); we denote by a; (1 = j - m) maps corresponding to a;
as g above to a€ 1, all defined on a neighborhood U of z on @. We denote
by < the map from 8 (O) onto O defined byt p =g [p = (g, x)]- Let us
define the map 8 from 7 (U) onto UXT™ by B (p) = (g, ©) where, if
p=(g €T (U)CB(O), and o= (v, w, ..., wm)ET’" we have
w; =y (0;(8) (1 ==7=m). We leave to the reader to verify, that by
requiring, that 8 be a diffeomorphism between = (U) and UXT" for all
possible choice of U and {o;} as above, we obtain the differentiable
structure on B (@) with the properties specified at the begin of (b)
(cf. Section 5 for similar reasonings).

c. Let us denote by B’ (®) the portion of B (®) over ©® c®, that is

8’ (0)="7 (0)cB (@) [+ being the canonical projection from B (&)

onto @] with the induced structure. One verifies easily, that the map
$: 8 (0) ~ B (O) defined by ¢ (g, 1) = (g, /) [¢f- (a)] is a diffeomorphism
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satisfying & (¢ p) = ¢’ 8 (p) and & (ap) = a & (p) for all p in B’ (@), ¢ in il
and a in G.

We conclude from this, using the result of 6.2 above, that the
bundle B (@) defined in (b) is trivial. More specifically, there is a cross
section p,, such that ap, (g) = (a) p, (ag) (a€G, g€®), where © is

a continuous homomorphism of G in fi, of which we can assume, that
ker 3 Gy (Gy)o L (g€ O, f = g|2).

We can define, similarly as at the end of 6.1, the groups Z' (©), B* (©)
and H* (©) with respect to G and © in place of G and @ as loc. cit. We
shall denote the image of © [considered as an element of Z' (©)] in H* (©)
by [@], and call it the obstruction to a G invariant cross section. One
sees at once, that if @ is acted upon transitively by G, [@] is equal to the
identity in H* (@). We shall, however, show later (cf. Section 8 below)
that this is by no means so in the general case.

7. — 7.1. In the following B (@) will stand for the bundle defined in 6.3;
we shall assume, that dim K > 0.

Prorosition 7.1. — There ts an equivalence relation S on B (@), uniquely
determined by the property, that if O€B (O)/S and p ts arbitrary in O,
we have G p = O. Furthermore, there is a connected solvable group ®
operating on B (©) through an action commuting with that of the structure
group, such that ® DG, [0, ®] =[G, G], and the orbits of ® coincide
with the orbits of S on B (©).

Proof. — a. By what we saw in 6.3 there is a homeomorphism 7
from B (@) onto @ XT™ and an isomorphism ¢ from K onto T™ with the

following properties. IfpeB (@), o€ K andy p) = (g, ) (g€®, weT™)
we have 1 (¢ p) = (g, € (¢) ), and if a i1s any element in G, then

n(am @) =@ o@0) [g=(@ )

where ® (a) 1s a continuous homomorphism from G into T™ such that
G, Cker o for any z in @©. Therefore to establish the truth of our propo-
sition it suffices to prove the analogous statement for the action just
described, of G on © X T™.

b. Let = be a fixed element in @ and G, as in Proposition 2.1. We
denote by E, the quotient space @/L and by =, the canonical map from ©@
onto E,. If a€G, we have a =, (y)[= 7, (ay)] = ™ (y) for all y in @
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if and only if a belongs to (Gi). L. Therefore G, acts on E, as the abelian
group J, = G,/(G,). L.

Let us put ¥, (a) = 7, (az) (a € G,) and let us write p, for the canonical
homomorphism from G; onto J,. We denote finally by ¢, the map from J,
onto E, defined such that the diagramm

6,4 ‘Fl
e
J1=6,/(6pxL > E,=@/L

\

be commutative. We claim, that ¢, is a homeomorphism. For this it
obviously suffices to prove, that ¢, is an open map. If Uis an open set

in J,, we have ¢, (U) =W, ({31 (U)). In this fashion to obtain the desired

conclusion it is enough to show, that W, is an open map. Let G be as in
the proof of Proposition 2.1. 'We shall have attained our goal by proving,

that for a sufficiently small neighborhood V of the unity in G, ¥, (VA G,)
is open. Let us put, as loc. cit., ® (a) = ax (a€ G); we recall, that @ is an
open map from G onto @ = G2 Since ¥, (VNG,) = 7, (® (VN G,)),
it will therefore be enough to prove, that ® (VNAG,) = @ (V)n® (G,).
But if az = bz for a in V and b in G,, we have a = bc with ¢ in G,.
We recall now from 2 (¢), that G, is the connected component of the
identity in the closed subgroup G,.G, of G. Hence if V is a sufficiently

small neighborhood of the identity in G we have, thata VN G,. G.=Vn Gy,
and thus ®(VNG,) = ® (V)n® (G,), completing the proof of our state-
ment.

c. Let us denote by A the dense subgroup g, (G) of J,. We note,
that there is a continuous homomorphism ®, from A into T™, such that
w=w,00, on G [¢f. (a)]. In fact, we have p, (¢) = unity for a in G if
and only if 1t belongs to GN (Gy), L = G, L; but we know, that ker w2 G,L.

We put J, = J, XT" (direct product of abelian groups). Let A be
the subgroup { (a, ©, (a)); a€A} of J,; we denote by B the closure of A
inJ,. WeputE, = E,xT" = (@ xT™")/L, and write %, for the canonical
projection from © XT™ onto E,. For (j, ®) in J, we put

"T"l ((]’ "‘))) = (q“ (j)r w)Eﬁl,

According to what we saw in (b) above, §, is a homeomorphism between J,
and E,.
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d. Let y be the element (z,1) (1 = unity in T™) of @ XT™. To prove
the existence of an equivalence relation as in Proposition 7.1, it will be

enough to show, that if u is in GyCc @ XT", we have Gu= Gy. For
this it suffices to establish %, (Gu) = %, (G y), since %, (Gu) = 7, (G u)
and %, (Gy) = %, (Gy). But taking the image of both sides under the
inverse of J,, the desired conclusion is implied by the fact, that if b is any

element in B, we have b 4+ A = B.

The uniqueness of the equivalence relation S is evident.

e. Finally, to obtain the group ®, we consider first the direct
product of groups G, = G,XT". Tt operates on @ XT™ by the rule
(a, ) (g, ®) = (ag, ww’). For (a, w)€ G, let us put

B (@ 0) = (1 (@), )T

One shows easily, that the connected component of the identity in the
complete inverse image of B under §, has all the properties of &®. For

later use, let us observe, that ® (Gi), is closed in G, and that
G = (6 (G1)s)o-

Q. E. D.

Remark 7.1. — Let O be an orbit of Sand p€ 0.~ Let us observe, that O,
as a subset of 8 (@) [¢f. 6.3 (c)], coincides with the closure of G p in B (®).

7.2. We close this Section 7 by quoting two statements, which shed
some light on the structure of the orbits of S and their position in 8 (©).

Prorosition 7.2.1. — There is a unique closed, connected subgroup T'
of -Ie{—, such that the projection of any orbit O of S onto B (©)/T, along with

the canonical projection from the latter (considered as a ﬁ/ I" bundle) onto ©
is a finite covering of ©.

Prorosition 7.2.2. — The following three conditions are equivalent :
10 For any O in B (©)/S, dim O = dim @; 2° (0O, 7) is a finite covering
of ©; 3°[@] is of a finite order in H* (®) [¢f. 6.3 (c)].

8. The purpose of this closing section of Chapter II is to show by an
example, that the obstruction to a G invariant cross section, in general,
is different from the unity in H* (@).
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a. In the following, given a real vector space V and a finite subset v,,
sy ..., by of V, we shall denote the subspace, spanned by these elements,
of V, by [v;; 1 =j<=M].

Let us denote by g the twelve dimensional real Lie algebra, spanned

by the elements ey, e, ..., e, with the following nonvanishing brackets
[eia ez] = €3, [&, e] = e,
[es, €] = e, [ex €5] = e,
[e, €] = es, [es, es] =— e,
[e2s €] = A s, [es €10] =— 2 € (A = irrational),
[eb, eu] = €13, [6’4, en] = €11.

One sees at once, that ¥ =[g, 4] = [e;; ] = 3, j > 6] is abelian, and
so is g/d, and therefore g is solvable. We have also g7 = Re; + R e.

Let us put ¥V =/e;; 1L7=L6] and F =[es; 7Tk =12]. ¥ is
a nilpotent, & an abelian subalgebra of g and [V, F] = F.

Writing G=-expg, V=1exp ¥ and F = exp F, any element a of G
can uniquely be represented as a product fo (f€F, v€V).

b. Let us consider a basis {e€;;1=j=12}, dual to the basis

{ex;1=—k=12}, in ¢’. Given y in g, we shall write y=2yje,~ ete.

j=1

Let us put
W = {x; 2, 0, 27 + 23 20, 5 + 1, #0, 23, + 71, =0},

An easy computation, the details of which we leave to the reader, shows,
that if z is in W, we have

0 (.'L‘) =Gzr= { Ys Ui Jos s = arbitrary, Ys = T, Yo = Lo, Y5 = L5 + (ti + 16+ ta) Lo,y
yr + iys = e~ (X + ixs), Yo + 110 = €74 (15 - iT40),
Y + iy12 = ¢ (x“ + ixm), (ti, tz, t,;) = arbitrary in R3 }.

Hence, in particular, for t&W we have dim o (z) = 6.

c. We put ¢ = exp[2 n (e, — e.)], and write X for the subgroup gene-
rated by o. One sees at once, that ¢ commutes with any element in
L =[G, G] = exp ¥, and that, if g belongs to W, we have G, L = X L.
Therefore, in particular, G, is abelian, implying G, = G, and G,/(G,), ~ Z-

d. Assuming again z €W, we have for the orbit @ of R (cf. Proposition 2.1)
containing x : .

© = {y; U1, Y, Ys, Y5 = arbitrary, y; = ,, ys = s,

yi+yi =2 + 2y + gl = + 2l gl + Yl =21, 2l W
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e. Writing K for G, L = XL [¢f. 6.3 (a) and (c¢) above] with g in ©,
we have K/(K),~Z, and A(c) is a generator of the latter. Let us put

2w,
f(y) =exp [ﬂx—ﬁ%m} (Y10 69— Yo ew)] eL

206 (y)€G, = G,. Fora=fo[f€F,veV;cf. (a)] let us put

w (@) = w (V) = exp [2 7 iV, T3] [v:exp[Zv,- ej]].

j=1

Obviously ® is a character of G, and an easy computation shows, that
Ly (@t o (ay) a(a(y)) ') = (a) (a€G). Writing, similarly as in 6.3 (c),
¢ for the diffeomorphism between B (@) and O XT defined by

A
S(g, 1) = (g 1 (5(g)) <g€ 0, ye Gg> and putting, for ¢ in @ X T, aq for

-1

8<a ) (q)) we obtain a (g, ®) = (ag, » (a) w) (a€G). In particular, ® is an
obstruction cocycle.

f. Using the preceeding remarks, it is now easy to show, that [@] is trivial
if and only if 2 © z, belongs to the subgroup Z + A Z of R'. By the
‘same token, we can conclude, that [@] is of a finite order in H' [@] if and
onlyif 2 7 z; belongs to Q + A Q (Q = field of rational numbers). Hence,
in particular, upon removing from W [cf. (a)] a sequence of R invariant
hyperplanes, we can arrange, that for the remainder [@] be always of
infinite order. The subsequent reasoning will show, that in the latter
case S (cf. Proposition 7.1) contains but one orbit (cf. also Proposition 7.2.1).

To establish the above statement let us assume, that [@] is trivial [that
1s, it equals to the unity in H' (@)]. We denote by ¢ a smooth function
on ©, such that w(a) =0 (ay)/? (y) (a€G, y€®), and | (y)|=1.
Since F Cker w, we conclude at once, that ¢ (fy) = ¢ (y) on © for all fin F,
and hence ¢ (y) does not depend on y, ys, ys. Let us put @, = O/F; it
can naturally be identified to the subset { y; y; = arbitrary, y’+ y’= a2+ z?,
Yoty =2+ 2, ¥ Ty.=2a,+al,} of R'XT. If a=fo is
some element in G, we have

ay = (s — (01 + 02 + 0.) s, €% (Y1 + Ys), €2 (Yo + Y1o), € (Gu1 + 1Y12))-

Let us define the map ¢ from © onto I' = R*XT?® by
¢ @) = (— Y5/, G + )/ 1 gr + W |, Go + a0/ [ Yo + Waol, Gus + W1o)/ | Y11 + Wae |)-
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Writing ¢ (y) = (u, w0, ®,, ®;) (UER; w;,ET for j =1, 2, 3) we have
e(ay) = (U + o1 + 02 + vs, €™ 01y, €Mz 6y, €M ®3).

We denote by I the dense subgroup {v; v = (v, + v, -+ v., €, ™™, &™),
(v, vy, v,) arbitrary in R*} of I Let ¢" be the function corresponding
to ¢ on I'; we can obviously assume, that ¢’ (¢) =1 (¢ = unity in T).

i

Then ¢’ (on I') is a character of I”, and since it is continuous, it
belongs to the character group of I 'We must have therefore

9" (U, w1, Wy, ;) = exp [icu] 07 0} w

onI' (ceR, n;€Z, j =1, 2, 3 properly chosen). On the other hand,
by assumption, on IV : ¢’ (») = w (v) = exp [2 © v, 5], which implies
at once, that 2n2,€Z + A Z. The converse statement follows easily
from the previous reasonings.

CHAPTER III

THE NONTRANSITIVE THEORY

SumMmARY. — We start this chapter by showing, that each orbit O of the equivalence
relation 5 on R (¢f. Summary of Chapter II). carries an, up to a positive multiplicative
constant uniquely determined, G invariant Borel measure p. Using this, in Section 2 we
assign to each orbit O of G a factor representation as follows. We recall first (cf. Section 7,
Chapter I), that the procedure of the transitive theory assigns to each point p of ® a unitary
equivalence class F (p) of concrete factor representations. We have 7 (p) = F (p) if
and only if p and p’ lie on the same G orbit. One can easily show, that there is a field
{ T (p); p€O} of concrete unitary representations, such that T (p) belongs to & (p), and

that we can form f DT (p) du (p). We show (cf. Theorem 2, Section 2), that this integral
0

~defines a factor representation, the unitary equivalence class of which is independent of
the particular choice of the field used in its construction. It is of type I, if and only if O
is a G orbit, and if for some (and hence for all) p in O, & (p) is composed of type I factors.

‘We know, that if p = (g, %) (X eég> the latter condition is fulfilled if and only if thereduced
stabilizer of g is of a finite index in the stabilizer of g (cf. Theorem 1, Chapter I). Let @ be
the projection of O into ¢’; then @ is an R orbit, and O is an $ orbit in B8 (®) (cf. e. g.
Summary, Chapter II). Thus, in particular, ® must be locally closed in g’. 'We conclude
therefore, that if the R orbit © is not a G orbit, then no § orbit of 8 (®) can give rise to
a type I factor. Also, in order, that G be of type I, any orbit of the coadjoint represen-
tation must be locally closed, or §’/G = ¢’/f. One can show, that if O; are $ orbits,
such that their projection into the dual of » = [g, g] coincide, and T, are representations
corresponding to O; (j = 1, 2), then there is a character ¢ of G, such that T, = ¢ Ty, and
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conversely. Hence, in particular, two § orbits in 88 (©) give rise to factor representations
of the same type. 'We could not decide, if the factors of Theorem 2 are all semifinite or not.
It will, however, follow from the results of Chapter IV, that the collection of R orbits,
giving rise to a factor representation of type III, at the worst can be enclosed in a set of
Lebesgue measure zero, of g’. To explain the motivation behind Theorem 3 (cf. Section 3),
let us consider again the first derived group L. = [G, G]. Denoting by £, and £; the left
regular representation of L. and G resp., we have £, = 1}?% £y. Since L is nilpotent, it is

unimodular and of type I. Assume, that £, = f P T (@) dw (§), where du (§) is the
2

Plancherel measure, and T ({) is an appropriate multiple of a concrete irreducible repre-

sentation of the unitary equivalence class tel. Then this decomposition is central; in
other words, the von Neumann algebra R (£;) generated by £ (that is, the left ring
of L) contains the ring of all diagonalisable operators. In fact, the latter coincides
with the center of R (£). We have also

fcfé@““@@%& where W (1) = nd T (3.

In general, neither are the W ({)’s factor representations, nor is the last decomposition
central. One obtains a decomposition with the latter property by appropriately « grou-
ping » the « summands » on the right hand side. To this end we can proceed, for instance,

as follows. Let G be a connected and simply connected Lie group with the Lie algebra §,
such that G>G, [é, Gl = [G, G] and § be isomorphic to an algebraic Lie algebra (cf. Sec-
tion 2, Chapter II). Then G operates on 1, such that i / G is countably separated, and there
isameasureton S = f,/ G such that denoting, for s S, the corresponding G orbit by O (s),

and by dv, ({) a suitably chosen measure, which is quasi-invariant under G, on O (s), the
Plancherel measure u is a continuous direct sum, with respect to <, of all these measures.
Let us put

Z®5£@W®mmy

We have
Lo = @ Z dt
G ..£ (S) (S)

and this decomposition is already central (cf. for all this Section 9, Chapter IV). This
being so, Theorem 3 (cf. Section 3 below) asserts, that any of these representations Z (s)
(se€8S) is quasi-equivalent to a central continuous direct sum of an appropriate subcol-
lection of the factor representations defined by Theorem 2. The results of this chapter
will be used in an essential fashion at the end of the next chapter to analyze the structure
of the regular representation of G. .

1. Below we shall employ the notations of II.7.1.

Prorosrtion 1.1. — Let O be any orbit of S on B (®). There is a
(up to a multiplicative constant) unique nonzero positive G invariant
Borel measure on O.

Ann. Ec. Norm., (4), IV. — Fasc. 4. 69
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Proof. — a. Let p be a fixed element of O. For a in & let us put
®, (a) = ap. We denote by o the canonical map from & onto &/®,,
and define the map ¢, from &/®, onto O = ® p, such that the diagramm

®
é.
G‘fl’i %\A

>0

2

be commutative. We claim, that ¢, is a homeomorphism. To show this,
1t evidently suffices to prove, that ®, is open. We identify, as in 7.1 (a),
B8 (0) to ®XT" Assuming, that p = (2, w,) we put ®, (a) = az (a €G,).
Let us write, for bin Gy, ®, (b) = bp. If b = (a, ©), we have

®, (b) = (az, wwo) = (D, (a), wy).

We proved in 7.1 (b) that ®, is open, which implies, that ®, too, is
open. In this fashion to establish, that ®, = ®,|® is open, it is enough
to show, that for a sufficiently small neighborhood V of the identity in
G,, wehave ®, (VA ®) = &, (V)n®, (&) (cf. loc. cit. for a similar reaso-
ning). If a€V and b€ ® are such that ap = bp, we have, since
(G)), = (G))ay a€VNG.(G,),. But we have & = (& (G,).)o [cf. 7.1 (e)]
and hence, if V is sufficiently small, a€ VN ®, and thus

&, (V)n &, (G)c ®, (Vn ),

proving our statement.

We conclude from the preceding reasoning, that we shall have proved
our proposition at once we can show the existence and uniqueness of a
positive nontrivial G invariant measure on &/®,.

b. Our next objective is to establish, that &/®, carries a ®
invariant measure of the indicated sort. Let us write ® = exp g,, and
((Gi)a)o = exp [(81)s] = (B))o [since &, = G&N(G,). and ((Gi)s)oCG].

Hence to arrive at our goal it is enough to show that

det (Ad (a) | 90) = det (Ad (a) | (1)) forall ain (Gi)z.

