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By G. HARDER,

Bonn (Y).
Dedicated to Ernst Witt
on the occasion
of his sixtieth birthday
INTRODUCTION

Let G/R be a semi-simple algebraic group over the field of real numbers.
Let us denote the group of real points of G/R by G_, 1.e. G_ = G (R).
If K is a maximal compact subgroup of G_ then X = K\ G 1s a symmetric
space, we know that X is diffeomorphic to R%Let I'CG_ be a discrete
subgroup without torsion, then X/I' is a manifold and

H; (T, R) = H,(X/I,R)  for ieN.

If I' is of finite cohomological dimension we define the Euler-Poincaré
characteristic of I' by

7 (T) =¥ (— 1) dim H; (T, R).

It is well known from differential geometry that in the case of a compact
quottent X/I' there is a differential form wy on X such that

(%) fx/rwx=x(r).

The form ®wy can be computed in terms of the Riemannian metric on X,
and 1t will be called the FEuler-Poincaré form on X. This formula (%)

(') Supported by the ** Sonderforschungsbereich Theoretische Mathematik > at the
University of Bonn.
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410 G. HARDER

1s a generalisation of the classical formula of Gauss-Bonnet, and 1t is due
to Allendoerfer and Weil (comp. [4]).

Now the question arises whether the formula (%) holds also when the
volume of X/I' 1s finite. The goal of this paper is to show that for arith-
metically defined groups I' the formula (%) is true without the assumption
of compactness. This is an answer to a question posed by Ono in his
paper [8].

If T'y 1s the group of integral points of a simply connected Chevalley
scheme over the ring of integers of a number field we will give an explicit
formula for y (I';) (2.2). This will be done by using Langland’s calcula-
tion of Tamagawa numbers for Chevalley groups. Similar calculations
have been done by Ono in his paper [8]. ‘

The problem we are dealing with here has been solved by C. L. Siegel
in the special case of an orthogonal group over Q in [11]. Needless to
say that the most important ideas of the present paper are already
contained in Siegel’s note.

The proof of (%) rests on the reduction theory of Borel and Harish-
Chandra; I recall this theory in 1.2 in the different form given in [5].

In the proof of (%) we need a function

h: X/T'— (0, )

() k= ([3,00)) is compact for & > 0;
(11) A has no small critical values.

A function % having these two properties has been constructed by
Raghunathan in [9]. For the proof of (x) we need some additional
properties of k, for this reason we give an explicit construction of A in 1.3.
The idea of the proof of (%) is explained in the beginning of 1.3.

1.1. PrevimiNaries oN X = KN G_. — Let G/R be a semi-simple
algebraic group G, = G (R) its group of real points. The space of
maximal compact subgroups of G_ is denoted by X. If 2z&€X we denote
the corresponding maximal compact subgroup by K,. The group G,
acts on X by conjugation

K 9) - 97" Ku g
Chosing z€ X we get an identification

9.: KNG, > X,
9. Kogrg'K.g.

The map @, is compatible with the right action of G_ on both sides.
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The Lie algebra of G_ is denoted by g_, if xeX we denote its corres-
ponding Cartan decompos1t10n by

w=kx®px

and the corresponding Cartan involution is denoted by 0,. It is well
known that
: 0,.(Y)=Y for Yek,,

0,(Z)y=—2 for Zep,.

Moreover it is well known that the Killing form B is negative definite
on k. and is positive definite on p,. From this we get that the following
quadratic form on g

B.(Y) = —B(Y, 0.(Y)) for Yeg,

is positive definite. It is obvious that B, is invariant under the restric-
tion of the adjoint action to K,. By right translations we get a G_-right
and K,-left invariant metric d, s* on G_. The space X is endowed with
a G_-invariant Riemannian metric. This metric is related to d,s* as
follows : The differential of the action of G_ on X yields a linear mapping

Ay P T.‘I,x,

where Ty, is the tangent space of X in the point x. The kernel of A,
is k, and we get an isomorphism

XJIL' : P ':> TX, ae

By definition of the metric on X this map is an isometry if p, carries
the metric B, | p,.

Let PCG be a parabolic subgroup. The group P_ = P (R) acts transi-
tively on X. We now collect some facts concerning the restriction of
the metric d, s> to P_. These facts will be important for the study of
the fundamental domain X/I'.

Before doing this [ want to give some remarks on root systems.
Let R (P) [resp. R, (P) = U] be the radical (resp. unipotent radical) of P.
Let SCR (P) be a maximal split torus. 'We consider the adjoint action
of S on the Lie algebra g. Then we get a decomposition

= (ﬂQA u(“)> D 3(S).

Here 3 (S) 1s the centralizer of S in g, the set ACHom (S, G,,) = X (S)
1s the set of roots with respect to (S, P) and u(® is the root sub-space
which belongs to «.
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If we restrict the action of S to the Lie algebra n of U we get

- (@)
n ag%+n ,
where A*CA is the system of positive roots of S with respect to P. The

restriction map
Hom (P, G,) - Hom (S, G»)

is not surjective in general, but it becomes an isomorphism if we tenso-
rise with Q. If y€Hom (S, G,,) we get a homomorphism

Yot S, —>R*
and we define v
71t S, — @
by
Ll selz. (O]

It follows from the preceeding remark that this homomorphism can be
extended in a canonical way to a homomorphism of P_ to (R*)* which
we also denote by

[xl: P,— @EH*
The character

Yr = E (dim n®). o

ae A+

1s the restriction of a character of P which is also denoted by 7v,. This
character is called the sum of the positive roots of P.

If S, cR (P) is another maximal split torus then S and S, are conju-
gate by an inner automorphism of R (P). From this we get a canonical
identification between the systems of roots (positive roots) of S and S,.

After these remarks we come back to the investigation of the restric-
tion of d,s*> to P_. The transform P® of P by the Cartan involution is
opposite to P and

L..=P, nPY%

is a Levi subgroup of P_. Let S, be the maximal split torus in the centre
of L, ., we apply our previous considerations to S, and get a decompo-
sition
n, = u®
7 W )

where u_ is of course the Lie algebra of U, = R, (P),. 1f P_ (rvesp. £, )
is the Lie algebra of P_ (resp. L, .), then the following proposition holds.
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Prorosition 1.1.1. — The decomposition
b= 0,8

is orthogonal with respect to the restriction of By to P_. If ki =k.nP,
then the tangent space of X at x can be tdentified as a metric space with the
orthogonal complement of K. in P_.

Proof. — The involution 0, leaves £, . stable. It induces on S, the
mapping y —> y~'. From this it follows that 0, sends n{’, onto u{ 2.
Then the proposition follows from the definition of B,, our previous
remarks on the metric on X, and some well known properties of the
Killing form.

We want to draw a simple consequence from this proposition. Let us
consider an element p€P_. We are going to compare the restrictions
of the metrics d,s* and d,,s* to the group P_. The metric d,,s* 1s
defined by the maximal compact subgroup p~* K, p and the corresponding
Cartan involution is 0,, = ad (p™') 0, ad (p). For YEP A we get

B., (Y) = — B (Y, 8., (Y)) = —B (ad (p) (¥), 0. (ad (p) (V))) = B, (ad (p) (V).

So the restriction of d,, s* to P_ is obtained by transforming the restric-
tion of d, s* by the inner automorphism ad (p) of P_. Especially for the
volume element d, u on U_ which is defined by the restriction of d, s*
to U, we get the formula

(1.1.2) depu = | vo (p) | do .