To this end let us observe once more, that [g,, §o] = [g:, §:] = D (¢f. for
the second relation Proposition 2.1). In fact, if G, = exp §,, we have

§. = §. X a, where a is abelian, and thus [g,, §o] C[§:, §.] = [g1, §.]- On the
other hand, if « is any element of G, we have (a, » (a)) € ®, and hence
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(I, 1)e[®6, 6] (leL) implying [g:, §:]C[go, §o]. Using this observation

we can conclude, that

det (Ad (a) | go) = det (Ad (@) | ») = det (Ad (a) | g),

and
det (Ad (@) | (31)=) = det (Ad (a) | (3)=N?) = det (Ad (a) | 9=),

and therefore it 1s enough to show, that

det (Ad (@) |8/sz) =1  [a€(Gu):]-

For l,, I, in g let us put B (I,, I,) = ([li, l.], z); B gives rise to a nondege-
nerate skew symmetric bilinear form on g/g,. Putting al = Ad (a) [ and

ax = (Ad (a™')) z, we have

B (aly, al.) = ([al, al,], x) = (a[l, L], ) = ([, 1], a'x) = ([, L], ) =B (I, 15)
(I, ey, forallae(Gy).);

consequently Ad (a) | §/4. leaves B invariant, implying det (Ad(a) | §/g.)=

c. Let w be a Borel measure on &/®,, and let us suppose, that it is G
invariant. To establish the uniqueness statement of our proposition it
will suffice to show, that . is also ® invariant. Let us denote by dk an
element of the L invariant measure on & /®,>0 (L) = L/L,; dkis invariant
also under the action of ®,. Therefore, if f is some continuous function
of compact support on &/®,, the function F (a f f (ak) dk satisfies

)
F (aya) =F (a)foranya, € ®, L. Let us putﬂ = /6, L; we denote by
A the canonical homomorphism from & onto A. Using the same letter
to indicate the function corresponding to F, as above, on A, and putting
a = (a), we can conclude, that F (a) is continuous and of a compact
support on A. It is known furthermore, that any function of the said
sort can be obtained in this fashion.

Since, by assumption, p is G invariant, it is, in particular, L invariant.
Hence there 1s a positive Borel measure v on A, such that for any f as

above we have
f ( f f(ak)dk> dv = f@ @

The G invariance of p. implies the invariance of v by translations of A (G) C .
But since A (G) is dense in A [cf. 7.1 (e); observe, that with the notation as
loc. cit.,, A=235,|G], v is also A invariant, implying the & invariance of .

Q. E. D.
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2. — 2.1. Before proceeding, let us recall the following facts from
Chapter I. Assume, that pE R = U,ey G,. Foranlcdg with h = pol(p)
we form ind (h, p) (¢f. Remark 7.2, Chapter I). By Theorem 1 ind (), p)
1s a factor representations of type I or II, uniquely determined, up to
unitary equivalence, by p. 'We denote by & (p) the unitary equivalence
class of representations determined in this fashion. & (p) is of type I

if and onlyif, assuming p = (g, %), the order of G,/G, is finite. For p,
p'€R we have F (p) = & (p’) if and only if p’ = ap for some a in G.
Otherwise any pair of representations, with members from F (p) and & (p’)
resp., 1s disjoint. By wvirtue of Lemma 4.3, Chapter I, we have
a ind (h, p) =ind (a b, ap), in the sense of unitary equivalence, for all a
in G. We shall also use the following relation, the easy verification of
which, by aid of the reasonings of Lemma 7.1, Chapter I, we leave to the
reader. Let us suppose, that £ is a character of G, such that d§ = ic (c€yg’).
Then
£ind (9, p; K) = ind (5, £ [ (Gy) 7, g + ¢; K)

in the sense of unitary equivalence.

2.2. Let O be a fixed orbit of S in 8 (®), and 1+ a G invariant Borel
measure on O (cf Proposition 1.1). In the following the notions of measu-
rability, summability etc. will be understood with respect to the measure
space derived from the field of Borel sets on O by aid of p.

By a field of polarizations we shall mean a rule, which assigns to each
point p of O a polarization |, with respect to p [or ), = pol (p)]. One can
construct a special class of such objects in the following fashion. Let p,
be a fixed point of O. Assuming p, = (g, %o) and putting fo = g, |,
the contragredient action on ¥ of K = &,|d leaves f, invariant. Since
[6, ®] = L (cf. Proposition 7.1, Chapter I), we have also [K, K]C Ad (L).
Therefore [cf. the end of 1.4 (b)] there is a polarization with respect to f,
(=1, say), which is invariant under the action of ®, in dc. Thus, if
ap, = a’ p, (a, ' € ®) we have a j = a’ lj, and hence we can define ), = a b,
if p=ap,, We have j, = pol (p) and also al, =1}, (p€0, a€®).

Let { h,; p€O ] be a field of polarizations and let us put
T() =ind(h,p) and H(p)=H(T({P)-

We are going to show, that on the field of Hilbert spaces { H (p); p€O}
we can define a measurable structure, such that the field { T (p); p€O |
of concrete representations turns out to be measurable. 'We recall (cf.[13],

Proposition 4, Chapter 1I, §1, and [12], 18.7.1), that to accomplish this
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we have to construct a sequence {f, (p); n =1, 2, ...} of fields of vectors,
such that : 10 For each fixed p, the set {f, (p)} is total in H (p); 2° For
each pair n, m of positive integers and ain G, the function p — (T (p) (a) f» (p),
fm (p)) 1s measurable. Assuming, that all this can be done for a special
choice of our field of polarizations it is clear, that the same can be done
at least in one fashion for any other choice, too. The result, howewer, is
essentially uniquely determined. In fact (¢f [12], 8.2.3, Proposition and
18.7.6), if {H (p), T (p)} and { H' (p), T’ (p)} are measurable fields of
Hilbert spaces and of unitary representations resp., such that T (p),
T' (p)€ F (p) (p€O0), then for each p€O there is a unitary map V (p) :
H (p) - H' (p), which makes T (p) correspond to T’ (p), and which has
the property, that if {f(p); p€O} is a field of vectors, measurable with
respect to { H (p); p€O |, then {f' (p) =V (p) f(p); p€0} is measurable
with respect to { H (p); p€0O}. For later use let us observe, that in
this case, in particular, the unitary representations

T=[@T@d amd T = [eT @

are unitarily equivalent. To establish the statement formulated above,
let us fix a point p, of O. To attain our goal it obviously suffices to exhibit
a neighborhood U of p,, a measurable field of Hilbert spaces { H (p)}
and of representations resp. over U, such that T (p)€ & (p). Let us choose
U such, that there exist a' continuous map p > a (p) from U into & satis-

fying p=a (p) p.. We denote by lj a polarization with respect to p,.
Let us define

H(p)=H(@nd®,p) and T@E =a@ind@G,p) (<L)

Since T (p) is unitarily equivalent to ind (a (p)}, @ (p) po = p), and
since a (p) ) = pol (p), we have T (p)€F (p). Let {fo;n=1, 2, ...}
be a total sequence in H (p,). Putting f,(p)=f. (p€U, n=1,2,...)
obviously all conditions will be met.

Summing up, given a field of polarizations {},, p€ O}, and writing, as
above, T (p) =1ind (},, p) we can form the unitary representation

fEB T (p) dp.. Its unitary equivalence class depends on O only; we shall
0
denote it by & (O).

2.3. The following two lemmas are close to a result of E. Effros

(cf. [16], Proposition 8.6).

Lemma 2.3.1. — The representations of F (O) are factor representations

of G.
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Proof. — With notations as above, let us denote by € the ring of the
decomposition T = f @ T (p) dp. (= ring of diagonalisable operators).
0

Since, for any a in G, T (a) € 2’ (= commutant of Z), we have R(T)C 2’
Therefore, if A belongs to the center of R (T), we have A€ %2’. Hence A is

‘decomposable; we shall write A =f@ A(p)dy. If ais fix in G, we
0
have T (a) A = AT (a) and thus T (p) (a) A (p) = A (p) T (p) (a) almost

everywhere with respect to . Hence the same conclusion holds true if
varies over a countable dense subset of G, from where we derive, that
changing, if necessary, { A (p)} on a set of | measure zero, we can assume
T (p) (a) A (p) = A (p) T (p) (a) for all pin O and @ in G. In this fashion
we have A (p)€(R (T (p)))’ for all p€O. Let {A,; n=1,2, ...} bea
sequence of linear combinations of the operators { T (a); a€ G} such that
A, - A in H(T) strongly. Replacing, if necessary, { A,} by a suitable
subsequence, we have then A, (p) — A (p) strongly for all p, which do not
belong to aset E of . measurezero. 'We obtain in this fashion, that for all
p in O-E, A (p) belongs to the center of R (T (p)). Since R (T (p)) is a
factor, we conclude, that there is a bounded measurable function ¢ (p)
on O, such that A (p) = ¢ (p) I, [I, = identity operator on H (p)] almost
everywhere. 'We can obviously assume that, with the above notations,
A, (p) — @ (p) I, with the possible exception of a G invariant set F of p
measure zero. Let a be a fixed element in G; for a p in O-F let us put
p’ = ap. Let U be a unitary map from H (p) onto H (p’) such that
T (p’) = UT (p) U™*. Then we have foreachn=1,2, ...,

A, (p) = UA, (p) U,

whence, passing to the limit, we conclude, that ¢ (ap) = ¢ (p) for all a
in G and all pin O-F. Let us consider the Borel measure dp = ¢ (p) dp.
on O; according to what we have just seen, it is G invariant. From this,
reasoning as in 1 (c) we derive, that dp is also & invariant implying, that
¢ coincides almost everywhere with a constant «, and thus A = « I.  Sum-
ming up, if the bounded operator A on H (T) belongs to the center of R (T),
it is scalar multiple of the identity proving, that T is a factor representation
of G. Q. E. D.

Lemma 2.3.2. — Let O be an orbit of S on 8 (©). The (factor) represen-
tations of F (O) are of type 1 if and only if O, and hence also © is a G orbit,
and if for some p€O [and thus for all p€B (©)] F (p) consists of type 1
representations.
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Proof. — The sufficiency of the above condition follows from
F (ap) = 7 (p) (a€G, p€O) along with standard facts of reduction
theory (cf. [12], 8.1.7 and 18.7.6). Let us observe immediately, that in
this case, if U€ F (p,) (p, arbitrary in O), and T€ F (0), T is unitarily
equivalent to a multiple of U.

To show the necessity, we employ the previous notations and assume,
that T is of type I. Then we have a representation of H (T) in the form
H, ® H,, and an irreductible unitary representation T’ of G on H,, such
that T =T’ Q I, (I, = unit operator on H,). Let again € be the ring
of decomposition. Since we have ZC(R (T))'=1QB (H.), there is an
abelian von Neumann algebra Q on H,, such that 2= 1§ Q.<%, and thus
also Q, is X-isomorphic to L; (O) acting by multiplications on L; (O).
Therefore, there is a subdivision of O into a sequence of pairwise disjoint
measurable sets { 0,; n =1, 2, ...}, such that H, is unitarily equivalent

to ZEB (H, ® L; (0,)) (H, = n-dimensional unitary space), and if A (¢)

is the operator, corresponding in Q to e €L (0O), and if we put 9, = ¢ | O,
and L (¢,) for the multiplication operator by ¢, on L; (0,), we have

n=1

under the above unitary correspondence (I, = unity on H,). We conclude
from all this, that if E, is the subset of O, where T (p) is unitarily equivalent
to an n-fold multiple of T’, then E, is measurable; in fact, it differs from O,
by a set of measure zero. Also, the complement of U,_, E, in O is of
measure zero. FEach E, 1s evidently G invariant and most importantly,
since ¥ (p') = F (p) (p, p’€0) implies, that p" = ap for some a in G
(¢f. 2.1), E, 1s a G orbit.

To prove, that O (and hence also ©) is a G orbit, it suffices to establish
that, in the notations of 1 above, A (G) = A. If & (G) ¢ A, any G orbit

in O of is p. measure zero. But we have just shown, that if T is of type I,
there is a G orbit of positive measure, and hence O itself must be a G orbit.
Q. E. D.

2.4. We sum up the result of the previous discussion in the following
fashion.

TueoreEMm 2. — Let O be an orbit of B, and y. a G invariant positive Borel
measure on O. If { hy; p€O0}is a field of polarizations, we can form the

unitary representation T = f @ ind (b, p) dp. which, up to unitary equi-
(4]
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valence, is well determined by O. T is a factor representation. It is of type 1
if and only if O is a G orbit, anf for some p = (g, ) €O (and hence for all)
the index of the reduced stabilizer of g in the stabilizer ts finite.

Remark 4.3.1. — One can show, that, if G is of type I, the represen-
tations of & (O) are multiples of the irreducible representations assigned
to O by Auslander and Kostant in [1].

3. In the following G will have the same meaning as set forth at the
start of II.2. Let z, an element of g, which will be kept fixed in the
sequel. Denoting again by = the canonical projection from g’ onto ', we
put

S=2(Gx) and Q=7 (3)cy.

3.1. a. Let us write X for the orthogonal complement of din g’. Since,
if G= exp §, we have [§, g]C[§, §] =, we conclude, that for a€G and

o€X, ao = o, and hence the direct product Gx X acts transitively on Q.
Let us observe next, that Q carries a Borel measure, invariant with respect

to GX2. In fact, we start by showing, that Q has a G invariant Borel
measure dv. Since & = G = (x,) is homeomorphic, under the natural

identification, to G/G, ., (cf. Proposition 1.2, Chapter II), to attain our
goal, it is enough to establish the existence of a measure of the said sort
on the latter. To this end, it suffices to verifiy, that for any a in

Gfo [fo = © (x,)] we have

det (Ad (a) | §) = det (Ad (a) | §1,)-

This is so, if we can show, that
det (Ad (a) | ») = det (Ad (a) | »5) or det (Ad (a) | 3fp;) =1 (ae éﬁ,),
but this follows at once from the fact, that Ad (a) leaves invariant the

nondegenerate skew-symmetric form, corresponding to (i, l,) = ([li, L1, fo)
(L, l,€D) on DD, X[V, [cf. 1 (b) for a similar reasoning].

If f (x) 1s continuous and of a compact support on Q, F (z) =ff(a: + o) da,
s

where do is a positive translation invariant measure on X, will be of the
same kind on  [Z = = (2)]. Therefore there is a Borel measure dy. on Q

determined by
fgf(x) dp =f5<f2f(x+a)da> do.
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The invariance of dy under the action of I is clear; that it is also G
invariant follows from F (az) = F (a7) (a€G).

b. If g and g, are elements in Q, we have g, + 3 =g, + d. In fact,
to this end it is enough to observe, that : 1° g, depends on g | d only; 20 If a
is in G, then g, =ag,. We put k =g, + d (g€Q) and denote by ¢
the canonical projection from k' onto . We write @, = (Q). Reaso-
ning as in (a) we conclude, that if A is the orthogonal complement of din k’,
there is a A and G invariant Borel measure dy, on Q, such that

fgkﬂy) dine =f6(fAf(x + wx)w;

where d4 is translation invariant on A. Let X, be the orthogonal comple-
ment of k in ¢'; for ds, translation invariant and appropriately normalized,

we have
Jir@aw=[ ([r@+e i) dp.

3.2. Lemma 3.2.1. — G is closed in Q for all x in Q.

Proof. — Let {a,;n=1,2, ... 1cG be such, that lim a, z= g belongs

ny~4w
to Q; we have to show, that gis in Ga. Since also a,7 (z) = 7 (g), by
virtue of Proposition 1.2, Chapter II we have a, = b, c,, where b, > b€G,

and ¢, is in G.. In this fashion, ¢, — b~* g, and to complete our proof

it is enough to show, that there is a ¢ in G, such that lim ¢, v+ = cz. If
ny>wo

a€G,.), we have ax = z + ¥ (a), and v (ab) = ¥ (a) + ¥ (b), therefore
it suffices to establish, that I' = v (G,,) is closed. But by Corollary 1.1,
Chapter II, @ + I' == (# + £)n G « is locally closed in ¢’, and thus T is
closed. Q. E. D.

3.3. a. Observe, that the groups G, L and G, Lc do not depend on
the choice of g in Q; we shall denote them by K and H resp.

With the notations of I1.3 (f) let us consider the set 88 (Q) = U,cq ﬁg;
we define actions of G and II on B (Q) as loc. cit.

If a is some element in J = H/(H,), there is a smooth map o from Q
into H such that: 10 ® (5 (g)) = a; 200 (g)€H,. In fact, by Remark 5.1

in Chapter II, there is a map o’ from G z into H (z arbitrarily fixed in Q)
having the properties stated, such that o’ (g) depends on g|d only.
Ann, Ec. Norm., (4), IV. — Fasc. 4. 70
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Therefore it suffices to define for g€Q : o (g) = o’ (g1) where g€Cuais
such, that g|d =g, |d. Let{a;; 1= j=m}be a basisin J; we denote
by o; maps, as above, corresponding toa; (1=j<m). If p= (g, 1) €B(Q)

A
<){_E Hg> we put
ap=(g;argy (@1 (9); ..., arg x (em (9))) € L X T

We show, as in 11.5.2 (a) that « is a bijection, and define, as loc. cit., on
B (Q) the structure of a differentiable manifolds by requiring that « be
a diffeomorphism.

We know [¢f. 11.6.3 (a)] that there is a canonical identification between

A A
U,eo Hy and U,co G, We derfine on the latter the structure of a bundle
over the base space Q with the structure group K by transfer of structure;
this, too, will be denoted by B (Q).

Let z be an element in Q. We showed above in 3.2, that O = Gz is
closed in Q, and we see at once, that (@), as defined in I1.5.2, 1s just the
portion of B (Q) over ® cQ. Therefore, in particular, we can speak of the
orbits of $ in B (Q). Let us observe, that by Remark 7.1, Chapter 11,
if peB (Q), the orbit of 5 containing p is just the closure of G p in 8 (Q).

b. The closed subgroup (Gy)o K of G is independent of the particular

choice of fin Q; we shall denote it by M in the sequel. Bearing in mind
what we saw in I1.6.2 (a) we can conclude, that there is a cross section p,
from Q into B (Q) satisfying ap, (g) = o (a) po (ag) (e €G, g€Q) where

» € Hom (G, E) 1s such, that M Cker .

c. If p (g)is any cross section, the map (g, ¢) = o p (g) from QX K onto
3 (Q) is a homeomorphism. Let dp be an element of the invariant measure

on K (~ Tm™). If his continuous and of a compact support on 8 (Q), the
value of the integral

| rep@)dedp

Q<K

where dp. is as in 3.1 (a), does not depend on the particular choice on p.
We denote by dv the corresponding measure on 8 (Q).

d. Let z be an element of Q, and hCV¢ such that h) = pol (= (z)) and
Gy hESh. Since G, < Grw S Grie), this implies in particular, that
G, hEh. We define b, (g€Q) by aly if = (g) = a = (z) and set b, = b,
for p = (g, ) €8 (Q). Observe, that j, = pol (p) (cf.- Remark 7.2, Chap-
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ter I). LetusputU (p) = ind (h,, p; K)and H (p) =H (U (p)) (cf. loc. cit.).

We have the following rules of computation : 1° If ¢ G_I?, o U (p)=U (¢p);

20 If a€ G then a U (p) = U (ap), always in the sense of unitary equiva-
lence. Bearing this in mind, we can easily define a measurable structure
on {U(p), H(p); p€B(Q)} (¢f. 2.2). We proceed analogously as loc. cit.
Let po = (2o, %0) €B (Q) be fixed, and U a neighborhood of 2, on G z,,
such that there is a continuous function a (g) from U into G with
a(g)zo=g (gelU). If I'cd! is as in 3.2 above (with z, in place of z
loc. cit.) and I'; a supplementary subspace to the connected component of
zero of I, in D!, there is a small neighborhood V of zero in I',, such that the
map (g, ) = a (g) xo+ Y = g+ v be a homeomorphism between UXV
and some neighborhood of z, in Q; we shall denote the latter by W. For
v €T, we write ¢, for the character of K, determined by d{, = (Y| (3 + g.,))-
Let £ be a character of K such that £| K, = ¢,. As a slight extension
of the rules 1-2 given above one shows easily (¢f.2.1) that a ind (},, ¥, g; K)
is unitarily equivalent to ind (hugiy, &'.a %, ag + v; K) (5" = £ | Gug)-
We denote again by 7t the canonical projection from B (Q) onto Q.
If p=(g, 7)€" (W), let us define the representation V (p) on the
space H (p,) by £a(g) U(ps), where g,€U and £ are such that
g=g+y(yeV)andy=E%a (g.)7 (E|Ke=¢;). The field } V(p), H (po);
p€= (W) {is obviously measurable, and V (p) = U (p) if p€= (W) in the
sense of unitary equivalence, completing the proof of our statement.

Let us note, that by what we have just seen, { U (p) | is actually Borel
measurable.

3.4. In the following we shall often indicate the unitary equivalence of
the representations U and V by writing U~ V. Let P be a von Neumann
algebra on which the group A acts by %-automorphisms; we shall denote
by P* the collection of all fixed points. With these and the preceeding
notations we have

Levma 3.4.1. — Let us put U:f @ U (p) dn, and denote by Q the

8(Q)
ring of this decomposition on H (U). Then we have Q"CR (U)[M = (G/), K;
f=1g|b, g€Q;cf. 3.3 (b)].

Proof. — In the following often, when a direct integral of Hilbert
spaces over the measure space (X, p) is specified by the context, we
shall write L; (X) for the ring of all diagonalisable operators (= ring of
decomposition).
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a. Let p, (g) be a cross section as in 3.3 (b). We set

VO=Up@) < V= ov@d i X=[ @ods.

Then, since ¢ U (p) ~ U (¢ p), there is a unitary map from H (U) onto
H (V) ® H (X), which maps U onto V& X and Q onto L; (Q) @ L (K).

Recalling, that ker @ DM, to prove our lemma, it will be sufficient to show,
that R (V ® X)> (L: ()" ® Lz (K).

b. Let us observe, that if a is any element in M we have a U (p) ~ U (p)
(cf. Remark 6.2, Chapter I). Infact, assuming p = (g, ), we can obviously
confine ourselves to the case, when a€(Gy), (f= g|d). But then,
a U (p) ~ind (a b, a y, ag; K); by definition a b, =,, and we infer from
the proof of Lemma 6.1 and of Lemma 7.4, Chapter I, that a y =y and
ag|k = g|kresp. [k =V g; of. 3.1 (b) above]. Hence to complete our
proof it suffices to observe, that if g|k = g, | k, then

ind (h, %, g5 K) = ind (h, %, 915 K).
We can conclude from this, that V (ag) ~ V (g). In fact,
V(ag) = U (ps (a9)) = U (ap. (9)) ~ U (0o (9)) =V (9) (aeM).
¢. Let us put W=V |K, and W(g) = V(g)| K, ; we have W=j£;@ W(g) dp.

and W (ag) ~ W (g) (a€M). Let A be some decomposable operator on
H (W), and { A (g); g€Q} the corresponding field of operators [that is

A=fOEBA(g) dp»]. We shall write A= (s) if for a€M we have

A (ag) = VA (g V™', where V is a unitary map from H (W (g)) onto
H (W (ag)), such that VW (g) V7' = W (ag). We observe now, that to
prove the statement at the end of (a) above, and hence Lemma 3.4.1,
it is enough to show, that A = (s) implies, that V belongs to R(W). In
fact to see this we take into account, that for any ain K we have V (a) =(s),
since W (g) | L ~ Ind (h,, g | D) is irreducible, and thus W (g') = VW(g) V!
(g = bg, beM) necessarily implies V(g') = VV (g) V7*. Hence, by
assumption, R (W)>{ V (a); a€ K | and therefore, by virtue of

RVOX)DPR(VIX)[K)=RW)QI,

wegetR(VR X) 2 R(W) @R (X)[=R (V) ®L: (K)]. In this fashion

to attain our goal it suffices to remark, that if ¢ (g) is a bounded measurable
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and M invariant function on Q we have trivially [@C(g) I, dy. = (s)
Jo
[I; = unit operator on H (W (g))] and therefore

R (V® X)> (L7 @) ® Ls(K).

d. Let us denote by £ the canonical projection from g’ onto k’; then we
have Q, = £ (Q)[cf. 3.1 (b)]. Given (g, y)€B (Q), let us form, as at
the start of Section 7, Chapter I, the representation t,, by taking b, in
place of y loc. cit. Then the concrete representation 7, | K, depends on

£ (g) only; we shall denote it by S (h) [k = (g)]. Putting S (g)=S (£ (g)),
W (g) is unitarily equivalent to S (g) and hence WNfEB S (g) dp.= S,
say. Let A = (s) be some operator on H (W), A its image on H (S) under
the said unitary equivalence, and assume A = fEB A (g) dp.. Taking

into account, that by virtue of Lemma 6.2, Chapter I, 10 If g, g'€Q and
-E(g) = E (g') there 1s an element a in (Gf), [f = 7 (g) = = (g')], such that
g = ag; 2° Evidently on Q, the M and L orbits resp. coincide, one concludes

that A (g) depends on £ (g) only and that, if €L, A (Ig) = VA (g) V™,
provided S (Ig) = VS (g) V™. Let us put S =fQ @D S (k) dpx [cf. 3.1 (b)].

For a decomposable A on H (S) we shall write A = (t),1f A =f b A (h) dy.s,
Q
and A (lh) = VA (h) V"*if S (hl) = VS (h) V' (l€L). According to what

we have just seen, to prove Lemma 3.4.1 it is enough to establish that
A = (¢) implies A€R(S).

In the following, if S is replaced by a unitarily equivalent representation,
A = (t) will stand for the correspondingly modified condition.

e. We denote again by ¢ the canonical map from k' onto d" and recall,

Lemwma 3.4.2. — There is a Borel map ¢ from Q into Q, such that :
oY) v=1;20¢(f) =1¢(f) (€L, [ed)

Proof. — Let k=k Dk _1D...0k,=3D...0k, = (0) be such,
that {k;; 0 ;] =< m | is a Jordan-Holder sequence in . Let us assume,
that [;€k; — k;, and that (I, I)) =38; (1 <1, j<r); we put Z’i=p(l'j)
(1 Zj<m). With the notations of the proof of Proposition 4.1,
Chapter II, we write & for the subset of elements of &, such that
Q=0n®,50; it obviously suffices to define ¢ on Q¢ (e€&’). We
assume, that h (2) (x€ @.) is as in Corollary 4.1, Chapter II, and put, with
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the notations of Proposition 4.2, Chapter 11, d(z) = exp[l (R (z, k(2)), h (2))].
Then A (z) and d (z) are continuous maps on @,, such that z = d (z) f (x)

m

(z€®,). Ify =Zyjl_',. is some element of ¥, we shall write y for the

j=1
m

element Zyj I, of k. With these notations we set ¢ (z) = d () & (z), and
j=1
claim, that on Q¢ we have the required properties. In fact, first

Py @) =d@p (k@) =d@h@ ==

Second, if [ is some element in L, we have [ {(z) =1d (x).h(x) but also
ld (z).h () = d (lz).h (2), and thus ld (z) = d (lz) do, where d, satisfies
doh () = h(2). Butif lo(h) = (h) (h€y l€L) we have also lh = h,
and therefore d, h(z) = h(x). In this fashion we get [{ (z) =d (Iz) h (lz) = { (Iz)
[since h (lz) = h (2)] for all I in L and  in Q¢ completmg the proof of our
lemma. 0. E. D.

f- We write again A for the orthogonal complement of d in k’. The
map ¢’ of & X A into @, defined by ¢’ (f, 1) = 4 (f) + % [ as in (e)] is
a Borel isomorphism, and it makes correspond to dy., the measure dv di

on Q% A[cf3.1(b)]. Let us observe, that if [ is any element of L, we have
W, )= (f, 2). Given X in A, we write ¢, for the character of

K, = exp k determined by dp, =t %. 'We have ker %DL and for any
Rin Q;, S (A + 1) ~ ¢, S (k). Let us put T (f) S (4 (f) (fe?); we have
T (f)y~T(f) (l€L), since S (Ih) ~ S (h) [cf. (d)] 1mp11es that

T =SHUN=SAYN~SEF)=T().
Summing up, —f @ S (k) dpi 1s unitarily equivalent to the direct

integral,

| eaThaan,

Q<A

and thus also to T @ ®, where T——/EBT —f@%d" If
= (t) [cf. the end of (d)] and A _—f @ A (f, 1) dv dk we have

Q<A
A, ) =VA(, )V, if T{Af)=VT()V (leL).

g. Let us consider now a Borel transversal for the action of L on .
To obtain this, we can proceed, for instance, as follows. Putting E for
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the complement of e€ &’ [¢f. (¢)] in {1, 2, ..., m}, and writing H, for the
hyperplane spanned in d by l;; jeE l, we take @ = U, (H.n Q).
Let f, be a fixed element of ©, and let us identify { to the homogeneous
space § = G/G, (cf. Proposition 1.2, Chapter IT). We put A = é/éf L,
and denote by { the canonical projection from % onto A. Retaining the
same notation for the image of @ in ¥, we observe, that the restriction of {
to @ is a Borel isomorphism with A. Hence there is a field of representa-
tions { P (a); a€ A} of K,, such that P ({(¢q)) =T (q) (€@ CH). Let
us define T’ () =P ({ (q)) (¢€%). Then T@ P is unitarily equivalent to

f @D o T' (g) dvdhk, and we have A = (t) if and only if
<A

A= DA 2)dvdxr
H<A
and A (¢q,2) = A (¢, ») if ¢ =Ilg(l€L). Let ¢ be the canonical map
from G onto $. Proceeding as in 1 (¢) we can find an invariant measure

dk on ¢ (L) = L/L;, and a measure dv on A = $H/L such that we have

for any F, which is continuous and of a compact support on %,

fﬁ < [ Fa@y dk> & = fﬁ F (y) do.

Let us form the representation P szB P (a) dv; we denote by @ the
£

corresponding ring of decomposition. To prove Lemma 3.4.1 we have to
establish, that A = (¢) implies, that A belongs to R (T @ @) [¢f. (f) above].
Reasoning as in (d) above we conclude, that this i1s certainly so, if we
can prove, that R (P @ ®) = &' @ R (®), for which it is enough to show,
that if P = P|L, we have R (ﬁ) = ®B’. To establish the last relation,
let us observe first, that by virtue of our construction P (a)~ P (a')
implies a =a’ [P (a) = P (a) | L]. Next we recall, that the map from ¥'/L
into /i,, which assigns to the orbit L fin ¥’ the equivalence class of Ind (b, f)
[cf- 1.4 (f)] is continuous (cf. [31], Proposition 2, p. 89) and hence it gives
rise to a Borel isomorphism between d'/L and 1, (cf-[2], Proposition 2.5, p. 7;

. AR . .
observe, that L being of type I, L is standard and thus, in particular,
is countably generated). Now we have a canonical map~t from 3,

via QfL, into i, which establishes a Borel isomorphism between A

A X A
and 7 (A)C L. Hence we can conclude, that there is a measure dv on L,
which is concentrated on a G orbit, such that P is unitarily equivalent
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_ { A |
to f@ n ({) dv ({) where (= (0);(€ L} is a Borel measurable field of
£

A
representations on L, such that = ({)&€{{}. (¢f. [12], 4.6.2, Proposition,
p- 95). @ goes over into the ring of the diagonalisable operators of the
last decomposition. In this fashion the desired conclusion follows from

the fact, that R<f@ e d§> 1s the commuting ring of the ring of decom-
i
position (cf. [12], 8.6.4, Proposition, p. 155 and 18.7.6, p. 325).

Q. E. D.

Let us put, for p = (g, 1) €8 (Q), T (p) = ind (h,, p) (¢f. 2.2). Then

we have [¢f. 1.4 (g)], T (p) =1ind U (p). Hence along with the field of
KAG

fepresentations {U(p); p€B (Q)}, the field {T (p); p€B(Q)}], too, is
measurable and, putting

T= @D T (p)dn and U= @ U (p) dn
8(Q) 8(Q)

we get T =1ind U (¢f. [23], Theorem 10.1, p. 123).

KAG
Lemma 3.4.3. — Let P be the ring of all diagonalisable operators of the
decomposition T = f @ T (p)dr. We have P°CR (T).
8(Q)

Proof. — a. Let A be a Borel fundamental domain of G mod K. The
restriction of the canonical map, from G onto G/K, to A is a Borel
1somorphism with its image. Let d{ be the inverse image on A of the
invariant measure on G/K. We have

T(p)|K=f@aU(p)dc(a) and T]K:f@aUdt_(a).

Hence, in particular, we have an identification of H (T) to L; (A) @ H (U),
such that P corresponds to L7 (A) ® Q, Q having the same meaning as in
Lemma 3.4.1. Given ¢ in L; (8 (Q)), we denote by L (¢) the corres-
ponding operator in Q. For a in G, we put (a ) (p) = ¢ (¢! p). In this
fashion, to prove our lemma, it will be enough to show, that «{ = {

for all @ in G implies [ @ L ($)€P.

b. Since a U (p) ~ U (ap), and dn 1s G invariant, we conclude at once,
that a U~ U (a€G). Let @, be the unique %-automorphism of R (U),
such that ¢, (U) = a U. Then, if ¢ is such, that L (¢)€R (U), we have
% (L (4)) = L (a{)
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c. Let Bbe an operatorin R (U); then the field of operators { ¢, (B); a € A |
1s measurable, and we have / @D 9. (B) dC (a)€R (T). In fact, this is
A

certainly true, when B is a finite linear combination of the opera-
tors { U (b); b€G|. The general case follows by choosing a sequence of
operators { B, | of the said form, such that B = lim B, strongly.

n>- o

d. Assume now, that $€L; (B (Q)) is such, that a ¢ = ¢ for all « in G.
Then we have, by virtue of Lemma 3.4.1, L (J)eQ°cQ"cR (U).
On the other hand [¢f. (b)], 0. (L ($))=L (J) («€G). In this fashion
finally, by (¢) : '

R(M> [@ v L)@ =1L

completing the proof of our statement. Q. E. D.
We recall, that the decomposition V :fEB V (x) dp. of the represen-
X .

tation V 1s called central, if the von Neumann algebra R (V) generated
by the operators of V contains the ring of all diagonalisable operators.

Lemma 3.4.4. — With the previous notalions, there ts a Borel measure de
on E =4 (Q)/%, such that T :f@ T (¢) de, swhere T ()€ F(c) (cf. 2.2),
E

the decomposition being central.

Proof. — a. Choosing a cross section p, (g) from Q into 8 (Q) asin 3.3 (b),
we identify 8 (Q) to QX T". Putting again £ =¥, let us form the
direct product of groups H = GxEXT", and let us define an action
of H on 88 (Q) by setting

(@ 9, 0) (g, ") = (ag + o,00")  (a€G;oe2;0,0'eT;geR).

Evidently, H acts transitively on 8 (Q). We write § = GxT" (H=$ x %)
and infer from 11.7.1, that there is a closed, connected subgroup ® of %,
satisfying [, &] = [H, H], such that for any p in 8 (Q), ® p coincides
with the orbit of $ containing p. Hence, in particular, we have

E— 8 (Q)5 =8 ©)/e.

b. Let p, = (%, w,) be a fixed point of B (Q); we have just seen,
that 88 (Q) = H,,. Our next objective 1s to show, that the natural iden-
tification between 8 (Q) and H/H,, is a homeomorphism. To this end it

Ann, Ec, Norm,, (4), IV, — Fasc. 4. 71
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will suffice to establish, that if {h,} and & are elements in H, such
that h, p, — hp, then we have alsc h, > hmod H,. Let us assume
hpn = (@n, Gn, ©,) and h = (a,0, ®). We have clearly w, - », and hence,
putting H = GxZX, it is enough to prove, that a,z, + o, - az, + o
implies that (a,, 5,) - (¢, 0) (mod H,,). The assumption yields

an T (Zo) — a T (To)

and hence, as in the proof of Lemma 3.2.1, we can write a, = b,.c,, a = be,

such that b, > b and ¢, c€ éﬂ(%). Thus it will suffice to show, that
(ny 0,) = (¢, 0) mod H,, if ¢, 2y + 7, - cxo + 6. But, with notations as
loc. cit. we have

Cn To + Tn = Tp _I" Y (Cn) + On = CXy + O':l,

where we put
. o = Y (cn) + on— Y (C)-

Hence (¢,, 5,) = (¢, 0,) mod H,, and evidently (¢, a,) — (¢, ) in H', proving
our statement.

c. Given ¢ in 8 (Q)/S [= 8 (Q)/®], we denote by O (¢) the corres-
ponding 5 (&) orbit in B8 (Q). We are going to show now, that there
is a Borel measure de on E = 8 (Q)/%, such that if p. is an appropriately
normalized G invariant measure on O (g) (¢f. Proposition 1.1), the H inva-
riant measure v on B (Q) [¢f. 3.3 (¢)] turn out to be the continuous sum
of the measures { p..; e€ E} with respect to de. We denote by the same
letter the image of v on H/H, [c¢f. (b)]. We put € = H/(H,,.®) and
write 5 for the canonical map from H onto H/H,. Let dp. be a & invariant
measure on ¢ (@)~ &/®,. By virtue of what we saw above, we shall
attain our goal by showing, that if f(q) 1s continuous and of a compact
support on H/H,, then

f { (ak) dv. = F (a)

o (®)

satisfies F (aa,) = F (a) for all a, in H, ®. In fact, in this case, as
in 111.1, we can conclude, that with an appropriately chosen invariant
measure de on &, we have

f(q) dn =f®'F(a) de.

"/"I’u
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To verify the indicated statement, we observe, that it suffices to prove,
that if ® = exp g, and h€H,, [k = (a, 5, )] we have

det (Ad (h) | g0) = det (Ad (h) | (30),.)-

Reasoning analogously as loc. cit., we observe, that to this end it is enough
to show

det (Ad (a) | 3) = det (Ad () | 9.,) for-all ae Gz,
But this is implied at once by the relation ([ali, al.], xo) = ([l; .], a4)
valid for all ,, l,€g and a € Gz,

d. Using the previous results, we can complete the proof of Lemma 3.4.4

as follows. Let us put T (e [ DT )du. then we have T ()€ F (¢)

(¢f. the end of 2.2). By virtue of what we saw in (¢) also

T=fﬂ(Q)EBT(p)d‘n -———/‘E‘@T(s)ds

(cf [24], Theorem 2.11, p. 204). But by Lemma 3.4.3 this decomposition
1s central.

Q. E. D.

. . . . ~ . A
Lemma 3.4.5. — With the previous notations, there is a G orbit D on L,

and a G invariant measure dv on D, such that T is unitarily equivalent to
M.ind(fean@)dv (t))
LAG\Y/p

where M ts either one or infinute.

Proof. — a. Taking into account, in particular, what we saw in 3.1 ()
and 3.1 (b), we conclude, that if f(p) i1s continuous and of a compact
support on B (Q), then we have

S @4 = [ 1P @)
8Q) <0

A (Lrerororania)aa)e
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b. Since we have T =1ind U (¢f. Lemma 3.4.3) it will suffice to
KAG .
establish, that

U~ M.ind <U£@ 7 () dv (t))

where I, v and M are as in our lemma.

c. Let gbe a fixed elementing’. Then U (¢ p, (g + 7,)) does not depend
on g, €X,, and therefore we have '

[ ®UEp @+ o =M. U p(9)

where M, is one or infinite.

d. Let X be some element of A and assume, that A, €g’ is such, that

Ak =" Then, if p, (g) = (g %o (g)), the expression ¥, (g + A1) %o (g)
depends on % only. Denoting it by ), we observe that 95 is a character
of G,, such that d (¢, |(G.)o) =i (h]|g,). Writing ¢, for the uniquely

determined character of K = ég L with ¢, ! Eg = o), O ' L = 1, we obtain,
that

U (9 po (9 + M) ~ ¢ ind (hg, 9520 (9), 9 + 215 K) ~ 993 ind (he, 70 (9), 95 K).