1.2. PRELIMINARIES ON REDUCTION THEORY. — Let F be an algebraic
number field. Its ring of integers is denoted by ©. Let &/© be a flat
affine group scheme of finite type. Moreover we assume that its generic
fiber G = @éF i1s semi-simple. Let Il = {«, B, ... ]| be the system of

simple roots of G/F. Actually the set of simple roots is only defined
with respect to pairs (P, S), where P is a minimal parabolic subgroup
of G/F and SCP is a maximal split torus. Then the set A (resp. A™,
resp. 1) of roots (resp. positive roots, resp. simple roots) 1s defined as a
subset of Hom (S, G,,) (comp. 1.1). But as before we have a canonical
bijection between the corresponding sets if we have two pairs (P, S)
and (P,, Si). So we are allowed to speak of the set of roots (simple roots,
positive roots) of G/F.

The parabolic subgroups of G/F containing a given minimal one corres-
pond to the subsets of II ([2], p. 86), the minimal subgroup itself corres-
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ponds to the empty subset. The group & (@) of integral points of &/©
is denoted by I' and we denote the group of real points by G_, i.e.

G, =G <F & R).
a
We consider a point z€X and a parabolic subgroup P of G/F. The

unipotent radical of P is denoted by U. The quotient U_jU_NTI is
compact. At the end of 1.1 I introduced the measure d,u on U_.

We put
p@P) = [  dou
Ua /U AT

If P is a minimal parabolic subgroup of G/F and if P is the maximal
parabolic subgroup of type II — {a | containing P then we put

Pa (2, P) = p (x, P¥).

If «€ll is a simple root, we denote by v, the corresponding fundamental
dominant weight, 1. e.

2w B> _ v Bel
2B BS —ows  (xpel.

The sum of the positive roots of P™ is a positive integral multiple of
the character v,
Tew) = fo Yo fo > 0.

Therefore we can express the simple roots in terms of the characters v

o = 2 Ca, B TP@) ce, 3 €Q.
+ Bell
We now introduce new numbers by
na (@, P) =] | ps (@, P)=.

Bell

Let SCP be a maximal split torus and let 7 be a character on S. This
character defines a homomorphism

Lot S, > (F % R)*.
Let
vl (FQR)* - R)*

be the absolute value of the norm mapping. The composite map |v|ey,
can be extended in a canonical way to a homomorphism

[xl: P,—@®R)*,

This follows again from the fact that Hom (P, G,.) ® @ = Hom (S, G,,) ® Q.
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Prorosrtion 1.2.1. — Let P be a minimal parabolic subgroup of G/F.
If z€X and p€P_, then we have

e op, P) = na (5, P) | 2| ()
P @p, P) = ps (@ P) [ 10| (9.

This follows immediately from 1.1.2.

I now state the basic theorems of reduction theory. They are not
formulated in the usual form, but I have shown in my paper ([5], § 2,
p. 51-52) how to translate the present formulation into the language of
Borel’s book [1]. For the convenience of the reader I will give some indi-
cations about the relations between these two different points of view
after having stated the main results.

Tueorem 1.2.2. — There exists a constant Cy, such that for every point
x € X there ts a minimal parabolic subgroup P of G|F, such that

ng (x, P) < G, for all «€ll

Let us choose such a constant C, once for all. If x€ X we call a minimal
parabolic subgroup P of G/F reduced with respect to x or simply a-reduced if

ny (z, P) < G, for all aell

Tueorem 1.2.3. — There is a constant Cy > 0 having the following
property : If x€ X and if P vs reduced with respect to x and if n,, (x, P) << C,
for some a,€ll, then every x-reduced minimal parabolic subgroup of G|F
is contained in P™.

Let us choose C, > 0 once for all.

We will need the compactness criterion in the following general for-
mulation :

Let H/F be a connected affine algebraic group. Let Y., Y2, ...,.7r be
a basis of the character module Hom (H, G,). Let C>1 be a real

constant and
H,(C)={heH, |[C'<|x|({m)<C]}

Let T'cH (F) be an arithmetically defined subgroup. Then the quotient
H, (C)/T ts compact if and only if the semi-simple part of H/F is anisotropic.

This 1s a slightly generalized version of Théoréeme 8.7 in [1]. The
following fact i1s a consequence of the compactness criterion :
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Let G[F be a semi-simple algebraic group and let I'C G (F) be an arith-
metically defined subgroup. Then the set I of I'-conjugacy classes of para-
bolic subgroups of G|F s finute.

This 1s proved in [1], 15.6.

Now I want to explain the relationship between the two theorems above
and the corresponding theorems in Borel’s book [1]. We start with the
following trivial observation : Let us consider a point € X and a minimal
parabolic subgroup P of G/F which is reduced with respect to . Then for

any element Y€l the group Y™ P v is reduced with respect to @ y. This
follows from the obvious equality

Ny (2, P) =na(@y, v' Py).
Let us choose representatives P,, ..., P, for the I'-conjugacy classes

of minimal parabolic subgroups of G/F. 'We denote

X; = {xeX|P; is reduced with respect to x |, 1ZiZt

From the observation above we get

=(Ux>r

We choose points z;€ X; and we denote the corresponding maximal
compact subgroups by K,. The connected component of the identity
of P, 1s denoted by P/., it acts transitively on X. If y&€X; there is
an element p€P;, such that x; p =y. From proposition 1.2.1 follows

na (Y, Pi) = na (2 p, P)) = no (x, Py) | o | (p)-

The group P; is reduced with respect to y and therefore

] (p) £ s C,

ng (x, P) —
Lf
Pi. (C\) =|peP,.||a|(p)<C, for all zell},
then our arguments yield _
= < U « P}fw(C’,)> T

and this i1s equivalent to

G. —<UKP (C’>‘
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By P, . we denote the intersection of the kernels of the homomorphisms |a|,
where a€Il. Then we have a decomposition

0 Do
Pi,ee = Ai Pi.w,

where A; is the product of | II| copies of the multiplicative group of posi-

tive real numbers We have P/ .NI'=P; NI and it follows from
the compactness criterion that the quotient

P}.[P..nT

1s compact. Let w; be a relatively compact open fundamental subset
for this quotient, then

t
U KaAi (C) o
i=1

1s a fundamental set for the operation of I' on G,. The set K, A; (C)) w;
is easily recognized as a Siegel domain (comp. [1], § 12) and this shows
that theorem 1.2.2 is a translation of théoréme 13.1 in [1].

Before I say some words about theorem 1.2.3, I want to state an impor-
tant compactness criterion (comp. [b], Satz 2.2.2).

Prorosrtion 1.2.4. — For any subset QC X the following to statements
are equivalent :

(1) Q is relatively compact mod I';

(11) There is a constant C > 0, such that for any x €, there is a minimal
parabolic subgroup of G|F which ts reduced swith respect to x and fulfills

ng (x, P) > C for all aell

The implication (i1) = (1) follows quite easily from the general compact-
ness criterion stated above and the previous considerations on the
theorem 1.2.2. I want to mention that in the case of Chevalley groups
the proposition 1.2.4 follows directly from theorem 1.2.2 and the fini-
teness of the class number, in this case one does not need the general
compactness criterion. ‘

Now I want to say some words on theorem 1.2.3 and at the end of
these remarks I will indicate the proof of (i) = (i1) in the preceeding
propostion. 'We consider a point 2 € X, we say that z is close to the boun-
dary swith respect to the root « €Il is there is a minimal parabolic subgroup P
of G/F which is reduced with respect to x, such that n, (z, P) < C..

Ann. Ee. Norm., (4), IV. — Fasc. 3. 53
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Let us denote by X, the set of points in X which are close to the boundary
with respect to a.

The set X, is obviously I-invariant. Theorem 1.2.3 tells us that a
point x€ X, determines a distinguished parabolic subgroup P of type
Il — {a}, this group contains all minimal parabolic subgroups of G/F
which are reduced with respect to . Let Q CG/F be a parabolic subgroup
of type I — { «} we put

Y= {zeX,|P¥=Q]

The following facts are obvious :
(i) If Q3£ Q,, then Y¢NYS = @;
1) Y§y=YI"% for all yerl,
(ii1) An element ye€lI' leaves Y¢ stable if and only if yeQ (F)nT.

Let us consider an example. We take G = SL (2)/Z and X =H
is the upper half plane. As a minimal parabolic subgroup we take

e=fs=(g [A)|sesLeml.

Then we may choose our constants C, and C, such that
Y¢={zeH|Im(z) >2}.

1
, =“m@
for all z& H. Let us have a look at the set X, itself. The parabolic
subgroups of SL (2) correspond to the point o0 and to the rational
points p/q on the real axis. If (p,q) =1 we denote by D,,CH the
disc which has radius (2 ¢)7*, and is touching the real axis in the point p/q,

then we have
Xy — < U D,,,q>uY2.

Of course these discs are also sets of the type Y.

This follows from reduction theory and the fact that p (z, Q)

Now we come back to the general case. The group I' acts on X we

denote by XXV
: > =

the natural projection of X onto its quotient under the action of I
The set X, is I'-invariant, therefore we get

Xl =f(X) =Vo and X, =~ (Vo).
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We call V, the set of points in V which are close to the boundary with
respect to the root a.

Let us consider a point v €V, and two points 2, y in the inverse image
of v. There is an element yE€T such that zy =y and this implies
Y ' PYy=Py. So we have seen that to any point v€V, corres-
ponds a I'-conjugacy class of parabolic subgroups of type II —{a}].
We choose representatives Q,, ..., Q, for the I'-conjugacy classes of
parabolic subgroups of type Il — { « |. Let us denote the classes them-

selves by [Q.], ..., [Q,]. Then
. V@ = {peV, |for z€ [~ (v) we have P¥e[Q,] }

and V, is the disjoint union of the sets V. Moreover the projection

mappin
pping _—

is surjective. If z, x y€YY then it follows from the properties (i), (ii)
and (ii1) of the set Y? that v Q;y = Q; and this yields y€Q, (F)nT.
From this we get an isomorphism

Y%/Q,.nT 3 Vi,

At this point the relation of theorem 1.2.3 to proposition 17.9 in [1]
and the lemma 2.1 in [9] becomes clear.

Now I want to define an important C”-function which is defined on the
set V,. For a point z€ X, we put

pe (@) = p (z, PY).

By definition, we have € Y}*” and this is an open set in X. This implies -
that p, (z) i1s a C”-function on X,. Moreover this function p, is obviously
invariant under the action of I' theorefore it induces a C*-function

Pa: Va—>R+— {0}

Remarks. — 1. These functions p, are related to the functions of
type (P, x) in ([1], § 14). Actually in our case we have ¥ = Ypw and
the connection becomes clear from the relation

Pe (xp) = pa (2) | e | ()
(Prop. 1.2.1).

2. Using these functions p, one can easily derive the implication (i) = (ii)
in proposition 1.2.4. If QX does not satisfy (i1) then at least one of
the functions p, tends to zero on X,NQ. For details, compare [5], p. 43.
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3. The set of points in X which are not close to the boundary with
respect to any simple root is relatively compact mod I On the other
hand a point which is close to the boundary with respect to some simple
root determines a parabolic subgroup of G/F. This observation leeds to
a simple proof of the compactness criterion of Borel and Harish-Chandra

(comp. [b], 2.2).

Let us consider a set = of simple roots. We denote

Xﬂ=nxa and Vﬂ=mva.

aET dET

It is clear that a point 2 € X determines a-parabolic subgroup Q. of type
II — = of G/F and that a point v €V, determines a I'-conjugacy class of
such subgroups. Let QCG/F be a parabolic subgroup of type II — =,
by [Q] we denote the I'-conjugacy class containing it. Then we put

Y2={x€XnIQx=Q},
V¥ = {peV.|for ze [~ (v) we have Q.€[Q] |

An obvious generalisation of our previous considerations shows that the
restriction of f to Y% yields a surjective mapping

Y2 > Vi@

and from this map we get an isomorphism

20: Y8/Q.nT 3 VL

This isomorphism will give us important informations about the struc-
ture of the sets V. If Q,, ..., Q, is a set of representatives for the
I'-conjugary classes of subgroups of type I — =, then V; is the disjoint
union of the sets V., ‘

- Now I want to investigate the structure of the sets VI. As usual
we denote the radical of Q by R (Q) and we put M = Q/R (Q).K.
If is a maximal compact subgroup in G_, then Q_NK = K, is a maximal
compact subgroup in Q_ (this follows from the Iwasawa decomposition).
By K, we denote the unique maximal compact subgroup of M_ contai-
ning the image of K,. We have constructed a map

‘-PQ : X — X)[,

where Xy 1s the space of maximal compact subgroups of M_. This map
factors through the action of Q_. Therefore we get a map

g XTnQ, — Xy/Ty,
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where T’y 1s the image of '€ Q_is M_. This is an arithmetically defined
group ([1], 7.13).

Let PcQ be a minimal parabolic subgroup, the image of P in M is
denoted by P and this is a minimal parabolic subgroup of M/F. The
simple roots of M can be identified with the elements of Il — n. An equi-
valent of lemma 2.3.4 in [5] tells us

(1.2.5) Ny (%, P) <X ny ($g (), P) for all aell — .

Here = means that the quotient of both sides is bounded away from
zero and infinity by a constant not depending on z, P, and Q. Let
SCcR (Q) be a maximal split torus. The roots «a €Il can be restricted
to S, these restrictions will be denoted by «.. We may express the roots
o€ in terms of the roots «€ll — = and the fundamental dominant
weights v, corresponding to the roots a€n. We get

(1.2.6) a=2 2,878 —I—Z degp  for aem.

Bemn Bem

If we restrict « to S we obtain

(1.2.7) dn =Z C;‘,BYﬁ'
Ben

Now we put

(1 .2.8) ng (x’ Q) :H pp (x’ Q)t‘z,}.
Ber

As in 1.2 the characters a, yield homomorphisms

] Q> (R

and for g€ Q_ we get the formula
(1.2.9) ng (xg, Q) = na (x, Q)| oz | (9) for aem.

Now we define the map

rg: X BY* X...x B,

rg: z>(...,n5@ Q) ...)
The number of factors is equal to | n| = the number of elements in =.
The map r, factors through the action of 'nQ_. This factorisation will
be denoted by 7.

Let us denote
A=A;=@R)* X...x (RY)*, | | factors,
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then we get the following important diagram :

roXtg: X——— 5+ Ax Xy

(1.2.10) | |

TQXEQ! X/I‘(\Qw —%AXXM/I‘M

The fibers of the map ryx ¢, are the orbits of the group

R(@Q. 1) = {pGR(Q)w ‘ la|(p) =1 for all aen %

The fibers of ryX{, are equal to these orbits divided by the action
of R(Q)_ NI, and they are compact.