In this fashion we conclude that
[ e(fevenctotayi)ea
<A s
~ M.ind (5, 72 (9), 95 K) ®< [ @ d«n>.
' _ﬁ_x.\
Let A = K/L and denote by « the canonical homomorphism from K
onto A. We have A = A,XB, where B is isomorphic to K/K,~ Z™.

, A
Let Al and B! be the annihilator of A, and B resp. in A. Assuming,
that da,, db and da are appropriately normalized invariant measures

A .
on Al, Bt and A resp., we obtain, that

I @cpcm.d@dm[[ EB('J.Jx)dao(¢)db(x)]°d~<f@xda(x)>°°f-
-‘],(-><A\ Yal<pt ‘R

In this fashion the left hand side is unitarily equivalent to the regular
representation of A = K/L lifted to K. Let us set f= g|¥ and hy = b,
[ef. 3.3 (d)]. Since ind (b, vo(8), g; K)| L~ Ind (b, f) we conclude
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(cf. [26], Lemma 1, p. 325) that
ind (he, 20 (9), 95 K) ®< L @ 991 de dl\
/

K <A

is unitarily equivalent to ind (Ind (b, f)). Thus finally
LAK :

v= | @U(P)dWNMi-Lind<f~€BInd(hf,f)dv(f)>-
O .

8(Q) AK

e. Reasoning as in (g) of the proof of Lemma 3.4.2 we show, that
putting, with the notations as loc. cit., B = < () and v =y | D we have

[ @md . fydo ()~ M: [ @ 7@ v 0
Q D

where M, 1s one or infinite. Hence, writing M = M,.M,, we get by
virtue of (b) above

T~M.Exr:l<fn@ﬂ (2) dv (C)).

We sum up the previous results in the following.

TuroreEm 3. — Suppose, that GO G is connected, simply connected and
such that |G, G] =[G, G], and if G = exp §, § admits a faithful algebraic

. . ~ A ~ . .
representation. Let D be an orbit of G on L, and dv a G tnvariant measure
on D. Then an appropriate multiple of the representation

LAG

ind(fneaw(wv (C)) = @e((t))mtel]

s unitarily equivalent to a central continuous direct sum of the factor repre-
sentations described in Theorem 2.

Proof. — This 1s evident from Lemmas 3.4.4 and 3.4.5.

Q. E. D.

Remarx 3.4.1. — It follows from the previous reasonings, that to
form the said central decomposition, we can confine ourselves to orbits

of S, the projections of which, to g’, lie in the inverse image (in g’), of the G
orbit, corresponding to Dcl on /L [ef. 1.4 (f)].
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Remark 3.4.2. — Observe, that we have T = ind(f@ m () dv (C))
LAG\“p
if and only if : 10 k = g (on the relevant part of g; ¢f. above); 20 The repre-

. . A . .
sentations in D C L are one dimensional.

CHAPTER IV

STRUCTURE OF THE REGULAR REPRESENTATION

SuMMmARY. — Let M be a von Neumann algebra. Below by a trace on M we shall
mean a trace on the set of all positive operators of M, which is faithful, semi-finite and
normal (cf. [13], p. 81-82). An operator A €M satisfying ¢ (A* A) << + oo will be called
a generalized Hilbert-Schmidt operator with respect to ¢ (the reference to which will be
omitted, if specified by the context). Let G be a separable locally compact group.
We denote by dx an element of the right invariant Haar measure. If T is a unitary
representation of G and feL' (G) we put

T (f) = fG f@T (@) de.

We denote by R (£) the right (left) regular representation resp. of G, and by R (G) (L (G))
the right (left) ring resp. of G.

It was shown by I. E. Segal in 1950 (c¢f. [34]), that if G is unimodular, R (G) is semi-
finite. More precisely, there is a trace ¥ on R (G), uniquely determined by the condition,
that we have for any feL! (G)nL2(G) :

(¢)) Y@EROIRDOM =G D [=fﬁ|f(x) I2 dx:l.

Hence, in particular, generalized Hilbert-Schmidt operators [even those of the form
R (f) (fel.! (G)] generate R (G). If on the von Neumann algebra generated by the
unitary representation T there is a trace with the analogous property, we shall call T
a trace class representation. Assume now, that G is not unimodular, and define the func-
tion A on G by d (ax) = A (a) dx (ae G); thus A ¢ 1. It is easy to see, that in this case
no formula of the type (1) can hold true. In fact, upon replacing f by fs (x) = f (s~ x)
(s fixed in G), the left and right hand sides get multiplied with (A (s))2 and A (s) resp.
This in itself, of course, does not exclude, that R (G) be semi-finite, but R. Godement
showed by an example, that for a properly chosen G, R (G) may turn out a factor of
type III. We can add also, that even if R (G) is semi-finite and hence carries a trace,
this does not necessarily make ® a trace class representation in the sense of the defi-
nition given above. The purpose of Section 1-7 of this chapter is to prove, that if G
is a solvable and connected (but not necessarily simply connected) Lie group, the right
(or left) regular representation is of trace class (cf. Theorem 4, Section 7). Hence,
in particular, R (G) is semi-finite, which corollary has already been extended by J. Dixmier
to an arbitrary connected group (c¢f. [14]). The starting point of our proof is the following
observation. Assume, that feL2 (G) is such, that by convolution on the right it gives
rise to a bounded operator Vs on L2 (G). It is easy to see, that in the unimodular case (1)
is equivalent to

(2 YV (V) =t N
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for any such f. In general we have, as above
YV (V) =@ vV, (V)*)  and (s f) = A () (, ).

One is tempted to rectify this assymetry through replacing the right hand side of (2)
by (M’ f, M’ f), where M’ is a self adjoint, positive, non singular operator, all bounded
functions of which lie in L (G), and which satisfies (M’ fs, M’ f5) = (A (s))2 (M’ f, M’ f) for
all s in G. Since the left hand side here can be written as A (s) (M’ L (s) f, M’ L (s) {),
to this end it suffices to determine M’ such that we have in addition

LEMLE™ =@@E)""2M  (seG).

That following up this lead we, in fact, arrive at the desired result, this we infer from
the theory of quasi-unitary algebras by J. Dixmier (c¢f. for all this Section 7 below,
in particular Lemma 7.1 and 7.2). In this fashion, our task is reduced to finding an
operator M’ with the indicated properties. Let g be the Lie algebra of G, n the greatest
nilpotent ideal of g¢ and N the connected subgroup, determined by u, of G. Since, if N
is not simply connected, additional complications may occur (c¢f. Section 3), here we
confine ourselves to sketching what happens, if N is simply connected. In Section 4
we show the existence of nonzero elements p and q in the center of the universal enve-
lopping algebra of u (acted upon by G via interior automorphisms) such that ap = ¢ (a) p,
aq = n (a) ¢ and 7 (a)/e (a) = det (Ad (a)) = A (a) for all a in G (c¢f. in particular Corol-
lary 4.1). The right invariant differential operators, corresponding to p and ¢, on G
give rise to commuting non singular selfadjoint operators P and Q on L2 (G). To obtain M’
as above, it suffices to consider the minimal closed extension of | P {'2.| Q [~%2, Using
the fact, that by virtue of our construction, for any feCg (G), Q f lies in the domain
of M’, one derives easily the existence of a left invariant differential operator D, such
that, for feC? (G), R (D f) is a generalized Hilbert-Schmidt operator and that these
operators generate R (G), implying, that the right regular representation is of trace class.
Let us observe, that p and ¢ as above, and hence also the corresponding trace, are not
uniquely determined, the degree of nonuniqueness depending on the * size *’ of the field
of G invariant rational functions on the dual of the underlying space of n’. As a partial
substitute for this lack of uniqueness we show, that p and ¢ can be chosen such, that
their degrees do not exceed a constant depending on the dimension of n only. The
essence of the above construction can be well illustrated by the following simple example.
Let G be the connected component of the identity of the group of all affine transfor-
mations of the real line. We can realize G as the collection of all pairs { tx);L,xzeR }
with the multiplication (f, «) (t’, 2') = (t + t/, x + et.x’). It is known, that G has
altogether two infinite dimensional irreducible representations. One can show further-
more, that if T is such a representation and ¢ € C7 (G), then the operator T (¢) is comple-

tely continuous if and only if we have f ? ({, ) dxr = 0 identically in £. Let us define
R

the operator D by (D ¢) (¢, x) = e (d¢/dx) (I, x); D is the left invariant vector field deter-
mined by a generator of the one parameter subgroup of translations. By what we have
just said, T (D¢) is completely continuous (even of Hilbert-Schmidt class) if ¢ € CZ (G).

The previous results, in particular, imply, that if G is any connected solvable Lie group,
the type III component of R (G) (say) is always trivial. Our last major result (cf.
Theorem 5, Section 9) asserts, that if G is simply connected, then either the type I or
type II components are trivial. In other words, the right regular representation admits
a central continuous direct sum decomposition of factor representations, consisting of
type I or of type II constituents only. By virtue of the results of Chapter III (cf.
Summary, or Theorem 2 and 3, loc. cit.), to establish this we need essentially two propo-

sitions. First, that either G, = G,, or Gg/ G, is infinite almost always with respect to
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the Lebesgue measure on g’ [cf. Proposition 8.1; for Gg cf. Summary, Chapter I or 1.4 (c)].
Second, that either the collection of the locally closed orbits of the coadjoint represen-
tation or its complement is of measure zero in g¢’. We show finally, that in general
Theorem 5 is false, if G is not simply connected.

1. The purpose of this part is to summarize several results of the theory
of unitary representations of connected and simply connected nilpotent
Lie groups, to be used below.

Let w be a nilpotent Lie algebra over the reals, and N the corresponding
connected and simply connected Lie group. We recall, that the expo-
nential map establishes an analytic isomorphism between the underlying
spaces of w and N resp. Given some function ¢ (n) on N, we write ¢ ()
for the function on w, which is determined by o ({) = ¢ (exp (1)) (l€n).

a. Given a (necessarily biinvariant) Haar measure dn on N, and
e€L! (N), we put for any unitary representation T of N :

T (9) =£@<n>T<n> dn.

Then, if p€C; (N) and T is trreducible, the operator T (9) ts of trace class
(cf. e. g. [29], Théoreme, p. 108). :

b. We recall, that the measure dl, which is the inverse image of dn
under the exponential map, on w is translation invariant. [In fact, this
follows at once from the form of the law of composition on N = exp n,
given in (c) of the proof of Proposition 1.1, Chapter II; replace g loc. cit.
by n.] Assuming again 9€C; (N) we set

o) = f e()<LU>dl,  where <L I'>=exp[i(, )]

(I, I') being the value of the canonical bilinear form on nxn’ at len, I'€n’.
Then there is an orbit O of the coadjoint representation in W' such that,

with T (o) as in (a) above
1 Tr (T (3) = [ (') d
M) FT ) = [d@)d

where dv 1s a positive invariant measure on O. The integral on the right
hand side converges absolutely, and O and dv are uniquely determined by

A
the class of T in N. Conversely, to any orbit O there corresponds an irre-
ductible representation by virtue of (1) (cf. [29], Théoréeme, p. 111).
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¢. If dim O 1s not zero, the measure dv, called the canonical measure,
1s obtained as follows. O carries a nondegenerate invariant 2-form ®;
setting d = dim O, dv is the positive measure which corresponds to the d -
form ©”*/C (d) [C (d) = (d[2) ! =**.2%] on O (cf. [30], Theorem, p. 271).

d. One can show, that the orbit OCn’ of (1) coincides with the orbit
corresponding to T as in 1.4 (f). We shall call canonical the map, sending

‘ A
the equivalence class of T into O, of N onto n'/N.

2. The purpose of this section is to discuss several aspects of the theory
of irreducible unitary representations of a not necessarily simply
connected, connected milpotent Lie group. Our main goal is to derive
the property of the Plancherel measure described in Lemma 2.3.

Let w be as above and N a corresponding connected group. Then N
is of the form N,/X, where N, is a connected and simply connected group
belonging to n, and X a discrete subgroup of the center of N,. We denote
by u4 the center of n, and by I' the discrete subgroup of n% which is the
inverse image of X under the exponential map. Let us write 1 for the

locally compact abelian group n/I' and I/f\( for 1ts dual. 1/"\( can canonically
be identified with the annihilator, in the sense of the duality between
the underlying groups of w and n’ resp., of I'in n’.  Observe, that since I’
is left invariant by the adjoint representation of N,, we have, by duality,

an action of N, on ﬁ

. . A
Lemma 2.1. — The restriction of the canonical map from N, onto w'|N,,

A . .o A A
to NCN, establishes a bijection between N and n/Ni.

Proof. — We write ® for the canonical map in question, and we show,

that @ (1/\\I> = ﬁ/’N1 (cn’'/N;). If T is an irreducible representation of Nj,
we have for all ¢ in % : T (exp (¢)) = ¥, (¢). ], where y; is a character of n3.

" T belongs to N if and only if the kernel of y; contains I Let O be the
image of the equivalence class of T under ®. One sees at once, that if I’
is fixed in O, the linear form ¢ — (¢, ) on % is independent of the parti-
cular choice of I’ in O. Thus for any such I’ the map

e l'>=cexpli(,!)]

defines a character y, of 1%, and we have O € ﬁo/Ni if and only if ¥, 1s iden-

tically one on I'.  Therefore to complete our proof of Lemma 2.1 it is

enough to show, that o = y;. Let c be a fixed element of n%, and let us
Ann, Ec, Norm., (4). IV. — Fasc. 4. 72
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replace in (1) (Section 1) ¢ () by ¢ (I — ¢) (l€n). One sees at once, that
in this case the left and right hand side loc. cit. gets multiplied with ¥, (¢)
and v, (c¢) respectively. Thus, because of the arbitrariness of ¢ we can
conclude, that y, = ¥,.

Q. E. D.

Our next objective is to derive the analogue of the trace formula (1)
in the non simply connected case. Let us denote by ¥ and ¢ the cano-
nical homomorphism from N, onto N = N,/X, and from the underlying
group of u onto W = n/I" respectively. Using

exp ‘(l + ¢) = exp () exp (¢)

for all [ in n and ¢ in 14, one verifies easily, that there is an isomorphism ®
of the underlying manifold of M onto that of N, such that the diagramm

w exp N,
L 4
(Plla W ;l&l

be commutative. Similarly as in the simply connected case, given any
function ¢ (n) on N, we write ¢ (I) for the function defined on W, and

uniquely determined by ¢ (w (1)) = ¢ (I) ({€W). With these notations we
have to following

Lemma 2.2. — Let T be an irreductble representation of N, ¢ a C; function
on N, dn a Haar measure on N, and dl the measure, corresponding on W,
pig w, o dn. Then the operator

1 T (9) = T (n)d
(1) R Je@T@a
is of trace class, and we have

@ Tr (T (9) = [ 4 @) do.

Here O us the element, corresponding to T in the sense of Lemma 2.1,

of ﬁ/Ni, @ ) <l'€ ﬁ) is the Fourter transform of ¢ (I) on W; in other words

B = LISy dl
1) fuwx >

. . . 2 . .
where {1, 1" >y is the canonical bilinear form on WXW; finally, dv is a posi-
tive ingariant measure on O, which can be computed according to the algo-
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rithm given in 1 (c) above, and the integral on the right hand side conyerges
obsolutely.

Proof. — a. Let do be the translation invariant measure on X, for
which the measure of the neutral element is one. Let ¢, be a function

in C; (N,), such that
¢ = [ wEnydz  n =" @)

We denote by dn, the Haar measure on N,, with which we have
Jo@adn= [ @ dn,
N N,

whenever ¢ and ¢, are connected as above. We form the representation
T =T oW of N,; then, with dn and dn, as before, we have T (¢) = T’ (9,),
showing, that T (¢) is of trace class.

b. To prove (2) we recall first, that by virtue of (1) [¢f. 1 (b)] we have
CTr (T (00) = [ %) d
E(T (e = f o) do
where

% (L)= f Q@) <lnl>dl,  (ew)

and dl;, is the measure, corresponding to dn, via the exponential map,
on u. Hence to obtain the desired conclusion it suffices to show, that the

c . A A .. . A .
restriction of @, to M Cn' is identical to ¢. To this end we observe, that,
if dy is the translation invariant measure on I'Cu, for which the measure
of the zero element is equal to one, we have

2= [ wtiar E=4@)en]

On the other hand, if U'efl and ye€Tl, <I4+7v,U'>=<LI>, and

therefore
/\‘ n o ' _ ' _ ' N
?(l)—fu?(l)ﬂ,l>odl—fn<fp<Po(lx+Y)dY><lsl >odl—j;%(l)<l,l >dl =19, (l')

proving our statement.
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Let %Tt ©);Ce IQI} be a Borel field of unitary representations, such
that = ({) is of the class { (cf. [12], 4.6.2, p. 95 and 18.7.3, p. 324). Let
: A

us recall, that the Plancherel measure p. for N 1s a positive measure on N,
such that for any ¢ in C; (N) :

9 () = fﬁ Tr (% (¢) () dp- (©)-

Having fixed the Haar measure dn, utilized in forming = ({) (9), on N
[ef. (1)], dp. is uniquely determined by this relation (¢f. [12], 18.8, 1-2,
p. 327-328). We also observe, that the map, sending the orbit Ocﬁ

into the equivalence class of a corresponding irreducible representation
(cf. Lemma 2.1) is continuous (c¢f. [31], Proposition 2, p. 89) and hence

. . . . /\
it establishes an isomorphism betweeen the Borel structure of N/N and

1/\\1 (cf- [2], Proposition 2.5, p. 7). In view of this fact, in the following,
whenever speaking of the Plancherel measure of a connected nilpotent

. A
group, we shall mean the corresponding measure on lll/N. Let us denote

by {y;;1=j<s} a basis for the lattice T in n* (s > 0). Let Z (s)
be the collection of all s-tuples a = (a,, a,, ..., @) with integral compo-
nents. Putting H,={l';l'en’, (y,!)=2ma;; 1LjLs}, we have

NH,CH, and fl = U,y H..

Lemma 2.3. — Let P be a polynomual function on w', such that for a in
Z. (s), the restriction of P to H, is N invariant and not identically zero. Then

. . . /\ .
the direct image, in 111/ N, of the set of zeros of P on H, is of Plancherel measure
zero.

Proof. — Let dl be as in Lemma 2.2. We denote by dl’ the measure,

dual to dl, on fi and write dl, for the part of dl’ on H, [a€Z(s)]. For
an element A of H.,/N, we denote by O, and dv, the corresponding N
orbit and canonical measure [¢f. 1 (c)] resp. By virtue of Lemma 2.2,
to obtain the Plancherel measure dp., it suffices to determine, for each a
-in Z (s), a positive measure dp., on H,/N, such that

fH 90 dl, — L “m< o0 dm) dus

holds for any rapidly decreasing function g (I') on w'. In fact, in this
case, by virtue of the Plancherel formula for the abelian group M, it will
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be enough to define a positive measure dp. on ﬁ/ N by the condition,
that its part on H./N be dy,. From now on we keep a fixed, and omit
it from our notations. Using the definitions and notations of the proof
of Proposition 4.1, Chapter II, let e be the smallest element of &, for which
the restriction of Q. to H is not identically zero. Below we shall suppose
d () > 0, and leave to the reader the easy modifications necessary, when
d(e) = 0. We can obviously assume, that the Jordan-Holder sequence,
fixed as loc. cit. (replace g by n) is such, that w, is the smallest subspace,
containing T, of n%, and that I, =17y, (1=j=s). We observe, that
for any e in & we have {1,2, ...,s]CE. In fact, let us recall, that j
belongs to f(z) if and only if n;, (x)gnj (z). But since, for j s,
n;Cn CR (z), we can conclude, that n; (z)= R (2) for each j not
exceeding s. In this fashion we get (¢f. Remark 4.1, Chapter II)
that ‘

m

P.nH = x;x=2x,~l’,,x,~=21w,~ for 1Zj<s, and z; =0 for jee,.
j=1

" Let us show now, that ©.NP.NH is Zariski open in P.AH. To this
end 1t is enough to see, that the restriction of Q. to P.n H is not identically

zero. If z is any element in @, H, then y =2 Aj ()l liesinP.n©.NnH
jeE
and 03~ Q. (z) = Q. (y), proving our statement. The map x »—>Z A ()T
=
(zr€ ©®.NnH) gives rise to a diffeomorphism between (@©.nH)/N, and
P.n®.NnH. Let us write E’ for the complement of { 1,2, ...,s} in E.
Using Remark 4.1, Chapter II, we see at once, that if S (z) is a poly-
nomial on w’, such that its restriction to H is N invariant, then there
is a polynomial U (A) in the indeterminates {A;;j€E’}, such that,
on H, S(z)= U (A (z)) where the right hand side is obtained by
replacing %; through A;(z) (z€®.nH). Bearing in mind all this,
by imitating the argument of [30], p. 278-279, we arrive at the following
description of dp,. Let us denote by L. a polynomial, satisfying
L= Q. on w'. Along with Q. its restriction to H is N invariant,
and, as we have just seen it, this can be written as R, (A (2)).
Then dp., ts carried by (©.NH)/N, and there it corresponds to the measure
|R. (A) | d\ on P.n®.NnH; d\ stands for the product of the differen-
tials of the variables {A;;j€E’'}. Let now P be as in the statement
of Lemma 2.3. To conclude our proof it is enough to observe, that
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if we write the restriction of P to H in the form V (A (z)), then the
subset

Tx=Y 27l + > L1, V) =0

j=1 jEE

of P.n®.NH is of measure zero with respect to | R, (1) | dA.