Let me say a few words about the functorial properties of the dla-
gram 1.2.10. Suppose Q, is another parabolic subgroup of type II — =
which is conjugate to Q under I'. If Q, = vy Q y™* then this transfor-
mation yields an identification

P . AXXM/I‘M --':;‘A.X}(M‘/FM1

which does not depend on the choice of y. The isomorphisms
0: YYTAQ, 3 Ve
2% Y¥/TNQ,. S VR

yield the following commutative diagram :

;'QXQ;Q
()\Q‘_AZ Y‘;Q:/ran —_— A-XXM/I‘M

(1.2.11) un< ola

(th) \ YQa/I‘ NQiw *_> A XXy /I*“1

I am going to study the infinitesimal properties of the map

I‘QXliQ: X > Ax Xy

Let us denote the tangent bundle of X by T, the tangent bundle of A
(resp. Xy) by T, (resp. Ty), and the bundles induced on X by T, (resp. Ty)
by T} (resp. Ty). The Riemannian metric gives an orthogonal decompo-
sition

T=Tr P TH P Ti.

The bundle T, is the bundle of tangent vectors along the fibers.
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The group Q_ acts on the spaces X and A X Xy. It acts on A by trans-
lations. The map ryx ¢, is compatible with this action. The tangent
space T, at the point z€ X can be identified with a quotient of the Lie
algebra @._ of Q_, we have

Q. [h.n@® T,

We consider a refinement of the decomposition in proposition 1.1.1

e, =L.0 < ®+u‘aﬁf’w> =L 0 Dbao @ ( D u&?ﬁL),

OCEAQ aeAE

where 1, . is the Lie algebra of the centre H, . of L., = Q,nQ®-
This decomposition i1s orthogonal with respect ot B..

Now we consider the torus H = R (Q)/R., (Q). Let us denote its Lie
algebra by lj, the Lie algebra of H_ is .. The injection of H, . to R (Q),
yields an isomorphism

Mot brw b

To any character y : H -~ G,, we associated a homomorphism

lxl: Hy— @®H*

and H_ (1) i1s the intersection of the kernels of these homomorphisms.
The Lie algebra of H_ (1) is denoted by k. and its orthogonal comple-
ment with respect to the Killing form is denoted by a. Then we have
the following decompositions
h.=h. Do,
hx,w = hgr,m @ Lo
where the second decomposition is induced by u,. From the mapping

from @. to T, we get following isometries

Lo o Fa, 0 Ny = T 2
0z > TX o,

hg,w/h;,wnk.rea( @ u,(:vt)w)':)TF,xo

aeldy

By means of the isomorphisms @, we get a natural trivialisation of T}

T=XXua

and this trivialisation is compatible with the action of Q_,. We may
associate to any vector Z€a a Q_-invariant vector field Ze&T (X, T%)..
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Then we get from (1.2.9) the formula

(1.2.12) Zng|. = o' (Z)ng (z, Q)

where «’: @« — R is the differential of |« | for a €.

Let Q, be a parabolic subgroup containing Q and let II — =, be its
type, we know n, Cn. 'We have a natural inclusion H, =R(Q,)/R. (Q,)~H
and this yielsd an imbedding o, < a. Using our result above we get

T 5> XX

v
T 3 XXa

Remark. — In our situation we have an obvious mapping X, - X,
and we get a commutative diagram

'\T(Q H X/I‘an - X)[/PM

q‘)Qx : X/r N Q1,°° - XM!/I‘Ml

but there is no commutative diagram including also the map r,. This is
due to the fact that r, is defined by ‘ neglecting ”’ the roots in II — =.

1.3. A pissectioN oF X/I' AND THE conNsTRUCTION OF h. — At this
point I want to explain briefly the idea of the proof of the Gauss-Bonnet
formula. I will construct a function

h: X/T =V > ®RH*
which can be written

h @) =[] 7= @)=,

aell

where o, is a bounded positive C”-function having support in V,. The
set k™' ([3, c0]) will be compact for any ¢ > 0 and ~ will not have small
critical values. 'We consider the set

V) ={olh@)=3d}

If wy 1s the Euler-Poincaré form on V (we assume from now on that T’
has no torsion), then (comp. [4])

[ ov=roy+ [ M,
v(

9) "oV ()
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where II; is a form of highest degree on 0V (8). The only thing which

remains to be shown 1s
(% %) lim ;= 0.

50 5v (3)
This will be done in 2.1.

Here we are going to construct the functions s,. This will be done by
covering V by subsets V% (¢, Q) of V¥, constructing these o, separately
on these subsets, and adding up. The decomposition of V by the sets
V& (cqy ) may be of independent interest (Th. 1.3.2). We look at
the following diagram :

i "QX"PQ

Y4 < X AxXy —'L>Xal

ip! lpx ) lﬁn - v;M
(1.3.0) Y¢InQ, “— X/I'nQ,, h ;gAXXM/I‘M SN X/

(o)™

vie

Let QcX,/I'y be a relatively compact set. Then X (Q), Y?(Q) and
V@ (Q) are the inverse images of Q in X, and V. Let ¢ > 0 be a positive
real number, and QC X, /I'y be relatively compact. Then

Al)={(, ...,z )eA|0<a, <}
and
X (e, Q) ={xeX | (Tox Ty (x) €A () x Q).

Lemma 1.3.1. — Let QCXy/T'y be relatively compact. Then there
exists a constant ¢ > 0, such that
X (¢, 2) YL

Proof. — It follows from the relative compactness of Q that there are
constants 0 << cqg << ¢g, such that for all x€ X (Q) there i1s a minimal

parabolic subgroup PcM for which
co < nu (Yo (), P) < cq for all aell—m,

Let PcQ be the preimage of P then we get from (1.2.5)

co < ng(x, P) <cq for all aell —m,

where cq, ¢y are constants depending only on Q, and where x varies in

X (Q). We get from (1.2.6) for a€n

(1.3.1.1) na (, P) =< 117 P)”i—lv;s> <[[ ng (@, P)ls @>.
Bex Ben
Ann, Ec. Norm., (4), IV. — Fasc. 3. 54
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Now we have by definition pg(z, P) = pg (2, Q) for B€n and we see
that the first factor on the right hand side is equal to nj (2, Q) [comp. (1.2.8)]
The second factor on the right hand side is bounded away from zero and
infinity by constants depending only on Q. So there is a constant C > 1
which depends only on Q, such that

(1.3.1.2) C~'nz (z, Q) < na (z, P) < Cn3 (z, Q) for «em.

If ny (2, Q) is very small then the number n, (z, P) is very small too. It
follows from therorem 1.2.2 and 1.2.3 that any minimal parabolic
subgroup P’ which is reduced with respect to x must be contained in Q
if ng(z, Q) 1s sufficiently small. This 1s clear because for a€ll — =
the numbers n, (z, P) are bounded from above, and for « €n the numbers
ne (z, P) are very small. Now if P'CQ 1s reduced with respect to x it

follows from the compactness criterion (prop. 1.2.4) applied to X,/Ty
and (1.2.5) that

Co' < ny(r, P) < Cq for all aell—m,

where Co > 1 depends only on Q. Reversing our previous argument we
see that for «€n the numbers n, (z, P’) will be very small if nj (z, Q)
is very small. But if for an a-reduced subgroup P’'CQ the numbers
n, (z, P’) are small for «€n, then we have by definition z€ Y. This
proves the lemma.

Remark. — The difficulty in the proof of the lemma arises from the
fact that we do not know a priort that Q contains a minimal parabolic
subgroup which is reduced with respect to .

If we have chosen Q and ¢ > 0, such that the lemma 1.3.1 holds we
- put
V& (e, @) =22 (X (¢, Q)TN Q".

It 1s easily seen that the map
X (c, Q) — A (c)x &,

where O — py' (Q)is surjective. The fibers of this map have been descriebd
already 1n 1.2. The fibers of the map

V@ (e, Q) - A ()xQ
can be identified with R (Q), (1)/TnR (Q)

During the proof of lemma 1.3.1 we have seen that the sets V¥ (¢, Q)
have the following property : If v € VI¥ (¢, Q), and if € X is in the preimage

.
®©
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of v, then for any minimal parabolic subgroup P which is reduced with
respect to x the numbers n, (z, P) for a €Il — © are bounded away from
zero by a constant which only depends on Q.

A subset Qc X,/Ty is called a subset of special type if it can be des-
cribed in the following way : There is a real number ¢, > 0, such that a
point v € X,/Ty is in Q if and only if there is a point y €YY which is in
the preimage of v under the map

Puopio(rg Xdg)oi: Y§ — XyTy,

and a minimal parabolic subgroup P which is reduced with respect to y,
such that '
ne (x, P) > £, for all aell — .

Then we denote Q = Q,. It follows from theorem 1.2.3 that PcCQ.

Remark. — I claim that these sets of special type are relatively compact.
We know from (1.2.5) that the numbers n, (g (y), P) are bounded

away from zero and infinity for €1l — = so we apply the proposition 1.2.4
for Q, cX,/T'y. Moreover we have

U @ = Xu/lw

1, >0

This is an immediate consequence of lemma 1.3.1

We have introduced the sets Q, for technical reasons which will become
clear in the proof of theorem 1.3.2 (iv). '

If ncIl we denote by X; the set of I'-conjugacy classes of parabolic
subgroups of G/F which are of type I — 7. We put £ = U X.. The

ncll
elements of these sets will be denoted as before by [Q], [Q.],.... We
assume that we have chosen a group Q€[Q] for all elements of X. If
m, Cm, and [Q]€X,, [Q,] €X;, we say that [Q,] dominates [Q] if there i1s an
element y€T', such that YQy'CQ,.

In the formulation of the next theorem we consider G/F itself as a
parabolic subgroup which is of course of type II. I hope that the reader
does not take offence at the fact that this group is * more maximal ”
than the maximal one’s which are of type I — {«].

Tueorem 1.3.2. — We can choose for all [Q] € X relatively compact open
sets Q,c cQuc X, /Iy, and constants 0 < cy << cq such that the follo-
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wing stalemenls are true :

(i) Lemma 1.3.1 holds for all pairs (cq, Qp);

(11) We have
XT=V= U < U V¥ (cq, 90));

ncll \lQeZ:
(i) If |n|> | %], and if
VI (o, Q)N VR (00 ) # 9,
then ©, Cn and [Q,] dominates [Q];
(iv) If =, Cm, and if
ve V¥l (g, 20) N VE (ch,, 24,

then the fiber of the map
VI (e, Qp) > A X,
which passes through v is contained in V2 (cy,, ).
Proof. — We will choose the constants ¢,, ¢, and the sets Q,C CQ, by

decreasing induction on | = | where [Q]€X..

If =m=1I we put for all [Q]€Xi

QQ == QIQ == X;\[/l‘)].

Then we choose 0 << ¢4 < ¢, such that the condition (i) is fulfilled. It
follows from theorem 1.2.3 and the following considerations that for

[Q] £ [Q.] we have
VI (co 20) N VI (co, R0) = 9,

and this tells us that the conditions (111) and (iv) are satisfied.

Let us assume that we have chosen for all [Q]€ZXZ; with | ©| > s the
constants cg, ¢, and the sets Q,C CQg such that the conditions (i), (iii)
and (iv) are fulfilled. Moreover we require the following condition to be
satisfied :

(11), : There exists a constant ¢ > 0 such that for any point

ve U < \J V¥ (o QQ)>

TIT >z \Q e,
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there exists a point € X in the preimage of v, a minimal parabolic sub-
group P which is reduced with respect to x, and a subset =, CIl with
| i | = s, such that

ng (x, P) > ¢, for all acll — =,

This rather technical condition garantees that eventually the condition (i1)
will be fulfilled too because we have (i1)_, < (11). It is clear that (i1),,,_, 1s
satisfied by our initial choice.

Now we choose the sets €, for all [Q]€X; with
the sets of special type

T

=s: for Q, we take

Qp=Q, = Q.

Then we choose for Q, relatively compact open sets of special type such
that Q,C €Q,. Now we have to choose our constants. Before doing
this I will show that the condition (11), , is fulfilled automatically if the
constants ¢, > 0 are chosen sufficiently small. To see this let us choose
the constants ¢y > 0 provisorily. We consider a point

e U <U VI (cq, szQ)>.

T, % >s \[QI € X,

The condition (ii), is satisfied, we can find a point z in the preimage of v,
a minimal parabolic subgroup which is reduced with respect tot z, and
a subset m, CII consisting of s elements such that

ng (x, P) > ¢ for all aell —m,

Let Q,DP be the parabolic subgroup of type II — = containing P, we
may assume that Q, is the representative in its I'-conjugacy class which
we have chosen before. By assumption we have

v ¢ Vg'?:] (CQI’ QQ!)’

I claim that there is a root 3€m, such that n§ (z, Q) >>c,. To see
this we compare the numbers nj' (2, Q,) and ng(z, P) by using the
formula (1.3.1.1) in the proof of lemma 1.1.1. The numbers n, (z, P)
for a€ll — = are bounded between two non zero constants which depend
only on our previous choices (actually these constants are ¢, << C,). Then
it follows from formula (1.3.1.1) that there is a constant G, > 1 which
depends only on &, such that

(1.3.1.2) Cq) ng(x, P) < nf' (x, Q) < Co,ng(x, P)  for fer.
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Now it follows from nj (z, Q,) < ¢y, that ng(z, P) < G, 1f ¢y, is chosen
suffiently small. Here C, 1s the constant in theorem 1.2.3 and therefore
way can conclude that z€Y¥%. If we denote by abuse of langage (?)
Go, = Pw, o pro (rqXdg) ot in the diagram (1.3.0) then this last
assertion implies immediately that $, (v)€Q, = Q,,. But then it
follows from nj (x, Q,) < ¢, for all B&mn, that &€V (¢, Q) and
this contradicts our assumption. To fulffill (i1),_, we only have to chose
to, < Cy ¢q, for all [Q,]€X; with |7, |=s.

Now I claim that the conditions (1), (1i1) and (iv) are satisfied if we
choose the constants ¢, sufficiently small. 1f this is shown then the
proof of our theorem will be finished. This i1s clear because we have a
description of the sets Qy c cQ for all [Q,]€X; where |7, | =s, then
we choose the constants ¢, such that (i), (i11) and (iv) are satisfied, and
then we choose arbitrary constants 0 < ¢y << ¢,. The condition (1), ,
is fulfilled automatically as we have seen before.