Q. E. D.

3. Let G be a connected but not necessarily simply connected solvable
Lie group with the Lie algebra g. We denote by n the greatest nilpotent
ideal of g and by N the connected subgroup, belonging to n, of G. Let G,
be a connected and simply connected Lie group belonging to g, and N,
the connected subgroup determined by n. We denote by M a discrete
central subgroup of G,, such that G,/M is isomorphic to G. We put
YX=MnNN, and I" for the complete inverse image of I' under the expo-
nential map from n onto N,. We let G act on n through inner automor-
phisms and on w by the corresponding contragredient representation.
Given a€G and len (I'en’ resp.) we shall write al (al’ resp.) for the
action of a on I (I’ resp.). We observe, that G leaves I' invariant, and

A
thus G operates on M = u/I', and by duality, also on W (¢f. 2 above).
In the next sections important role will be played by nonzero rational

functions R, defined on one of the connected components of ﬁCn’, and
verifying R (ax) = A (a) R () where A (a) = det (Ad(a)) (a€G). Our
next main objective is to establish the existence of such functions
(cf. Proposition 4.1 below). Our problem, of course, would be simpler,
if it were possible to take the restriction of a rational function, defined

A
over 0" and having the indicated transformation properties, to M Cn’.
That this is not necessarily feasible is shown by the following example.
Let us denote by g the solvable Lie algebra, spanned over the reals by

the elements {e,, ey, ..., e; | satisfying the following commutation rela-
tions : -
[eo, €1] = e4, [eo, €2] = — €, [eo, €3] = — €3, [es, €] = e, [es, €] = €5,

all other brackets having the value zero. Here w is spanned by
{e;;1=]=5}, and we have " =Re, + Re; =g". Let G, and N,
be as above with respect to the Lie algebra just defined. We denote
by H the orthogonal complement of n* in w’. To prove our point, it

will be enough to show, that if S (z) is a rational function on n’, such that
S (ax) =[A (a)]™* 5 (2) (a€ Gy), and if the restriction of S to H is defined,
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then it is identically zero. We denote by {z;;1 =75} coordinates
with respect to a basis, dual to {e;;1 =75}, in n". Let us observe
next, that the system of polynomials { ., 2s, 2, x; — z; 2, } constitutes
a system of algebraically independent generators of the ring of all N,
invariant polynomials on n’ (¢f. [9], p. 326). We set R(z) =225 — 252,
and show, that R (az) =[A (a)]™* R () (¢€G,). To this end let us write
T, = (Ad (exp (— te,)))’ and remark, that it suffices to prove, that
R(T:z) = exp (t) R (z) for all ¢, which is immediately clear. Thus
S/R is invariant with respect to G, and hence it can be written as p/q,
where p and ¢ are relatively prime polynomials satisfying p (ax)=a(a) p (z)
and ¢ (ax) = « (a)q () for all @ in G,. Since « is identically one on Nj,

we can write p as Ekj (24, 5) R/ (A, =2 0), where the A;’s are polyno-
j=0
mials in z, and z;, and thus invariants of G,. We conclude therefore,
that p is of the form A (z,, z;) R*, and similarly, ¢ can be written as
- (4, #5) R (k>> 0). But since p and ¢ are relatively prime, we have
n=k=0, and A and p. are relatively prime polynomials in z, and z,.
Summing up, Sisidentical to RA/p., and p.=£0on H={z;z€n’,2, = 2, =0},
but then S=0 on H.

4. Proposition 4.1. — With the previous notations, let s be the rank
of I, w, the subspace, spanned by elements of ', of w, and = the canonical
projection from w' onto W, = w'[nt. Given A\ in W, we put Hy == (A).
Then there exist polynomials p and g on W, such that their degrees do not
exceed a bound B (m) depending on m = dim w only, and such that p and q,
when restricted to H, are not identically zero and satisfy p (az) = « (a) p (),
q (ax) = B (a) q (@) for all x in H and a in G; « and 3 are positive characters

of G, such that « (a)/Q.(a) = A (a), where A (a) = det (Ad (a)).

Proof. — In the following we shall assume, that s > 0, and that w is
nonabelian. The easy modifications, necessary to settle the remaining
cases, will be left to the reader.

a. We consider G as acting on the complextfication ng of n’ and denote
by & the smallest algebraic subgroup, containing (Ad (G) | n)" of GL (ng).
(Observe, that & is irreducible, and hence connected.) Let nt be the
orthogonal complement of n,Cnwinn’. Keeping A fixed we set €= H, 4 int
and observe, that ® leaves JC invariant. With these notations we claim,
that to prove our proposition it suffices to find two polynomials P and Q
on Wg, such that their restrictions to 3 are not identically zero, and such

that P (ga) = o, (g) P (2), Q (gz) = P: (g) Q (2) for all g in ® and z in X,
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where o, (g)/B: (g) = det (g), and such that their degrees do not exceed a
bound B, (m) depending on m only. In fact, let us write r =r, + ir,
and s = s, 4 ts, respectively for the restrictions of P and Q to n'Cug.
By virtue of our assumptions r and s, when restricted to H,, are not identi-
cally zero and thus, for instance, the real part F (z) of r/s is defined and
not identically zero on H,. We observe next, that for all g in G :
det (Ad(g™*)|n) =det (Ad (g™*)) = A(g™') and therefore F (gz) =A (g *) F (2)
(x€ H,, g€G). On the other hand, F (2) = g (z)/| s () |* where

g@=r(@)s @) —r:(2)s @)

and, putting 3, (g) =B ((Ad (g™)[n)’), we have [s(g2)|"=|B. (g) [*] s (2) .
Hence we conclude finally, that to satisfy the conditions of our propo-
sition, it suffices to take p (2)=|s ()], ¢ () = g(z), 2 (g =P (g |

Be=IB.(g)"A(g™") (8€G), and B (m) = 2B, (m).
b. Let § be the Lie algebra of ® CGL (ng). By virtue of our choice

of the latter, g is the smallest algebraic Lie algebra of endomorphisms
of ng containing (ad gc | wg)’. Let us denote by w, the collection of all
nilpotent elements in g; then there exists an abelian algebraic Lie algebra b
of semi-simple endomorphisms in g, such that g, as a vector space over
the complex field, is direct sum of the underlying spaces of n, and } respec-
tively (cf. [6], vol. III, Proposition 20, p. 130). We denote by H and N,
the connected subgroups, belonging to ) and n, resp. of &. If g is any
element of ®, it can uniquely be written as hn, where h€ H, neN,
(cf.[6], vol. 111, Proposition 21, p. 131). Let us denote by m the subalgebra
(ad (ng))” of m,, and by M the corresponding connected subgroup of &.
Observe, that m is an ideal in §. In fact, putting g, = (ad (g¢) | ne)’,
we have [g, §] = [8o, 80| (cf. [6], vol. II, Theorem 13, p. 173); but since g
1s solvable we also have

[50’ gO] = (ad [gC’ gc] l“c)’ C(ad e | Itc)' = m,

proving our statement. Furthermore, since g/m is abelian, the same

is valid for @ /3 ( ¢f. [6], vol. III, Proposition 12, p. 120).

c. Let us put g, =l 4+ m; g, is a subalgebra of §. We write &, for
the corresponding connected subgroup of & and observe, that &, = H 3.
We claim, that to prove our proposition, it suffices to show, that there exust
polynomial functions S and T on ng, such that S|# =0, T|3¢ =0,
S(gr) =7 (g S(x), T(gz) =28 (g) T (x) for all g in &, and x in &, where
Y (g) /8 (g) = det (g), and such that the degrees of S and T do not exceed a
bound L (m) depending on m = dimn only. To show this we observe
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first, that there is a homomorphism «, (3,) of ® = HN, into the multi-
plicative group of all nonzero complex numbers, uniquely determined by
the condition, that o, (h) = (k) [B, (k) = & ()] for all A in H and such
that @, =1 (B,=1 resp.) on N,. We have evidently «, (g)/B, (g)=det g
on &. In this fashion, by virtue of (a), to prove our assertion, it is
enough to establish the following statement. Let S (z) be a polynomial
on wg such that S (gz) =7 (g) S (2) for all g in &, and xin &, and S| 5¢ = 0.
Let o be the homomorphism of ® into the group of all nonzero complex numbers,
such that o« | ®, =y and a«| N, = 1. Then there is a polynomial function
R (2) on wg, such that R| # =£ 0, deg R < deg S and R (gz) =« (g) R (2)
for all g in ® and x in #. Let us denote by W the vector space, over
the complex numbers, composed of all polynomials P on wg, satisfying
P(gz)=7v(g) P(x) for all g in &, and z in &, and deg P =_deg§S.
We write W, for the subspace of all elements, vanishing identically on ¢,
of W, and set V= W/W,. We have evidently dim W << + o0 and
hence also dim V << 4+ 00. On the other hand, by virtue of the existence
of S (z) as above, W properly contains W, and thus dim V> 0. Given
any element g of ® and P in W, let us put (T (g) P) (z) =P (g* z). We
observe, that the linear map P— T (g) P (P€W) -transforms W into
itself. To see this it suffices to take into account, that &, = H 3 is
invariant in &, since &/ is abelian [¢f. the end of (b) above]. On the
other hand, it is evident, that T (g) leaves W, invariant. We write U (g)
for the operator, induced by T (g) on V= W/W,; the map g+~ U(g)
is a linear representation of ® on V. Since the image of any element [
of n, in the differential of U is obviously a nilpotent operator, by virtue
of the theorem of Engel, applied to U (N,) as acting on V, we can conclude,
that there is a nonzero element r in V, such that U (n)r=r for all n
in N,. Let R be an element of W lying over r. We have R |4 =20
and also R (gzr) = a(g) R (z) for all g in ® and z in #&. To prove the
last statement let us assume, that g = hn (h€ H, n€N,). Then if z is
in &, by virtue of the definition of W and « :

R (92) = v (h) R (n2) = « (h) R (nz) = « (9) R (nz);
but in view of our choice of R, R (nz) = R (z) on &, and thus
R(gx) =2 (9) R (@), -
completing the proof of the statement made at the start of (¢).

d. Summing up once more, to establish our proposition, it suffices to
construct polynomials P and Q on wg, such that P| 8 =£0, Q| & =£ 0,
Ann, Ec, Norm., (4), IV. — Fasc. 4. 73
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P (gz) =y (g) P (), Q(gx) =2(g) Q () for all g in &, =HM and 2
in 3¢, where v (g)/0 (g) = det (g), and deg (P), deg (Q) < L (m), where
L (m) depends on dimnw = m only.

e. In the following, given an endomorphism A of a vector space V,
A’ will stand for the transpose of A, operating on the dual V' of V. If A
is a family of endomorphisms of V, we write A’ for {B;B= A", A€ }.
Let ® be the smallest algebraic group of endomorphisms of ng, which
contains Ad (G)|n. Since the group of all automorphisms of ng is alge-

braic, we conclude, that any element of ® is an automorphism of ng.
We have evidently &' > ® [cf. (a)] implying, that &’ consists of automor-

phisms of ng. Let us observe, that & leaves the center of gg (Cug)
elementwise fixed, and hence the same is valid for &’.

Let us choose now a Jordan-Hglder sequence

e = MpDMp_gD...Dm = (0) (dimm; =j, j=1,...,m)

for the action of the solvable Lie algebra g, = )’ 4 wm’ [¢f. the start of (c)]
of derivations of ng. By what we have just seen, we can assume, that m;

is the complexification of n,Cg”, where m, is as in the statement of Propo-
sition 4.1. Since along with H, H’, too, consists of semi-simple endo-
morphisms, for each j = 1,2, ..., m we can find a nonzero element /; in
m; — m;_y, such that hl; = w; (h) l; for all hin H. Observe, that we have
wy=1for1l -7 =5 With the notations of Proposition 4.1, Chapter II,
taking loc. cit. C, m, M and {m;} in place of K, g, G and { g;} resp.,
let us denote by e the smallest element of &, such that Q.| #¢ = 0.
Assume first, that d(e) =0; 3 acts then trivially on &. Let
{x;;1 7= m|be coordinates with respect to a basis, dual to {{;;1 "7 —"m},

onng. We claim, that by setting P (z) = I] x;, Q(z) =1,y (g) = det (g),
¢(g) =1 (ge®,) the conditions of (d) above are statified. In fact, all
what we have to show is that P (hw) = (det (h)) P (2) for all » in 9 and

hin H; but this is certainly so, since det (h) = n ; (h). Let us assume
j=s-+1

now, that d (e) > 0, an let us consider, as in Lemma 1.3, Chapter II,

the system {A;(z);;€E}. Evidently {1,2,...,s}CE. Writing E’

for the difference of these two sets, the points {A;(x);7€E’} of C*

[k = m — d (e) — s; coordinates arranged according to increasing j],

if x varies over the Zariski open set N @, in 4, describes a set of
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the same kind (¢f. Remark 4.1, Chapter II), and thus, in particular,
A (z) =20 if J belongs to E’. Let us show now, that ; (hx) = p.; (k) A; (z)
for all hin #¢, x in @, and j in E. To this end, by virtue of Lemma 1.3,
Chapter II, it 1s enough to observe, that if 2 belongs to H, then its trans-
pose A’ is an automorphism of ng satisfying h’.1; = p; (k) l; (1 =] = m).
We recall, that by definition

Qe (@) =det { ([l ], x); i, jee].
Observing, that for A in H :
(L U1 he) = (B [L, 1), @) = ([ 1 b L) @) = pu () py (B) ([ L ®) (i je€o),

we conclude, that for all z in ng we have Q. (hz) = (. (h))* Q. (x), where

p @) =] | e ®.

JjEe

We denote by P, a polynomial, homogeneous of degree d (e)/2, over ng,
such that P} = Q.. Then we have P, (hx) = p. (h) P, (z) for all A 1n H.
We set :

R@=P.@] ] ¥ @.

JEE

R () is a rational function, the restriction of which to #€ is not identi-
cally zero. Since

det @) = [ s =p®]] v @,

j=s+1 JEL

we have R (hz) = (det (h)) R () on & for all A in H. In addition, by
virtue of our construction, R| ¢ is invariant under #/l and thus, since
®, = H A and det (n) =1 on 3, also R (gz) = (det (g)) R (2) (x€ X,
g€®,). By virtue of Lemma 4.1, Chapter II, since A; (z) = P;(0; 2),
with notations as loc. cit. we can write A; (2) = A; (2)/(Q. (z))*"™, where
A; () is a polynomial satisfying deg (A; () =~ (2m 4+ 1) K (m) (j€E).
Thus putting

P@=P.@[] 4@ and Q@=@Q @\ [k=m—d@©—s],

jew

(m), where
(h)if g = hn
— [ ( )J“ kK (m)

L(m)=m?(2m+4 1) K(m). Let us define finally p (g) =

the polynomials P and Q satisfy deg (P), deg (Q)--L
L
(heH,ne M). Wehaveon #:Q(gx)=v(g)Q(x), where v(g)
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(g€ ®,). Summing up, it is clear from the previous discussion, that
choosing P, Q and L (m) as above, and setting v (g) = (det (g)).v (g),
S(g) =v(g) (g€®,), all the conditions of (d) above are met, and thus
the proof of Proposition 4.1 is complete. :
Q. E. D.

Given a finite dimensional Lie algebra g over the reals, we denote
by U (g) the universal enveloping algebra of g. Let ¢ be an automorphism
of g; we shall write ¢ also for the corresponding automorphism of U (g).

CororrLary 4.1. — Let G be a connected solyable Lie group with the Lie
algebra g. We denote by w the greatest nilpotent ideal of § and by V the
center of U (w) [CU (g)]. There are nonzero elements p and q in ¥V, such

that gp = ¢ (g) p, gg="1(g) ¢, and 7 (g)[e (g) = det (Ad (g)) (g€G).

Proof. — We denote by S (g) the symmetric algebra over the underlying
space of g. 'We recall, that there is an isomorphism ® of the underlying
space of S(g) onto that of U (g), such that for any finite collection

{ @1, Tsy ..., Ty} of elements of g the image, under ®, of the product
Zy Ty ... Ty, computed in S (g), be the same as
1
I\T!< Z Tr(1) LTr(a) «« xn(M,>
nell,

computed in U(g). If ¢ is any automorphism of g, we have ® (¢ o) = ®(¢)
for all ¢ in S(g). Let & (g') be the algebra of all polynomial functions
on the dual g’ of the underlying space of g. There is an isomorphism W
from S (g) onto F (g') such that

W (L, T, ... zw) () EH @, 1) ('ey).

j=1

If A is some endomorphism of the underlying space of g, we have
U A)l')=W(v) (A'l') [veS(g), '€g’]. We replace above g by u,
and assuming, that p, ¢ in & (n’) are as in Proposition 4.1, form their

images in U (1) under ® - v, Denoting these again by the same letters, by
virtue of what we saw above, we have gp= (1/«(g)) p, gg=(1/8(g)) q (g€ G).
Since the restriction of « and f§ to N is identically one, p and ¢ lie in %,
and thus to complete the proof of Corollary 4.1 it suffices to set

e (g)=1/x(g), n(g) =1/B (g) (2€G).

Q. E. D.

5. Before proceeding we wish to recall the following facts.
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a. Let G be a connected Lie group with the Lie algebra g. Denoting
by C; (G) the family of all complex valued C” functions of a compact
support on G let us put, for a given a in G, (R (a) f) (2) = f (za) [f€C. (G)].
The map a +— R (a) defines a representation of G on C; (G), considered
as a vector space over the complex numbers. Let U (g) be the universal
envelopping algebra of g. For p in U(g), dR (p) is a left invariant
differential operator on G. We put p(f) = (dR (p)f) (¢) [f€C. (G),
e = unity of G]; the linear form f+> p (f) 1s a distribution, the support
~of which is {e}. The map assigning to p€U (g) this functional is an
isomorphism between U (g) and the algebra of all distributions with support
at e, the product in the latter being defined by convolution. In fact, let
{l;;1 ] m} be a basis in g, r = (r, s, ..., "m) (r;>>0 integer for
j=1, 2, ..., m). With notations as in Corollary 4.1 we put

1) =® @l ... Lp)eU ().