There is no trouble with condition (i) because of lemma 1.3.1. We
consider condition (111). Let =,, ©, be sets of simple roots, we assume
[m > 7m | =s. We take a class [Q,]€Z;, and a class [Q,]€ZXZ;, and
we assume

ve Vi (con 20) N VR (c L0)-

We choose a point x€ Y® in the preimage of ». If we replace Q. by
another representative in its I'-conjugacy class we may also assume that
x€Y% Let P be a minimal parabolic subgroup which is reduced with
respect to x. It follows from our definitions that PCQ,NnQ,. Now
let us assume that there is a root « €=, which is not contained in ..
Roughly speaking we will get a contradiction because a €, yields that
ny (z, P) is bounded away from zero, and «€x, yields that n, (z, P) 1s
very close to zero. Now I will give the precise argument. In the first
step I show that a7, implies that n, (z, P) is bounded away from zero
by a constant not depending on v, « and P. We have by definition

,, () €Q;,. Moreover there are constants c,, #, < 0 such that
¢ g (x, P) = ny (§g, (2), P) = ¢, na (, P).

This is the relation (1.2.5). The group P is reduced with respect to z

and we obtain the inequality n, @Q, (x),?)écg C, where C, is the
constant in theorem 1.2.2. The compactness criterion (prop. 1.2.4)

(®) This map is essentially the same map as the map denoted by ¢, before. These

two maps differ only by the projection p, and therefore I denoted them by the same
letter. ’
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applied to Xy /Iy, shows that the number n,({, (z), P) is bounded
away from zero by a constant not depending on z, » and P. The inequa-
lity above yields that the same is true for n, (z, P).

In the second step we make use of the fact that «€m,. This shows
that n 3z, Q,) < ¢, But we know from the proof of lemma 1.3.1
that [comp. (1.3.1.2)]

Cy! na (z, P) < ng* (z, Qu),

where C, > 0 depends only on Q. If ¢, >0 is sufficiently small
we get a contradiction, and therefore we have =, Cm,.

Now I will prove that (iv) is fulfilled of the numbers ¢, are chosen
sufficiently small. 'We keep over the notations of our previous consi-
derations. Let » be a point in the intersection

VET?:] (Cbi, Qbi) anTQ;] (Cbi’ sz)'

We know already that =, Cm,, and we may assume that Q.CQ,. Let
y€YY be a point in the preimage of ». Because we have obviously
Y2cC Y2 it follows that ye X (cp, Qy)CYE We put

@Ql (y) = Be 961'

The sets Q are of special type, say Q, = Q,. By definition there is
a point y, € Y¥ in the preimage of v, and a minimal parabolic subgroup P
which is reduced with respect to y, such that

no (Y, P) > ¢, for all fell — 7,.

From the fact that y, and y, have the same image in X, /I'y, we get
yq = y.Y where ¢€R (Q,), and vy€Q,.NT. We may replace P by
v~ 'P7y, and y, by y, v, therefore we may assyme that Yy =e. Now I claim
that P is also reduced with respect to y. 'We get from proposition 1.2.1,

n. (y, P) = n. (yq, P) = n. (y, P) for all acll — m,.

Now it follows from nj' (2, Q,) = ¢, for a€m, that n,(y, P) = C, for
a€m, if ¢y 1s chosen suffiently small. (This follows from a standard
argument which has been used already several times.) So we have seen
that P is reduced with respect to y. Then we get from our theorem 1.2.3
that PcQ,. We want to show that the fiber of the map which passes

though v
V[TCQ:] (cbi’ gbz) - A (cbl) X Q&la’
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is contained in VI (¢, Q). But this fiber is the image of the set
{yg| g€R (Qs), (1)} under the projection map. Now PcCQ, implies
that R (Q,)cP. Now we apply proposition 1.2.1 again and we get

n, (yg, P) = n, (y, P) for all aell — 7.

This tells us that ¢, (yq) €Qy, = Q,. On the other hand we have

ro, (yq) = ry, (y), and both facts together yield
(o, X Po,) (y) €A (co) X o, for all geR (Qu).. (1)

and this proves that (iv) is fulfilled if the ¢, are chosen sufficiently small.
This finishes the proof of the theorem.

Now we are able to construct the function
h: V>R— {0},
h(v) = [I Pa (0)70),

aell

where o, will be a suitably chosen bounded positive C”-function- having
its support in V,. If we have constructed these functions a,, then 1t
1s clear that the expression for i is well defined, because o, vanishes outside
of V,. The construction of g, will be done by constructing functions

e VI (cp, Q) [0, 1]

rm 3

Qe

and then we put

Roughly speaking o§ will have the following shape : If Q is of type I — =
and a€m, then of will be equal to one on V¥ (¢, Q) and its support
will be a compact subset of V¥ (¢y, Q). If adn the o2 will be identically
zero. To be more precise we choose a C”-function

®: Q) ][0, 1]

which 1s equal to one on Q, and has compact support in Q. Then we

choose a function
v: (0, C’Q) —[0, 1]

which is C*, equal to one on (0, ¢,), and has support in (0, ¢, — ¢). Then
we put for a = (., aa, .)eer €A

T (q) = H W (as).

ALET
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We define for v € V¥ (¢, Q)
0 if agm,
U ([T @) @) @ (Yo (1O @)  if aem

This function will be extended to a C~-function on V by zero. The
extended function will also be denoted by ¢2 We put

B () =

T = Z 03.
e

Now we may define h by the expression above

Tueorem 1.3.3. — The function h is C* on V. If 8 > 0, then the set
Bt ([S, 00]) is compact. The function h has no small critical values, 1. e.
there is a constant &, > 0 such that h (v) < &, implies dh |, £ 0.

Proof. — The first assertion is clear. For the second assertion we
restrict A to one of the sets V¥ (¢y, Qy). On this set we consider the

functions
nT: V@ (cq, q) — (0, cp) for aem,

ng: v—>ng @y Q)

where y 1s a point‘in the preimage of v. Inverting the relation (1.2.7)
we may express the characters v, in terms of the characters (3

Yo = Z bg,ﬁ ﬁn-
Ber

It is well known that in this expression b;g>0, and b, > 0. From
this formula we get an expression for the functions p,

P (v) = l_l n§ (v)b:"5 for aem.

Ber

As we have seen in the proof of lemma 1.3.1 there is a constant C > 1
depending only on Q, such that for all minimal parabolic subgroups P
which are reduced with respect to a point y in the preimage of » we have

C—1' nT (v) £ n. (y, P) < C n% (v) for aem,
C'Zn.(y,P)<=C for agm.

For the proof of the second statement of our theorem we have to show

that h takes arbitrarily small values on a subset DC V¥ (c,, Q) which

1s not relatively compact. It follows from proposition 1.2.4 (the com-
Ann. Ec. Norm., (4), IV. — Fasc. 3. 55



434 G.  HARDER

pactness criterion), and the inequalities above that there is a root «, €™
such that ng, takes arbitrarily small values on D. It follows from our
definitions that o, () > 1 for v€D. Now we look at the expression
for p, (v) in terms of the n§. The values nf (v) are obviously bounded
from above, so we see that the values p,(v) are bounded from above
on D. But from b5, > 0 we get that p, (v)°+® takes arbitrarily
small values on D. This alltogether shows that & takes arbitrary small
values on D. .

For the proof of the last assertion we replace the function & by the
function f (v) = log (h (v)). We shall see that the lenght of the derivative
df|, is bounded away from zero by a strictly positive constant if A (v)
is sufficiently small. The lenght is of course taken with respect to the
given riemannian metric on X.

Let me make a small remark before the proof starts. We consider
two I'-conjugacy classes [Q,] and [Q,], and we suppose

VI G, 20) VIR (e, ) # 0

By theorem 1.3.2 we may assume that ©, Cn,. Let us consider a root
o €7y, — m;. The function n}* is defined on the intersection, and it follow
easily from the arguments we have ussed in the proof of theorem 1.3.2
that the values of this function on the given intersection are bounded
away from zero by a strictly positive constant which depends only on
the choice of the sets Q. If 3 €mn,, then we may consider the functions ng,
and n§* on this intersection. It follows from the same kind of arguments
that the quotient of these two functions is bounded away from zero and
infinity on this intersection.