The desired conclusion i1s implied by the fact, that the collection of all
these elements span U (g) as a vector space over R, along with the obser-
vation (cf. [19], p. 98) that for f€C; (G) we have

(1) L) () = g P (D) =

where |r|=r1—|—r§+...—|—rm, and for T = (t;, ¢, ...,t,) we have

set | (T) =2t 1.
j=1

b. There is an 1somorphism ¢ from S (g) into the algebra of all complex-
valued polynomial functions on g’, uniquely determined by the condition,
that

@l O=r[lay een.

j=1

Let us set e = qo fI)i; ¢ 1s an 1somorphism of the underlying space of U (g)
with its image such that, for any a in G we have ¢(ap) (I') = ¢ (p) (a™* ')
[p€U(g), '€g’]. This map admits a unique extension, to be denoted
again by ¢, to an isomorphism between the underlying space (over C)
of [U (g)lc and that of the collection of all complex valued polymonial
fonctions over g'. Let U be the center of U (g); an element p belongs to U¢
if and only if € (p) is G invariant.

c. Let T be some continuous unitary representation of G. If p is any
distribution of compact support on G, there is an operator T (p) on the
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variety of all indefinitely many times differentiable vectors of H (T),
uniquely determined by the condition, that we have for any pair f, g of
vectors of the said type : (T (p) f, g) = p. (T (x) f, g). If piscentral, T (p)
is a scalar multiple of the identity map I. In this case we shall write
(with a slight abuse of notations) T (p) = w I (n€C).

d. We assume now, that g is nilpotent and G connected and simply
connected. Let T be an irreducible unitary representation of G belonging
to the orbit O in g’ (¢f. 1). If p€U, e (p) is G invariant [¢f. (b)]; we shall
write ¢ (p) (O) for its value on O. With these notations A. A. Kirillov
proved (cf. [22], Theorem 7.2), that T (p) = (p) (O) L.

e. Identifying the underlying manifold of G to that of g by means of the
exponential map let us observe, that for any p€ U (g) its Fourier trans-

form ﬁ, formed with respect to the underlying abelian group of g, coincides
with ¢ (p). In fact, putting for ¢€C; (9), ¢ (— I) = ¢_ (I), we have by

definition p (¢_) = f)\ (c/ﬁ), where @ 1s as in 1 (b). Let us choose a basis
{l;;1=Zj<m} in g. With notations as in (a) above, to establish our
statement, it is enough to consider the case of f(I(r)). Let{l;;1=j=m|
be a basis in g’ such that (I;, I;) = ¢;; and denote by {z;} and {y;} the
corresponding coordinates on g and ¢’ resp. 'We have by (1),

ol oIl
— (— o — (— 17"
()= (1"l Ryl (@) Im =DM @) o

On the other hand ¢ (I (r)) (y) ="y yy ...y =1i"'y". Therefore to

complete our proof it is enough to recall, that if dz is an element of the
Lebesgue measure on R™, we have

17l
i yrf ¢ (x) ey de = (— 1)|r|f %——rcp (z) e=r dz.
R™ R™ xz

6. We denote again by n a nilpotent Lie algebra and by N a corresponding
connected, but not necessarily simply connected nilpotent group. Using
the notations of Section 2, we identify the underlying manifold of N to
that of the abelian group W = /' by means of w (cf. loc. cit.). Let @
be the family of all central distributions of compact support on N. If

oA . . .

nem®, we write (. for the Fourier transform, in the sense of the abelian
0 . A . . .

group W, of . on W. Observe, that evidently wis N invariant. Given an N

orbit O in ﬁ, we shall write @. (O) for the value of fl on O.

By virtue of what we said in (e) of the previous section, the following
lemma is a slight extension of the result of Kirillov quoted in (d) loc. cit.
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Lemma 6.1. — With the previous notations assume, that T is an irreducible

unitary representation, belonging to the orbit OC 111 of N (cf. Lemma 2.1).
Then, if p.€ @, we have T () = p. (0) L.

Proof. — a. If pisin C; (N), we have
T@Ex9)=T ()T (9) (+ X ¢ = convolution on N).

Forming the trace of both sides, by virtue of Lemma 2.2 we conclude, that
the assertion to be proved implies

M) fof@dmﬁ(mfﬁdv.

But the inverse implication, too, 1s valid. In fact replacmg in (1

obyox ¢ [beC; (N)] we conclude ,that Tr ([ T (1 x ¢) — @) ]T )

)s
0,
(0) L.

’5:>

whence, varying first ¢ and then ¢ we get easily, that T( ) =
In this fashion, to prove our lemma, it suffices to establish (1).

b. Let us observe, that if O is a zerodimensional orbit, we have certainly
T (p) = 0 (0)I. In fact, let us assume O ={k,}; then T coincides
with the character ¢ of N defined by ¢ (w (I)) =, k,> (I€N). In this

fashion T () = u (1, ko >) = 1 (k,), proving our statement.

c. We proceed now to prove (1) by induction according to the dimension
of N. By (b) our statement is valid if dim N =~ 2, since in this case any
orbit is zerodimensional.

Let W be the image of wd in M. Since (nl,I1> =, nt 1> (ne N,len,

l'e ﬁ>, putting, with &, in O : f(l) = {1, k, > (1€W’), the character f on W’
depends only on O. 'We denote by A the kernel of f, and assume, that the
dimension of the component A, of its neutral element is positive. Let us put

M = N/o (A); we have dim (M) < dim (N). We write 31 = M/A and
observe, that the relation of M to M is analogous to that of N to M (cf. Sec-
tion 2). The dual of # is identifiable to the annihilator of A in fl. Hence,

. /\ /\ . . . .
by virtue of our construction : OC M cM. Given a distribution «,
invariant under translations by A, on M, we denote by «, the corresponding
distribution on M. Let dd be an element of the invariant measure on A.

For ¢€C. (M) we put v (¢) =f<p (3) d8. Denoting by ~ the Fourier trans-
A

form, with an appropriately chosen invariant measure, on 3¥, we have



584 L. PUKANSZKY

/\ —
$|m = (<p>< v)i [¢f. (b) in Lemma 2.2]. (mwXv), is a distribution of
- compact support, which is central with respect to M, and

(@ XX v)s = (¢ X¥)1 X (X V)1

Hence, by virtue of the assumption of our inductive procedure
RS o — — —
[(Ex@)ao = [ (xp5u) o = (59, @) [ (@0)do = 2(0) [§ o
0 0 0 0

which is the desired conclusion.

d. If dim A, = 0 we have dim (nf) =1 and O is not orthogonal to n.
We recall now the following results of Kirillov (¢f. [29], p. 130-136). Let
0#zend, 1 ={z y} a 2-dimensional ideal. There is ¢ 20 in " such
that ad (I) y = ¢ (I) z (l€n), and w, = ker (¢) is the centralizer of I. Let
us put N' = exp (un,); N’ 1s a closed subgroup, of codimension 1, of N.
This being so, any N orbit O in v/, which is not orthogonal to n4, satisfies

A
O 4 ut = 0. Let W be the image of n,inM; we have 1’ = Ili/uj-. Assume
now, that OC ﬁ, and let O, be an arbitrary N’ orbit in its projection into

ﬁ'. Let z be an element of w with ¢ () = 1, and denote by O, the image
of O, under exp (iz) (t€R). Fot ¢ in C; (M), we write 9, for its restriction
to W. Then, if , is the Fourter transform of ¢, on W' (with a suitably
chosen invariant measure) we have

f0$ @) dv =j|;<f0t§0 (l)dvt> dt

where dv, is the canonical measure [cf. 1 (¢)] on O,. Let i bein @. Since

. 1s N invariant we conclude, that it is invariant under translations by

elements of nlcC ﬁ, and thus the support of \t is contained in .  Assume
now, that O i1s as in our lemma. We have, for each fixed ¢, by virtue of
our inductive procedure

f(#xcp)o =fP~><<Po dv, = ﬁ(Ot)f?Po dv..
0, 0, 0;

But since {i (O,) = 1 (O), we obtain finally, that

fo(p/x\cp dv=ﬁ(0)b[?< K dv,> dt=ﬁ(0)fo¢(z')du.



REPRESENTATIONS OF SOLVABLE LIE GROUPS 585

In the following we continue to identify, whenever convenient, the under-
lying manifolds of N and 1 resp. 'We shall call a complex valued function

/\ . . . . . .
P on N a polymonial function, if the function corresponding, by virtue
A\
of Lemma 2.1, to P on 1I/N, on each component of the latter, arises out of

a polymomnial function of n’.  'We say, that the polymonial function P on N
is of bounded degree, if the said polymonials can be chosen such, that their
degrees are uniformly bounded. The polynomial functions P and Q will

be called proportional, if the corresponding functions on 1 are proportional
on each connected component (the factor of proportionality being permitted
to vary). Assuming, that Nis not simply connected, let us denote by & the
maximal torus in the centre of N; we write s (s > 0) for its dimension.
We say, that a distribution on N is of a bounded degree, if it can be written
as a finite sum of distributions of the form v X k, where kis in U (w) [¢f. b (a)]
and v is a complex valued measure carried by © and there of the form f dt,
where f € C” (G) and dt is the element of the normalized invariant measure
on . Observe, incidentally, that the convolution of v and k with respect
to N and the underlying group of 11 resp. coincide. 'We denote the collec-
tion of all central distributions of bounded degree by ®@,. Any element
of @, 1s carried by . If N is simply connccted, we define &0, by g

Lef. 5 (a), )]

Lemma 6.2. — Let P be a polynomial function of bounded degree on N.

. . . . . A
Then there s an element p. of @, such that, swith the usual identifications, [
and P are proportional.

Proof. — Assume first, that N is simply connected. Then there is a .
in Ug such that P = ¢ () [¢f. D (b)] and we have also P = {l by b5 (e). Let
us suppose now, that N is not simply connected.  'With notations as above
and in Lemma 2.3, let { P,; «€Z (s) | be a sequence of polynomial func-
tions, such that P, | H, is N invariant, and that the corresponding function
on IH,/N coincides with the restrictions of P to Ha/NCﬁ/N. By virtue
of our assumption on P, we can suppose the existence of a constant
K > 0, not depending on «, such that deg (P,) < K [x€Z (s)]. Using
coordinates {t;; 1 =Zj s} corresponding to the basis {v;; 1 =7 s}
of I, on © (identified here to w/I'), let us put ¥, (t) = exp (— 2 = it «)

[oc = (g, Oay ooy %) €L (8), 12 ::Z l och. We write also ¢, for the measure
J=1

on N, which is carried by ® and there coincides with v, dt (dt = dt, d.. . .dt,).
Ann, Ec. Norm., (4), 1V. — Fasc. 4. 74
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If p is some element of U (n), we have pXy.|H.=z:(p)| H. and
Pa ) ’ ) - \
pXya| Hy=0ify=£a. fP,=c(p,)[x€Z(s)] wecan write p,= Z 1 (r)

Irl<K

[¢f. 5 (a)]. . Let us put 8, = sup | | and

‘ 1 if 3, =0,

Y“=( exp (—|al) oz’ otherwise <|a|’=2 a,~>.

Then for each ﬁxed r (| r| £ K) the sequence { 'y; ¥ ;: a€Z (s) } 1s rapidly

. . ¥l . 0 o .
decreasing, and hence the function f, =} v, ¢ 7. is C* on &. 'Writing
PR
v, for the measure on ¥, which is concentrated on &, and there coincides

with f, dt, one sees at once, that if we set p. = 2 v, X 1 (r), we have forall «
1<K

in Z(s) : p.|Hy=v.Ps| Hs.  Since P,|H, is N invariant, \, too, is N

invariant. Thus p belongs to ®,, and it satisfies all the requirements of

Lemma 6.2. ' : Q. E. D.

7. Let G be a separable locally compact group, do an element of the
right invariant measure on G and let us put d (ax) = A (a) dz (a€G). We
recall, that the right regular representation a — R (a) (a €G) of G is the
continuous unitary representation, corresponding to the map f (z) — f (za)
on the Hilbert space L* (G) of the equivalence classes of all complex valued
functions, square integrable with respect to dz. The right ring R (G)
of G 1s the von Neumann algebra generated by the operators { R (a); a€ G |.
The left regular representation @ > £ (@) is the unitary representation,
corresponding to f(z) = (A (a))""” f(a ' 2) (a€G) on L*(G); the left ring
L (G) is the von Neumann algebra generated by | £ (¢); a€G|. Putting
for feL? (G) : '

(S1) @)= [ )HA @)

we have | Sf|| = |||, S £ (a) S = R (a) (¢ € G) and thus also SL(G) S =R (G).
'We recall also, that R (G) is the commutant of L (G), thatis R (G) = (L(G))’
(cf. the proof of Lemma 7.1 below or [13], 5, p. 80). 'We shall write J for
the selfadjoint operator on L2 (G), which is the minimal closed extension
of the map f () A (x) f () of C (G)cL* (G) onto itself. Let A and B
be, not necessarily bounded, selfadjoint eperators on a Hilbert space. We
say, that A and B commute, if any bounded function of A commutes
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with any bounded function of B. 'We recall, that in this case the product
AB 1s densely defined and admits a selfadjoint minimal closed extension,
which we shall denote by [AB]. Given a von Neumann algebra M, we
say, that the (possibly unbounded) selfadjoint operator A is affiliated with
M, in symbols A vy M, if A commutes with any operator of the commutant
M’ of M (cf. e. g. [13], 10, p. 15). In the following, whenever speaking of
a trace on M, we shall mean a trace on the set of all positive operators of M
in the sense of [13], Definition 1 (p. 81), which is in addition faithful, semi-
finite and normal (¢f. p. 82, loc. cit.). We recall, that in this case M 1s
semi-finite (¢f. [13], Proposition 8, p. 99). If ¢ is a trace on M, we shall say
that an operator A in M is generalized Hilbert-Schmidt operator, if
e (A*A) < + oo (¢f. [12], A. 32, p. 338). If f, geL? (G) we shall put

(Fxg) @ = f f @y g (3) dy.

We say, that the element f€L.* (G) is right bounded, if the map g+ gxf
[geLl® (G)] gives rise to a bounded operator V, on L*(G). Since V,
commutes with £ (a) (a€G), by what we saw above, V, belongs to R (G).

‘With these notations and terminology we have

Lemma 7.1. — Suppose, that there is a selfadjoint, positive and non singular
operator M’ affiliated with L (G), such that, putting M = SM'S we have
J = [M'M~*]. Then there is a trace ¢ on R (G), uniquely determined by the
property, that for any right bounded f in L* (G) lying in the domain of M/,
V; be a generalized Hilbert-Schmidt operator and

D _ ¢ (V3. V) =M flP

Proof. — Our assertion is a simple consequence of a result of J. Dixmier
(¢f.[7], Théoréme 2, p. 287). We recall (cf. loc. cit.), that the quasi-unitary
algebra A is an algebra over the complex numbers, on which an involutive
antiautomorphism x — 2, an automorphism « — 2/ and an inner product
(z, y) are defined, such that with respect to the latter A becomes a pre-
Hilbert space satisfying the following axioms : (i) (2, 2') = (z, «);
(1) (z, /) > 0; (111) (ay, z) = (y, & z); (iv) the mapping = — zy (y fixed)
is continuous; (v) the linear combinations of the elements of the form
zy + (zy)’ are dense in A (z, y, z arbitrary in A). One verifies easily, that
one obtains the structure of a quasi-unitary algebra on C (G) by defining

(. 9) =f(f(x)mdx,_ (f@=Fx9 @, [ @ =T@ /A @),
fl@)=VA@.f@ [f,9€CG) '
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Given a quasi-unitary algebra A, we denote by H, the Hilbert space,
which 1s its completion. By virtue of (iv), for each x€ A there exists a
bounded operator U, (V,) on H,, satisfying U,y = 2y (V. y = yx resp.)
for every y€ ACH,. One can show, that the weak closure R¢ (R’ resp.)
of {U,; x€A} ({Vo; ®€A} resp.) is a von Neumann algebra on H,,
and (R¥) =R%. In the case of A= C(G) one has : H, = L2 (G),
R* = L(G) and R?*=R (G). Hence, in particular, R (G) = (L (G))’ (as
stated above). The minimal closed extension J of the map x —> 2/ (x€A)
1s selfadjoint, positive and non singular. 'We denote by S the involution,
arising by extending the map x> 2’ (x€A) to H,. We have R = SR¢ S.
One sees easily, that for A = C (G) the operators J and S are defined as
before. An element f of H, is called right bounded, if there is a bounded
operator V, on H,, such that we have V, 2 = U, f for all  in A; observe,
that if A = C (G), this coincides with our previous definition. Now we
are in position to state the result of Dixmier referred to at the start, of
which our lemma is the special case for A = C (G). With the above
notations let us suppose, that M’ vy R* has the properties enumerated in our
lemma and in particular, putting M = SM'.S, assume, that J = [M'.M™'].
Then there ts « trace @ on R", uniquely determined by the property, that if
is right bounded and lies in the domain of M', V7.V is a generalized Iilbert-
Schmidt operator and ¢ (V;.V,) = [|M' f .

Q. E. D.

Lemma 7.2. — With the previous notations assume, that M is a selfadjoint,
postitive and inyertible operator such that M’ vy L (G), M’ commutes with J
and for any a in G : £ (a) M £ (a™) = (A(a))"”*M'. Then, pulting
M = SM'.S, we have J = [M'.M~'].

Proof. — We have for all @ in G : £ (a)J 2 (¢') = (A (a))”* J, from
where we conclude, that K = [JM™'] commutes with £ (¢) («€G) and
hence, by virtue of R(G) = (L (G))” we have K7 R(G). Let us put
M, = K='; by what preceeds, J = [M'.M[']. Letusset SM".5 =M R(G)
and SM, S = M| 1L (G). Next we observe, that SJS = J~', whence we
infer, that also J =[M, M~']. Let us note, that M commutes with M,,
since M = SM'.S commutes with J=*. Therefore M’ and M, too, commute.
From all this we conclude, that there 1s a selfadjoint, positive, invertible
operator C affiliated with L (G)NR(G) [= center of L (G) and R (G)],
satisfying SCS = C and commuting with J, such that M = [CM,] and
M, = [CM']. In this fashion we have [M'.M™'] =[C'.J]. Writing L
for the left hand side, we have SLS = L'. llence the same holds true
for [C*.J], whence we conclude, that C?*, and thus also C is equal to the
unit operator and that J = [M".M~']. Q. E. D.
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Lemma 7.3. — Let G a be connected solvable group. Then there is an
operator M' ', L (G) sith the properties of Lemma 7.2.

Proof. — Let g be the Lie algebra of G, n the greatest nilpotent ideal of g.
We put N = exp (1) € G; Nis a closed invariant subgroup of G.

a. Let dn and dy be elements of the invariant measures on N and G/N

resp., such that we have for all f€C (G) :

f.; f (@) dz — Gm( fN f (n2) dn) dy.

Let S be a Borel subset of G, such that for any @ in G we have a represen-
tation @ = ns with uniquely determined factors in N and S resp. The
restriction of the canonical map from G onto G/N, to Sis a Borel isomorphisn
with its 1mage. Let dt be the measure, corresponding to dy on S. We
denote by £y the left regular representation of N. There is a unitary
map from L2 (G) onto L* (N) ® L: (S), which carries £ (n) into £y (n) @ I
(neN); to simplily notations we shall write £ (n) = £y (n) Q I. Let a
be some element of G and let us denote by <.IJ,, the unique ¥-automorphism
of R(£y) =L (N) with 4, (£y(n)) = £y(@'na) (n€N). If H 1s a

selfadjoint operator such that Hv L (N) and H :/ w)\ dE,, we define

d. (H) by[ A dy, (E,). This being so, let us assume, that His positive,

invertible, and that for all «€G it satisfies Y, (H) = (A(a))"”* H. 'We
claim, that in this case M' = H X [ satisfies the conditions of our lemma.
To- this end we have to prove, that M’ commutes with J, and
La)M'.2(a")=(A(a))””M for all @ in G. The first assertion is
clear, since by virtue of A| N = 1, we have under the above identification
- J=1@Q K, where K corresponds to multiplication by (A (s))* on L2 (S)
(s€S). To establish the second we observe, that

£@M.2(@) =Y (HRI=@A@) "".HRI =A@ "N (@cGC).

b. We conclude from the previous remarks, that to prove our Lemma,
it is enough, in particular, to find an H as above with H 7 (L (N))%.

We recall [of. 1 (a)], that if T€(N), and s €C? (N), T (¢) is of trace class,
and thus N is of type I (¢f. [12], 13.9.4, p. 271). Let E_ (E,) be the set

%C; e 1<\I, dim { = —I—oo}(%l; (e IQI, dim (= 1} resp.). By virtue of

A
the theorem of I.ie we have N = E,UE_. Let H_ be an infinite dimensio-
nal unitary space, |~ the Plancherel measure of N (¢f. [12],18.8.3, Définition,
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p- 328), and v=p|E_,. We denote by %, the Hilbert space of all v
measurable functions { A ({)} on E_, with values in the set of Hilbert-

o)

Schmidt operators on H_, satisfying

TrAQA @M dv (§) < + 0.

We form analogously %, by aid of a one-dimensional space H, and i | E,.
Let%n ©); Ce 1/\\I§ be a Borel measurable field of unitary representations

of N on H_, and H, resp. such that = ({)&€({{}). (Ze ﬁ) We put.
H =49, ® P, and recall (¢f. [12], p. 327-328), that there is a unitary map

A
from L? (N) onto #, which sends f € C;(N) C L*(N) into % = (8) (f); CEN} €Y
and makes correspond the center (L (N))3 of L (N) to the ring of multipli-
cations by u. measurable bounded complex valued functions on N. We

- shall write for the latter simply L, <1QI>

Let a be a fixed element of G and let us determine the X-automorphism
of Ly (N) corresponding to ¢, | (L (N))? [¢f. (a)]. To this end we denote
by V the unitary operator on L? (N) such that (V f) (n) = (A(a))""* f (a™" na)
[feL* (N)]. Since VLy(n) V7' =14, (Ly(n)), also VAV =1, (A) for
all A in L(N). Let W be the unitary operator corresponding to V on %j.
If feC; (N) we have

Wit i=1im@QNNI

On the other hand, for each fixed { & N
T (Vf)=(@ ((1))_1/2[\‘7”(0“1 na) © (§) (n) dn = (A (@))'* [a~" = (O] (f).

Let U ({) be a unitary operator witha™* = ({) = U ({) n (™' {) [U ({)]*; then
Win @)} ={A@)”UE).= @9 UE*}

If F is an element of L (1/\\I), we write M (F) for the corresponding multipli-
cation operator on $; we put also F, ({) =F (a7'{) (a€G). With these
notations what we have just seen shows, that WM (F) W= = M (F,).

By virtue of the above considerations, to prove our lemma it suffices

to find a Borel measurable function F on 1/\\1, such that 0 < F < 4 o
almost everywhere with respect to i, and F, = (A (a))”"* F for all a in G.

/
c. Let 1t and M be as at the start of 3, and let ¢ be the map which assigns
A A
to {€ N the corresponding orbit in IT(/N. We recall (cf. 2), that ¢ is a Borel
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isomorphism between the underlying Borel structures of these spaces
Let us add, that {1 is equivariant with respect to the action of G on N and

’IT(/N resp.; we leave the easy verification to the reader (cf. Remark 4.1,
Chapter 1). :

d. In the following we shall assume, that the rank s of I' (¢f. 3) is positive,
and leave to the reader the modifications necessary to settle the remaining

case. With the notation of Lemma 2.3 we have ﬁ =VU,ezy Hoe We
apply Proposition 4.1 to H, [« fix in Z (s)] in place of Hy loc. cit. As a
result we obtain polynomials p, (z) and ¢ () on v/, such that p | H, = 0,
q| H.=£ 0 and p, (az) = iy (a) po (2), g (ax) = v, (a) ¢, (z) on H, for all a
in G, and ., (a)/v, (a) = A (a). Repeating the same construction for all

N
€7 (s), we define the p (¢) on n/N by the condition, that its restriction to
H./N, when lifted to H,, coincide with p, (g, resp.). LetusputP=p-4d,

Q= gq-{. These are Borel functions on 1QI and, by virtu‘e of Lemma 2.3,‘
the G-invariant sets [cf. (¢) above] {{; P({) =0} and {Cs Q ) =0}

are of Plancherel measure zero. Writing G ({) = /Q we have
by our construction G (a () = A (a) G ({) [whenever G (C) is deﬁned]. In
this fashion the function F = | G |"* satisfies all the requirements formu-
lated at the end of (b). o Q. E. D.

Lewvma 7.4. — We can make a choice of M in Lemma 7.3 with the following
property. There is a distribution ¢ on N of a degree not exceeding B (m)
(m = dim n; cf. Proposition 4.1 and Section 6), such that p X f lies in the
domain of M for all f in C; (G) and pXf= 0 implies f= 0. If N is simply
connected, the support of ¢ is the unity.

~ Proof. — We continue to use the notations of the proof of Lemma 7.3.
By virtue of Proposition 4.1 we can assume, that in (d) above deg (pd),

deg (q,) = B (m) [#€Z (s)]. By Lemma 6.2 we can also suppose, that
A

there are elements ¢, c€®, such that P ({) =5 ({), Q () = 6 €) <CE 1/\\I>
and deg (p), deg (c )éB( ). We claim, that M’ corresponding to P, Q
as just specified, along with p, satisfy the conditions of our lemma. Let H,
be the operator, corresponding to M (P/Q), on L* (N) [¢f. (b) in the proof
of Lemma 7.3] and let us put M, = H, @ I [¢f. ( , loc. cit.]; we have
(M")* = M,. If T is some operator, we shall denote its domain by D (T).
Since 0 0L LT ‘ - ~

~ DM)>D ((M)) =D (I My|) =D (M), : ’

to prove our léemma, it ‘suffices to show, that p X f€D (M,) for all f€C (G).
To this end it is enough to establish, that if g€ C; (N) we have pxX g€ D (H,)
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and H, (pxg) = G><g In fact, given k€C; (G) and a fixed s€S, let
us put k,(n) =k (ns) (n€N). Then, if h = X[ [f€C; (G)], we have
h; (n) = (¢ Xf,) (n), and thus h,€ D (H,) and

(Ho hy) (n) = (e Xfs) (n) = (s X[) (ns) (neN);

ﬁnally, (eXf) (ns)€L? (N)Q®L: (S), proving our assertion. Sincefo\(C)EQ(C)
and c( 0)=P (), by Lemma 6.1 we have = ({) (xg) =Q )= (0 (g

and = ({) (sxg =P ) =) (g (CE N). From this we see, that the
element { = ({) (p X ) | of 9 [cf. (b), loc. cit.] lies indeed in D (M (P/Q)), and
that M (P/Q){= () (pxg)} ={= () (exg)} [g€C. (N)] completing the
proof of our lemma

Q. E. D.

Lemma 7.5. — With ¢ as in Lemma 7.4, the linear manifold { o Xf;
f€C? (G) } is dense in L* (G).

Proof. — One verifies easily, that concerning S[¢f. (a), proof of Lemma 7.3]
we can make the following assumptions : 1° Denoting by S, the interior
of S, S, is a submanifold of G; 29 Let & be the collection of all functions on S,
vanishing outside S, and the restriction of which to S, belongs to C (S,).
Then F is dense in L* (S), and for any g€ F and h€C; (N) the function f
on G defined by f(ns)=h (n) g(s) (n€N, s€S) belongs to C; (G). This
being so, since L*(G) = L*(N)® L2 (S), it suffices to show, that
G ={oxXf; f€C: (N)} is dense in L* (N). Let Ry be the right regular
representatlon of N. If the said assertion is false, there is a h€L* (N),
h £ 0, such that (Ry (n) h, g) =0 for all n in N and g in §. From this
~ we conclude, that (C h, g) = 0, for all C€ (L (N))? and g€¢. Let { A ({)!
be the element of %) corresponding to k. Since the unitary correspondence
between L? (N) and % maps (L (N))? onto the ring of multiplications by all

bounded measurable functions on 1/\\1 [cf. (b), loc. cit.], bearing in mind, that
Q(Z) = Q ({), we conclude, that for any f€C; (N) and a bounded measu-

)

rable function a ({) we have

JaoeOTEO MK @M E:E =0

But since Q ({) £ 0 almost everywhere [cf. (d), loc cit.] in view of the arbi-
trariness of a ({)€L; (N) we conclude, that Tr (= ({) (f)[A({)]*) =0
almost everywhere, and thus h is orthogonal to C7 (N), contradicting i 54 0.

Q. E. D,
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We shall say, that the unitary representation U of G is of trace class,
if there is a trace on R (U), such that the set of all generalized Hilbert-
Schmidt operators in U (C* (G)) generate R (U) (¢f. the start of this section,
and [12], 6.6.7, p. 126 and 17.1.4, p. 305 resp.).

Taeorem 4. — Let G be a connected solpable Lie group. Then its right
regular representation s of trace class. More precisely, denoting by N the
largest connected, nilpotent, invariant subgroup of G, there is a distribution <
on N, the degree of which does not exceed a constant depending on the dimension
of N only, and a trace on R (G), such that R (fx <) [f€ C. (G)]is a generalized
Hilbert-Schmidt operator, and the collection of all operators of this form
generates R (G). If N is simply connected, the support of = is the unity.

Proof.— Let M’ and ¢ be as in Lemma 7.4. We denote by E the set of
all generalized Hilbert-Schmidt operators in the sense of the trace deter-
mined by M’ (¢f Lemma 7.1). Putting & ={g; g= X[, f€C] (G)}
we have & CC? (G) and by Lemma 7.4 : &cD (M), and hence { V,;
g€® |CE. Let K be the smallest weakly closed, x-invariant subalgebra,
containing the left hand side, of R (G). If K £ R (G), there is a nonzero
central projection P, such that PA = 0 for all A in K. Let h€L?® (G) be
such, that Ph = h. We have

Vih@=[h@)g@ay=0 (g

and hence, setting = e, we see, that & is orthogonal to &. By virtue of
Lemma 7.5 this implies, that h =0 if P L = h, contradicting P =< 0.
In this fashion we conclude, that { V,; g€ ® | generates R (G). Let us
define, for f€C (G), f* (z) by f(27')/A () (x€G); we have V, =R (f*).
We denote by = the distribution on N determined by the condition, that
t(h)y=7¢ (h") [h€C. (N), h* (n)=h (n')]. Observe that =, too, is a
distribution of bounded degree; more precisely we have deg (p) = deg (7).
Also (¢ X k)*=k*x~ [k€C](G)], whence we conclude, that if g is some ele-
ment of &, g+ is of the form fx= [f€C; (G)] and conversely. In this

fashion < satisfies all the conditions of Theorem 4.
0. E. D.

Cororrary 7.1. — Let G be a connected solpable Lie group. Then its
right ring is semi-finite.

Proof. — This follows at once from Theorem 4 and from the definition

of the trace given at the begin of this section.
0. E. D.
Ann, Ec. Norm., (4), IV. — Fasc. 4. 75
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We shall call Plancherel measure of G the class of measures determlned
by ® on G (cf. [12], p. 149-150 and 18.7.6, p. 325). '

CoroLrLAry 7.2. — There is a subset E, of Plancherel measure zero, of (?‘r,
such that any factor representation of G, the quasi-equivalence class of swhich
does not belong to E, is of trace class. In particular, for any element a,
different from the unity, of G there is a trace class factor representation v,
such that V (a) = unit operator

Proof. — This 1s an immediate consequence of 8.8. 2 Théoreme in [13]
(p. 160; cf. also 18.7.6, p. 325). '

Q..E. D.

Remark 7.1. — Of course, in Theorem 4 and Corollary 4.1 the right
regular representation can be replaced by the left regular representation.

8. Let G = exp (§) be again as at the begin of Section 2, Chapter II.
We recall, that if n, is the gratest nilpotent ideal of g, there is a subalgebrah
of § such that § is the direct sum of the underlying space of lj and w, resp.,
and, for any h in b, ad (h) is semi-simple (¢f. [32], p. 439). Putting
H =-exp(h) and N, = exp (m,), we have G = HN,. In the following,
whenever speaking of a Zariskt open subset of a vector space, we shall assume,
that it ts non empty.

Lemma 8.1. — There ts a Zariski open subset © of g/, and a closed sub-
group K of G, such that for any € © we have G, N, = K.

Proof. — Let us write V= gg. We choose a Jordan-Hélder sequence
V=V,>V,>...0V, = (0) for the actionof Gon V. Ifp,€V,, — V,
we have av; = ¢; (a) v; (V,); since, if h is in H, the corresponding operator
on' V is semi-simple, we can assume, that hy; = ¢; (h) ¢; for all h€e H
(1=j=M). Let{l;;1=j=J|beabasisin(n)e. If{¢,;1L5-M}
are elements of a basis in V/, which is the dual of { ¢; |, we put a;; (x) = (I, z, ¢;)
and write A; (z) for the jxJ matrix {ay (2); 1 ==j, 1 =k=J|. Let us
put m, =0 and m; = sup rank (A; (z)) (1 =7 M). We denote by e

the subset of {1, 2, ..., M|, such that m; > m; , if and only if j belongs
to e. Similarly as in the proof of Proposition 1.1, Chapter IT [G loc. cit.
replaced by (N,)¢] let us form ©, = {z; f(x) = e|; one sees at once,
that ©, is Zariski open in V. We write E for the complement of e in
{1,2, ..., M{ and infer from loc. cit., that the functions 4; (z) = P; (0; )
(JEE, € ®,) are the restrictions to @, of some rational functions on V,
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all defined on @, Also, by Lemma 1.3, Chapter II we have
% (ax) = ¢; (a) 1; (z) [a€H (N))¢, 2€®,., j€E]. Finally, if z, 2/ €O,
we have A; (z) = %, (¢/) if and only if 2/ € (N,)g #. Let us denote by @,
the subset of ©., where none of the functions { 2; (z); j€ E} vanishes.
We put © = @ ,nyg’; © is Zariski open in g’. Let us form the sub-
group K =n;epker (9)) of G. We show now, that © and K, as just
defined, satisfy the conditions of our lemma. In fact, if 2€©, a€G,

then
4; (ax) = 1; (@) = ¢, (@) 2, (2),

and thus, since A; (x) 7% 0, 9, (a) = 1 (j€E) and hence G,cK, proving,
that z€ © implies G, N,cK. To show the opposite inclusion, let k be
some element of K and z€®. We have

A (kx) = ¢; (k) 25 (x) = 2; (2),

and therefore kz€ (N,)c zNy = N, z (¢f. Lemma 1.2, Chapter II), and
ke G, N,, completing the proof of Lemma 8.1.
: - . : Q. E. D.
The following lemma is a weaker version, for the action of an arbi-
trary unipotent group on a finite dimensional vector space, of Propo-
sition 4.2, Chapter II. L

Lemma 8.2. — Suppose, that the connected and simply connected nilpotent
group G acts, via a unipotent representation, on a finite dimensional real
vector space V. There is a Zariski open subset © of V, a polynomial func-
tion P on V, which never vanishes on ©, a map 1l from R*X© into g
[G = exp (9)] and a map R from G © X © into R* with the following pro-
perties : 10 P (z) 1 (T, z) (TERY, 2€©) is the restriction to R*XO© of a
polynomial map from R*XV into g, and for each xz in ©, the map
RST — exp [l (T, z)] z is a bijection between R* and G z; 2° P (2) R (y, z)
is the restriction to G O X© of a polynomial map from VXV into RY,
and for any x and y in © and G x resp. we have y = exp [l (R (y, ), 2)] .

“Proof. — a. Let V=V,D>V,>...0V, = (0) be a Jordan-Hélder
- sequence for the action of G on V, v;€V,, — V,, (v; v,) = ¢y, and
{l;;1Zj<m| abasising. Letusform the matrices A; (z) (1 =7 M)
and the subset e ={0 <j, <j. <...<ju=M} of {1, 2, ..., M| as
at the start of the proof of Lemma 8.1 above. Foreach k=1, 2, ..., d,
we denote by p () a kX k submatrix of A, (z), such that ’

Px (%) = det (1 ()



596 L. PUKANSZKY

does not vanish identically on V. Reasoning as in (b) of the proof of
Proposition 1.1, Chapter II, we show, that if © is the Zariski open subset
of V, formed of all points of V, where none of the polynomials { ¢, () }
vanishes, there are maps {l; (z); k=1, 2, ..., d} from © into g, such
that o, (z) lx (z) is the restriction to © of a polynomial map from V into g,
and that I () =v; (V,) (x€®). Let us form the function [ (T, @),
from R?X @ into g, by the condition that we have,if T = (t,,t,, ...,t;) €R?
and z€© :

exp[[(T,x)] =exp[ti i (®)]exp [t L, ()] ... exp [L: L (X)].

Using the reasonings as loc. cit. we conclude, that the map ! (T, z) so
defined satisfies the conditions of our lemma, provided for P we take a
sufficiently high power of the product o, (z) 9. (2) ... 9q ().

b. Let us put (z€®) :
exp [1(T, &) x =¥, Q; (T; ) v;.

j=1

We know [¢f. (d), loc. cit.], that Q, (T; z) is of the form
4 Rl by - ..y fiss ),
and thus the set of equations z. = Q;, (T; ) (1 £ k = d) implies, that
b=z 4+ i (21, 22 .., 2k T);
obviously we can assume, that P, (1 = k = d) is a polynomial on R*XV

M

for each k. Hence finally, given y=2yj v,€EGz (z€®), it suffices
j=1

to define
Ry, 2) = (R (¢, 2), R: 9, 9), ..., R (9, @)
where
Re@ ®) = g + Y6 W - - -5 Yises3 2)-
Q. E. D.

In the following G, G, H and N, will have the same meaning as in
Lemma 8.1. Also G = exp (), H = exp (})), N, = exp (n,) and

G = exp (§) = HN..
Lemma 8.3. — There is a Zariski open subset © in y', a polynomial

function P, neger vanishing on ©, and a sequence of maps { g, ()57 = 1,2, ... }
from © into G with the following properties : 1° For each x in ©, the
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sequence { &, (x)| forms a complete residue system in G. modulo (G.),;
20 For each fixved j, g; () is of the form k exp [l (x)], where P (z)1(z) is

the restriction to © of a polynomial map from g’ into n,.

Proof. — a. Let ©, and K be such as @ and K resp. are in Lemma 8.1.
By taking in Lemma 8.2, V=4g¢ and G= N,, we denote by ©, the
resulting Zariski open set in g. Let us put © = ©,NO,, and let k
be an arbitrary fixed element in K. We have, for any z in O,
k' 2€N, xz and hence we can form, using the notations of Lemma 8.2, the
map ! (x) =1 (R (k' 2, 2), ) from © inton,. Letus put g (x) =kexp[l(2)].
We have & (2)€G, (x€©), and replacing, if necessary, the polynomial
function P of loc. cit. by a sufficiently high power of itself we can assume,
that P (z) [ (2) is the restriction to © of a polynomial map from ¢’ into n,.

b. Let { k;;7 = 1,2, ...} be a complete residue system in K modulo K,.
We denote by g, (z) the map, from © into G, corresponding to k; by
virtue of the construction of (a) above. To complete the proof of our
lemma, it suffices to show, that for each x in @, the sequence { g, (2) }

is a complete residue systemin G, modulo (G,),. This, however, is implied

by the relations K, — ((L)U N, and G,nK, = (GJO 0. E. D.

By a Zariski G; set in g’ we shall mean a non empty subset, which is
intersection of a countable sequence of Zariski open sets.

Lemma 8.4. — There is a Zariski G; set © Cy/, and a sequence of maps
tgi@; j=1 2, ...} from © into G with the following properties :
10 For each fixed x in ©, the sequence { g; (x) } is a complete residue system
wn G, modulo (G.)o; 20 There is a polynomial function P on ¢/, which never
vanishes on ©, such that for each j, g; (x) is of the form k exp [I, (z)] exp[l: (2)],
where P (x) I, (x) (k =1, 2) are the restrictions to © of polynomial maps
from g into §.

Proof. — 1In the following ©,, ©,, ... will denote Zariski open subsets,
specified by the context, in g¢’.

a. Let us show first, that there is an @, and a system of maps
{vj(2);1 =js/| from ©, into §, such that for each z€ ©, its members
form a basis in §, mod (g.), and that there is a polynomial function P’
on ¢', which never vanishes on ©,, such that the maps { P’ (2) 0, (2) |
arec the restrictions to ©, ol polynomial maps from ¢ into §. Let

1 =j=Mjand|l;1=k—=m|beabasisin§and g resp.  We write

a; @ =, Lizx), M@={a@;l-k=m1-j-M|
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and observe, that y =2yj l; belongs to §, if and only if we have
j=1
M .