Now let us consider a point v €V where the value & (v) is very small.
We consider all I'-conjugacy classes [Q.], ..., [Q.] for which

eV (cp, R)  (=1,...,10).
As we have seen before there is a class, say [Q,], and a root «,&€m,; such
that n3' (v) is very small. Our preceeding remark shows that we have

%, €m, for all 1 vt and that ng' (v) is small for all n,. From the
definition of the function o, we get

f = 2 f\u
where )

fy =", 5% () log (P (v)).

aell
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At the end of 1.2 we have defined a certain Lie algebra
o, cLie (R (Q)/Ru (Q))..»

and to any element He& a, we associated a vector field H on X which is
invariant under the action of Q, .. If we restrict H to Y% the projection

yields a vectorfield A on V@®. Let H, €q, be the element defined by

o' (Hy,) = 0a,a, for all aem,.

(Here o’ is the derivative of |« |.) It follows from the diagram (1.2.13)
that the vectorfield H,, restricted to

t

() V(o 20

=1

does not depend on v. The last assertion in our theorem will be proved
if we have shown that in our situation

o, () b =, Ha, () LM > 0,

v=1

where M is a constant not depending on ». Because the lenght of the
vectors in our vector field H,, is constant this proves also that the length
of df], is bounded away from zero if & (v) is sufficiently small. Let us
recall the definition of the functions f,

f. (v) = log (h, (@) =Y, o% (v) log (Pa (v)).

aell
The functions ¢¥ havé been defined as follows : Let be
Fox §y = (To, X Pg,) 0 (1)1 : VI8X(ch, R0) > A () X R,
then for (a, ») = (7, $,) (v) we have
% () = $. (a) @, (D).

The function p, is given by p,= pso(*,X{,) where we have for
a="{(..., 00 ...)0er, €A,

pa (8, 8) = Pa (@) =] ] o’

Bem,
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[comp. (1.3.4)], and if we write f, = foo(r, X ;) we obtain

ﬂ@m=$@®®<2mmm@0=%@owaZbmmmw>

aEm, o,Bem,

It is clear from the definition of H, that
. 0 =
Ho, (f) | = 1o, oty (fV) lia, )

1. e. essentially we have to take the partial derivative with respect to the

%,-th variable in A, =]] (RH)*. We assumed that a,, = n;’ (v) is very
ce™n,

small, an this implies that §, does not depend on a,. Now we get

mﬁ%=%@%®<2&0-

aem,

We know that the sum in the bracket is strictly positive. It follows
from theorem 1.3.2 (ii), that there is an index v, such that {, (a) ®,.(0) =1.
This shows that H, (f)|, is bounded away from zero, and the theorem
is proved.

2.1. Tue proor oF THE Gauss-BoNNET FORMULA. — | am going to
prove the limit formula

(X ¥) lim II; = 0.
8>0J9v(3)

We always assume that & > 0 is very small so 0V (8) is a hypersurface
The first step in the proof consists in compairing the differential form II;
with the volume element ®; on the hypersurface oV (8). The form w;
is nowhere zero, and therefore we may consider the ratio between these

two forms. I claim

2.1.1) g‘? = 0 ((— log &)™),

[

where the 0-constant and M are independent of o.

The proof of (2.1.1) consists in some rather technical estimations
which we shall carry through now. Let us denote the sphere bundle of
unit tangent vectors at V by SV. In the following considerations we
identify the tangent and the cotangent bundle on V by means of the
riemannian metric. If Y, and Y, are tangent vectors at the point v€V

we denote by {Y,, Y, )|, their scalar product, and the length of Y,
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dhl,

is denoted by |Y,|,. If v€dV () the vector N, = Tar 1s a unit
normal vector to oV (3). The vector field N = i ZZ ] is defined outside

of a compact set (theorem 1.3.3). This vector field of normal vectors

defines a section

SV
“ 7

NOE .V

In his paper [4] Chern has constructed a differiential form x of degree
dim V — 1 on SV such that ¢j (x) =1II;. On SV we have a canonical
riemannian metric is defined by means of the canonical symmetric connec-
tion on V. The lenght of the differential form x is bounded with respect
to this metric. This is clear because z can be calculated from local data
on V, and these local data are determined by the metric. The boundedness
then follows from the fact that V is the quotient of a symmetric space.
Let us denote by ®} the volume element of the manifold p; (0V (8)). Our
previous remark shows

2.1.2) 21esOVO) _ g ).

Wg

Now we identify the manifolds p; (0V (2)) and 0V (8), and we compare
the forms w; and w}. To do this we look at the differential of the map ps.
For »€dV (3) we consider

dps: To—>Tosm
where T, (resp. T,;,) is the tangent space at v [resp. p; (v)]. It is clear
that

S)Z'S dimV—

2% 2 | dpa fom-,

where || d,, || is the norm of the linear map d,. From well known
formulas in differential geometry we get for a tangent vector YET,

oz (V) 5 =Yl + Vx5l
I claim that from this expression we get an estimate
2.1.3) [ dpa [}, = 0 ((— log 3)).

This together with (2.1.1) yields (2.1.1). To prove (2.1.3) we consider

L L dv _ df o
the function f=1log (k) it is clear that Tarl = T If Y is a tangent
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vector at a point v €0V (8), then we have

v ()

We have seen in the proof of theorem 1.3.3 that the denominator in this
expression 1s bounded away from zero. We shall give an estimate for
the numerator for all tangent vectors Y which are of lenght =~ 1. As in

— &Y dfl)df |+ [ df [l Vv df o,
v [l dfls

t
the proof of theorem 1.3.3 let us write f=2fv where

v=1

fo=", % log (pa).

aell
Then we have

if.= 3, (4 %= 1 10g () as2),

aell

At first we will estimate the length of the forms df, then we will estimate
the length of the covariant derivatives Vydf,, and from there we will
easily get the desired result. The functions ¢ are bounded, and also
the differential forms do¥ are of bounded length. The vectors in the
vector field dlog (p.) are of constant length. To see this we consider
the function

Py: v pa(x, Q)

on X. This function is invariant under the action of Q,.NI' and it
induces on Y2/I'nQ,. = V' the function p,. Now it follows from
proposition 1.2.1 that dlog (p;) is a form on X which is invariant under
the action of Q, .. But this form induces dlog (p,) on V&, and there-
fore the latter vector field is even paralell, this fact will be needed later.

The only non bounded terms in our expression for df, are the functions
log (pa (v)). To estimate these terms we prove the following.

Lemma 2.1.5. — There exist constants M > 0 and ¢ > 0 such that for
all veV,
Pa () = M b (o).

Proof. — Let us distinguish two cases. In the first case we assume
that » is contained in a set VI (cy, Q,), and that a€n. Then we have
by construction o, (v) > 1. But then the assertion is clear because of
the definition of k, and the fact that the functions pg (v)”" are bounded
from above on V. In the second case we assume v € V¥ (¢, Q,), and
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aogn. In this case the argument is more complicated. Let z be a point
in the preimage of v, and let us choose a minimal parabolic subgroup P
which is reduced with respect to . Now we express the character v, in
terms of the roots €Il — =, and the fundamental dominant weights yg,
with ’€n. This linear expression yields as usual a multiplicative relation

Pa (0) = < 117 (v)n;«v> < Il e P)m;s'>-

Bren Bell—=

We know that the second factor is bounded away from zero and infinity
on V¥ (cq, Q). This reduces the second case to the first case. The
lemma tells us that for v€dV (8)

ldf+[ls = 0 (— log9).