May @y, =0 (1=k=m).

j=1
Let us put r = sup rank (M (z)). We denote by p.(z) an rXr submatrix
of M (z) such that ¢ (z) = det (p-(x)) = 0; obviously we can assume, that

() ={ay(x); 1<k, j<r}|. Let @, be the set {z; ¢ (z)£0].
There are functions {y’ (2);1 =j < r,1 =k <M — r} on @,, such that

N, @yf @ =a,a@ (@EO;1=1,2...,71)

and such that ¢ (2)y} (z) is the restriction of a polynomial to @,.

Putting w; ( <?y(“ >— l..1, we conclude, that if x€®, the

system {w; (2); 1 == k<M — r} is a basis in §,. Let us write a = §/q,
and let us denote by W the canonical homomorphism from § onto a.
We fix a point z, in @,, such that the dimension of W (§,,) be maximal,
and denote by {v;(x); 1 =Zj=s!| a subsystem of {w, (z)}], such that
{W (v ()} is a basis in ¥ (§,). Let ©,S®, be such, that the last
relation holds true for allzin @,. With this choice of @, {v;(z);1 =7 s}
satisfies all requirements, provided we set P’ = ¢.

b. One sees easily, that there is an @, S ©,, and a system of constant
vectors {w;; 1 =j=u}| in a, such that for any z in @, the set
(W (v (2), we; 1 Zj=s,1=ku/{ forms a basis in «.

¢. Let us put X = G/G = exp (a); we denote by F the canonical homo-

morphism from G onto X. By virtue of Lemma 8.3 there is an ©, and
a polynomial P” not vanishing on ©, such that, putting

fi(x) = log [F (§; (2))]
(cf. loc. cit.), the maps P” (z) f; (x) from ©, into a are the restrictions of
polynomial maps. We set ©; = ©,NO,, and write for some z in @,
fi (@) = >w@um@+3wwM
. k=1 /=1

It is clear, that there is a polynomial P, on ¢, such that the functions
{P, (@) a)” (x), P, (x)b’ (x)} are restrictions of polynomials to ©;.
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Let ~us observe, that there exists a g in G, (z€®;) such that
g (@) =g ((Gu),) if and only if we have b (z) =0 (1=1-=u). We
denote by J the set of all those positive integers j, for which
b () =0 (1=1=u). Let J' be the (possibly empty) complement
of J. For j€J’ we write

F; ={x; z€©;, Z(b}/) (@) = O};v

(=1

F; is the intersection of @, with a Zariski closed set, which is different
from ©;, and hence ©® = @, — (U,, F;) 1s a Zariski G; set. Let us
denote by { g;(z); =1, 2, ... | the sequence

» {.«7; (x) exp <-— Ya @n (x)>> 3 eJ}

arranged in some order (x€ ©;). It is clear from our construction, that
g; ()€ G, for allz€ © (as above). Let us show, that { g; () | is a complete
residue system in G, mod ((G.),). To this end, however, it suflices to
point out, that if g, g,€G, are such, that g, = g, ((G.).), then also
g =g ((G.)y), since G,N(G.)o = GN(G.)o = (Go)o. In this fashion,
to complete the proof of Lemma 8.4 it 1s enough to show, that for each j,
g; (x) 1s of the form indicated in its statement. But this is evident from

our construction; for P loc. cit. we can take P,.P’.P”.
Q. E. D.

Remark 8.1. — Observe, that if P (2) £ 0, g; (2) is defined and belongs
to G, for all j.

Given some element x of ¢’, we define the character y, of (G.),, as
in 1.4 (¢), by the condition, that y, [exp (I)] = exp[i (I, 2)] (I€4g.). For a,
b in G, we shall put [a, b] =aba™'.b"'. Bearing in mind, that
[G,, G.]€G.NnLc(G.), [L =[G, G]], for any pair of elements a, b in G,
we can form the expression ¢, (a, b) = y. ([a, b]).

Lemma 8.5. — With the previous notations we have :

19 95 (ad’, b) = 92 (a, b) 9. (a', b);

20 94 (a, b) = % (b, a);

. 3% a belongs to G, [cf. 1.4(c)] if and only if 9.(a, b)=1 for all
beG, (a,d, bE€G,).

Proof. — Ad (1) we have [ad’, b] = a[d’, b]a '.[a, b], and hence the

desired conclusion follows from the observation, that if a€G, and
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d€(Gs)o we have ¥, (ada™) = ¥ (d). Ad (2) This is implied at once by
([a, b))~ =[b, a]. Ad (3) This is immediat from the definition of G,.

Q. E. D.

In the following by p we shall mean a positive translation invariant
measure on g’.

Prorositron 8.1. — Denoting by r (z) the index of G, in G, (v€4¢')
let us form the sets E, = {x;r(x) =0}, E,={2; 0 <r(z) <+ o0} and
E,={z; r(x) =+ w}. Then E, is of Lebesgue measure zero, and so
is one of the sets E,, E . '

@»

Proof. — a. Let the polynomial function P be as in Lemma 8.4, and
let us form the set @, = {z; P () 2 0]. We fix a pair (1, j) of positive
integers and define for z€ ©, :

Fij () = (log ([¢: (), 9; @))); 2)-

We observe, that by virtue of the form, described in Lemma 8.4, of the
maps { g;(z); j=1, 2, ...}, there is an entire function H on C" and
rational functions {r;(2); 1 =Zj =N} on g, such that P (2)r;(x) is a
polynomial, and for z€®, :

Fj@=H(@ (), ..., Ix(T).

From this we conclude, that if F;;(2) =c¢ (¢ = some constant) on a
connected component of ©,, then we have F;; (x) = ¢ everywhere on ©,.
Furthermore it is easy to see, that in the latter case the value of the cons-
tant ¢ is zero. In fact, let x be some element of @,, and ¢ a positive
number, such that for|t — 1| < ¢ we have tx € ©,. Wehave g (tz) = g (2)
and g; (t2) = g, (2) mod (G.)o (¢f. Remark 8.1). Since (G.)yCG, from
this we conclude, that

e (90 ((2), ¢; (1)) = 90 (s (%), g, (%)) = exp [ile] = exp [ic]

for |t — 1| < ¢, implying ¢ = 0.

b. Let © be as in Lemma 8.4; we have © € @®,. Let us assume now,
that there i1s a pair (i, j) such that F;;| ©,=£0. Then, by virtue of
what we saw in (a) above, the set B, = |z; 2€®@,, F;(2) =2nr|
(r = real) 1s of Lebesgue measure zero. We observe now that, in conse-
quence of Lemma 8.5, if x belongs to @ Nn(E,VE,), there is a positive
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integer M such that (¢, (a, b))* =1 (a, b€G.). Hence, with an appro-
priately chosen rational number r we have z€E,. Thus

OnEVE)C U, qEr

implying, that u (®N(E,VUE;) =0 and in this fashion, since @ is a
Zariski G; set, . (E,UE;) = 0. By virtue of (a), the only alternative
to the hypothesis just made is that F;;| ©, =0 for all (i, j). In this
case, however, we have © CE, and thus ¢ (E,UE_ ) =0, completing
the proof of Proposition 8.1.

Q. E. D.

Prorosition 8.2. — Let us denote by E. the set of all those points in ¢,
for which the orbit G x is locally closed. Then either E. or its complement
are of Lebesgue measure zero.

Proof. — In the following we shall write o (z) = Gz. Also, ©,, @, etc.
will stand for Zariski open subsets, specified by the context, of g’.

a. We infer from the proof of Proposition 2.1, Chapter II, that o ()
is locally closed if and only if GG, is closed, or what is the same,
Géw/LCé/L 1s closed [¢f. 1n particular (e), loc. cit.]. Let us denote by W
the canonical homomorphism from G onto A = G/L = exp (A), and let
us put ® = log W. Writing B = @ (G) and C, = ® (G,) we can conclude,
that z belongs to E. if and only if the subgroup B + C. of the underlying
group of A is closed in A.

b. Below we shall make use of the following elementary statement.
Assume, that V is a finite dimensional real vector space, and £ a discrete
subgroup of V. Then £ is a free abelian group. Denote by £ the subspace,
generated by the element of £, of V, and let W be some subspace of V.
Then the subgroup W + £ is closed if and only if the rank of £N'W is the

same as the dimension of 2AW.

c. Reasoning as in (a) of the proof of Lemma 8.4 we show, that there
1s a system {v; (z); 1 = j = d | of rational functions, all defined on @, Cy’,
with values in A, such that for each z in ©,, {v; (z) | is a basis of (C,),.

d. Let ©, be as in Lemma 8.3, and let us fix a point z,€©®,NO..
There is a system of integers 0 < j, <...<j, such that, putting

a (x) = ® (i, (@) €Ce = ® (Gz) (1 Zk<r; cf. loc. cit.)
the set of r 4 d vectors { ax (2,), v; (z,)} is a linearly independent one

in A and generates C,. Then there is an ©,Cc©®,NO,, such that the
Ann, Ec. Norm., (4). IV. — Fasc. 4. 76
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system {a(x), v;(2)}| is independent for z€®@,, and in addition we
can easily show, that putting I'c =2Z.a, () +...+ Z.a, (x), we have
Co=T,+4+ (C.)y (2z€®,). In fact, to this end it suffices to observe,
that if j is an arbitrary positive integer, there are rational functions
{fr(2), g (x)}, all defined on @;, such that

O @F @) =Dt @ a@+Dg@o@ (ze0,).

For any 2€®, the numbers {f;(z)| must be rational, and thus
fr(x)=m,€Z on ©,, proving our statement.

e. We put D, = B + (C,)o, and E, = D, N T, [¢f. (b) above]. There is
an integer ¢ such that on an ©,C®, appropriately chosen we have
dim (E,) =e. We can also assume, that there is a system of rational
functions {4 (z); 1=j=J}, all defined on ©®,, with values in A’
(= dual of the underlying space of A), such that v€E, if and only if
we have %, (z) (v) =0 (1 5 L7).

f- Let us denote by &. the set of all independent e tuples in Z'.
If ceé,,

e={fifn....fe}] and fi=m" mP, ..., mP) (mPeZ)
we write
E (¢) ={x; re®,, E(Fik @) = 0}’
ik

where we have put

Fu (@) = 4 (@) <ng‘> @ (x)) A=j=J1=k=e).

Let us observe, that we have only the following two possibilities :
10 E (¢) = ©,; 2° The complement of E () in @, is a Zariski open set
in §’. Moreover we conclude by aid of (b) above, that z€E.n ®, if and
only if z€ V.., E(s) (=E, say). If E=®,, we have evidently
v (g’ — E.) = 0. If, on the other hand, EC®,, the complement of E
in ©, 1s a Zariski G; set in ¢/, and thus p (E.) = 0, completing the proof
of Proposition 8.2.
Q. E. D.

9. Given a Lie group M specified by the context, in the following we
shall denote by £ its left regular representation. Let again G be a
connected and simply connected solvable Lie group. Below we shall
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assume, that L =[G, G] is non abelian, and leave to the reader the easy
modifications of the subsequent reasonings necessary, when L is abelian.

A
Let { — = (Q) <C€ L) be a Borel measurable field of representations,

such that = (€) is of the unitary equivalence class of Zei (cf. [12], 8.6.2,
p- 1564). Denoting by w the Plancherel measure of L, we form the repre-

sentation Il = /65 n ({) du (§); we have £, = (+00) Il in the sense of

unitary equivalence. Let us observe, that the action of G (cf. the start
. /\ .
of Section 2, Chapter II) on L is countably separated. In fact to see

this we recall that the canonical map [¢f. 1 (d)] from L. onto ¥/L is a Borel

isomorphism and equivariant with respect to the actions of G on these
spaces [cf. the remarks preceding Lemma 2.3 and (¢) in Lemma 7.3].

Hence it suffices to establish, that ¥/G is countably separated. But this
is implied by Corollary 1.1, Chapter I (applied to A = G |¥, V=1V;
cf. loc. cit.) and [17], Theorem 1. From this we can conclude (cf. [18],
Theorem 1, p. 390 and [23], Lemma 11.5, p. 126) that putting S=/L/G,
there is a positive measure T on S, such that \ is a continuous direct sum
of measures concentrated on G orbits, and which are quasi-invariant
under G. Given a point s in S, we shall denote by O (s) the corres-

.o A . "
ponding G orbit in L, and by v, an appropriately chosen positive measure

on O (s), which is quasi-invariant under G. Let us put
U(s) = P 7 (§) dvs (©).
‘/0‘(3) (

Then we have II =fEB s) dv, (s) (cf. [24], Theorem 2.11, p. 204).
S
We put M = ind II, T (s) = ind U (s) and observe (cf. [23], Theorem 10.1,

LAG LAG
p- 123), that
1 M= T (s) dz (s).
®) [eToEo
Lemma 9.1. — The decomposition (1) is central.

Proof. — We observe, that since L is of type I, we have

R@) = f BR@@)dx (@) (cf [12], 8.6.4, p. 155),
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A
and thus, in particular, L (L)CR (I).  From here we can complete the
proof of our lemma as in Lemma 3.4.3, Chapter III, by substituting in

place of T, 8(Q), 7, T (p), K and U as loc. cit. M, fJ, &, ind = (),
LAG
L and II resp.

Q. E. D.

Given a von Neumann algebra N, we shall denote by N;, N;; and N,
its component of type I, I and III resp. (cf. [12], A 39, p. 339). We write
again L (G) = R ().

Lemma 9.2. — Suppose, that L (G), 2 0. Then the sets E_ and
E.. = ¢ — E. (¢f. Propositions 8.1 and 8.2 resp.) are of Lebesgue measure
zero in §'.

Proof. — By virtue of our assumption, there is a nonzero abelian projec-
tion P in L(G) (cf. [13], p. 123). Conversely, if N is a von Neumann
algebra containing a nonzero abelian projection, then N, 0. Since
2 = 1ind £ and £, = (4 o) II, we have £, = (4 o0) M, and hence R (M),

LAG 7
too, contains a nonzero abelian projection Q. Let us write, by virtue

of decomposition (1), Q :fEB Q (s) dt (s). Since Q 1is abelian if and
Js

only if QABQ = QBAQ for all A, BER (M), we conclude, that there is
a set ECS, such that = (E) > 0, and that, for s€E, Q (s) is a nonzero
abelian projection in R (T (s)). Let us denote by E’ the complete inverse
image of E in ¢’. Then E’ cannot be a set of Lebesgue measure zero.
In fact, in this case the Plancherel measure of the direct image of E’

in i would be zero (cf.[30], p. 278-279) implying = (E) = 0. Let us suppose
now that, for instance, E_ is not of measure zero. Then, by virtue of
Preposition 8.1, its complement in g’ would have a measure zero, and
therefore E'NE_ would be nonempty. Let s be a point in E, such that
the inverse image O’ (s), of O (s), in ¢’ meets E_. Since E_ is invariant

®

under G and ¥ we have then O’ (s)CE_. In this fashion, by virtue of
Theorem 3 |with D loc. cit. replaced by O (s); observe, that dv, is equi-
valent to a measure, invariant under G, on O (s)], Remark 3.4.1,
Chapter III and Theorem 2, R (T (s)) would admit a representation as
a continuous direct sum of factors, none of which is of type I. This,
however, contradicts the existence of a nonzero abelian projection
in R (T (s)).

Q. E. D.
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We recall, that a von Neumann algebra N 1s uniform of type I_ if it is
the tensor product of an abelian von Neumann algebra with the full ring
of an infinite dimensional unitary space.

Lemma 9.3. — Suppose, that the von Neumann algebra N s the conti-
nuous direct sum of von Neumann algebras, uniform of type I, over a
standard measure space. Then N itself, too, is uniform of type 1.

Proof. — Cf. [13], p. 243.

Q. E. D.

Tueorem 5. — Let G be a connected and simply connected solvable Lie
group. Then its left ring coincides with its type I or type I1 component.

Proof. — By Corollary 7.1 and Remark 7.1 we have always L (G),;, = 0.
In this fashion it will suffice to establish, that if L (G), 3= 0, then we have
L(G), = 0. By virtue of Lemma 9.2 our assumption implies, that the
sets E_ and E,. are of Lebesgue measure zero in g¢'. Therefore, by
Theorem 2, Theorem 3 (cf. also Remark 3.4.1, Chapter III) and
Lemma 9.3 there is a set E CS of = measure zero, such that, for s€S — E,
R (T (s)) is uniform of type I,. Hence, by Lemmas 9.1 and 9.3 L (G),
too, is uniform of type I_, and thus, in particular, L (G), = 0.

Q. E. D.

Remark 9.1. — It is known (c¢f. [26], p. 324), that the vanishing of
the type II component of L (G) does not necessarily imply, that the group
in question is of type I. An example, similar to that loc. cit. is as follows.
Let us consider the six dimensional solvable Lie algebra g spanned over
the reals by the elements { e;; 1 =~ j =~ 6 | with the following nonvanishing
brackets :

[31, 62] = €, [61, e:;] = — €y, [61, e,,] = 0 e;,
[es, 5] = — 0 e, (0 = irrational), [ez, ;] = e, [ess 5] = e

Denoting by G the corresponding connected and simply connected group,
we claim, that G has the property indicated above. In fact, let us observe
first, that G is not of type I. This follows from the fact, that g7 = R e,
G# = exp (¢%) and G/G* is isomorphic to the group of Mautner (cf. Sum-
mary, Chapter II). On the other hand, we have here L (G), = 0. In
fact, let us denote by w the subalgebra generated by the elements
{ej; 276}, and let us put N =exp (n). It is well known, that
any unitary representation of N, the restriction of which to G is a
nontrivial character times the unit operator, is a multiple of an irreducible
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representation, uniquely determined by this character. From this,
however, we can deduce at once, that any factor representation T of G,
such that T | G¥ is not constant, is of type I. In this fashion any orbit,
which is not locally closed is contained in the orthogonal complement
of R e, proving our statement.

Remark 9.2. — The above example makes it possible to show, that
Theorem 5 fails, if G is not assumed to be simply connected. In fact,
by virtue of the above discussion, to this end it suffices to consider the
discrete central subgroup I' = exp (Z e;), and form the quotient G/I.
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SOME NOTATIONAL CONVENTIONS.

(1) If Gis a group, G* stands for its center; similarly for Lie algebras and von Neumann
algebras.

(2) If W is a unitary representation, H (W) denotes the representation space, and R (W)
the von Neumann algebra generated by the operators of W.

(3) 1If S is a set of unitary equivalence classes of unitary representations, S. denotes the
corresponding set of concrete representations.

(4) If ® is a group, G a subgroup of & and p some representation of G, given a in ® we
denote by ap the representation of a Ga—tc® defined by (apg) (b)) = p (a ba)
(bea G a).

(6) If g is a Lie algebra, exp (g) denotes a corresponding connected and simply
connected Lie group, unless specified otherwise by the context. If |j is a subalgebra
of g, and G = exp (g), exp (j) denotes the connected subgroup, determined
by b, of G.
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If G is a Lie group with the Lie algebra g, Ad (a) denotes the value of the adjoint
representation of G at aeG, and ad (I) the value assumed by the adjoint repre-
sentation of g at [eg. Usually we shall write

al = Ad (a)l(aeG, ley) and ag = (Ad (a ")) g(gey’, a€G).

Similarly, if n is some ideal of g, and f e w’, af will stand for the action of (Ad (a—*) | n)’
on f.
If G is a topological group, G, denotes the connected component of the identity of G.

If T is a locally compact space, C (T) denotes the family of all continuous func-
tions of a compact support on T.

If G is a group acting as a group of transformations of the set X onto itself, and p
a fixed element of X, we denote by G, or Stab, (G) the stable group of p in G.

(Manuscrit re¢u le 30 mrars 1971.)
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