Now we consider the covariant derivatives Vydf, for tangent vectors
of length =< 1. The covariant derivatives Vy (do%) and the derivatives
Y (c%) are bounded. The covariant derivatives Vy (dlog (p,)) do vanish
because dlog (p,) i1s parallell as we have just seen. The derivatives
Y (log (ps)) =<Y, dlog (ps) > are bounded too. Again we have that the
only non bounded term in our expression for V,df, are the terms
log (pa (v)). If we apply lemma 2.1.5 a second time we get

“ VY dfv ”v =0 (—-— lOg 8).

If we add up we get the same estimates for || df |, and || Vydf|,., Now we
come back to the estimation of the numerator of our expression for

VY“Z—;”- The term Y ||df|, is estimated as follows : 'We have

- i — SVvdf df>
Yl dfl =Y (<df, df )" = >—rae

and this together with our previous estimates yields
Y(ldff |, =0(—logd)) for vedV (3).

One glance at the numerator in question shows that it can be estimated
by 0 ((—log?d)®) if v€oV (8) and || Y|, 1. This yields the desired
estimate (2.1.3).

Now we come to the last step in the proof of our limit formula, this
is the estimation of the volume of 0V (8). Actually we will prove that
there are constant M, > 0 and v > 0 such that

~

2.1.6) ]o g = 0(3 (—log O)").
v(3)
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Once this is proved, then our limit formula follows easily from our previous
estimate (2.1.1).

To any point »€V we may associate a set = (v) of simple roots, and a
class [Q,] € Xz, such that

(i) ve Vil (co, Q)
(1) If ve V¥ (cy, Qp), then = (v)Cr.

It follows easily from theorem 1.3.2 that this can be done. Now we
introduce the sets

V¥ (cpr Qo) = {v | ve V¥ (ch, Q) and = () == }.

We have an alternative description of these sets

e 2) = V¥ (i ’Q>—< U V%’](ca,,-a)>.
[
|7

[

I<Im]

This shows that V¥ (cy Q) is closed in VI (¢, Q). Tt is clear that V
is the disjoint union of the sets V¥ (¢, Q). Therefore it suffices to
prove (2.1.6) on the pieces

oV ()N T (ce, p).

Let us simplify the notations. We put
Vo="Vcp Q) and Vo (d) = oV n(ch Q).
Let
FQ: VQ%A(C,())XSZ&

be the natural projection from V¥ (cy, Q) to A (cy) X Q restricted to V,,.

Lemma 2.1.7. — A fiber of I is either empty or it is equal to the corres-
ponding fiber of the projection

VI (cg, 20) — A (c) X 0.

The function h restricted to V is constant on the fibers of F,. IfU = F, (V,)

and h="hoFy then h : U—>Ris a C”-function on U, t.e. it is the
restriction of a C”-function defined in an open neighbourhood of U.
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Proof. — The first assertion is obviously a consequence of theorem 1.3.2
(iv). To prove the second assertion let us write as in the proof of

theorem 1.3.3,
h@) =] @)

where

h, (o) = | | p= @)

aell
The function A, is by construction constant on the fibers of the projection
V! (ca, Q) — A (co) X 2,

and since we know nCm, these fibers contain the fibers of F,,.

The last assertion follows from the simple observation that we can
find an open neighbourhood V§>V, such that for the map

Fo: V§ > A(cp) XL

the first two assertions of the present lemma remain true. The existence
of such a set V{ follows from the fact that the functions

o¥: V¥ (co» Qo) 10, 1]

are compactly supported.

At this point 1t seems to be reasonable to give a rough idea of what
follows. Let us put U (8) = Fy (V,(2)). Then we shall see that

f wg = g »%,
Vv, (0) U(a)

where ®} is the volume element on U (¢) (this will be specified later),
and where g (u) is the volume of the fiber Fy' (u). The point of the
whole story is that these fibers ¢ shrink ” very rapidly if ¢ tends to zero
(Lemma 2.1.8). The reason for this ‘ shrinking of the fibers ”’ is that
their volume i1s essentially equal to the number p (v) = p (y, Q) and we
will see that this tends to zero as fast as on.

The next step consists in the proof of the formula

f Wy = g ok
Vv, (0) u(5)

o

Ann. Ec. Norm., (4), IV. — Fasc. 3. - 56
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For this purpose I have to recall the infinitesimal properties of the map

TQX‘-PQ: X'*>AXX_\|

which have been studied in 1.2. For a point 2 € X we gave an orthogonal
decomposition of the tangent space

’I‘X,-'L' = rrl",x @ TX,;U @ Ti’\kl,x

and this decomposition is invariant under the action of Q_. If
roX g () = (a, z), then we get from the definition of an induced bundle

TXe @ TE > Tha DTy 5
~ where T, , (resp. (Tyz) is the tangent space of A (resp. X,) in the point «
(resp. #). The restriction of the metric on Ty, to Ti,@P T5z yields
a well defined metric on T, , Ty ;. This metric i1s well defined because
the metric on the tangent bundle Ty is invariant under the action of Q_.
Therefore we have constructed a riemannian metric on A X X, which is
invariant under the action of Q_, and which is ,, nicely adapted ” to the
metric on X. ‘ :

Let us choose an open neighbourhood V§ of V, in V¥ (¢, Q) such
that the assertions of lemma 2.1.7 are still true for the extended map
Fo: Vi — A (cg)xQ, Let us denote F,(Vy) = U* and let V(3
[resp. U* (2)] be the hypersurfaces defined by & (v) = & [resp. h (u) = 8]
in Vg (resp. U*). Let ©f be the volume element on U* (&) which is defined
by the metric we have constructed above. From the decomposition of
the tangent bundle of V§ which is induced by the decomposition of Ty

we obtain |
w; = oy A\ F§ (w}f),

where o, is the volume element on the fibers. This implies the formula
we wanted to prove.

Lemma 2.1.8. — There extst constants C>> 0 and v > 0 such that

f w; < G B“f wi.
\A () U(s)

Proof. — Let us consider a point u€U (¢) and a point v€V, (3). Let
y€Y? be a point in the preimage of ». Then the natural map

yR(Q. H/R(Q). )T = F' (w)
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is an isometry [comp. diagram (1.2.10) and the considerations following
1t]. Let d, ¢ be the measure on R (Q)_ (1) which is obtained from the
metric d, s restricted to R (Q)_ (1). Then we have

vol (IFy' (0) = kf dyq,
W

where W= R (Q), (1)/R (Q), (1)nT, and where k is a constant : it is
the volume of the compact torus K,NR (Q),. The integral on right
hand side 1s equal to

vol (H,. (1)/Tw) p (%, Q),

where H = R (Q)/R. (Q), and I'; is the image of 'nR (Q), in H_. The
first factor is a constant, and therefore the lemma 1s proved if we have
shown p (y, Q) = 0 (") with y > 0. To see this we express the func-
tion p (y, Q) = p (v) in terms of the functions nj (v) on V¥ (cp, Q).
We have multiplicative relation

p@ =] |z @

aell

where the exponents n, are strictly positive (the function p corresponds
to the sum of the positive roots of Q).

Let PcQ be a minimal parabolic subgroup which is reduced with
respect to y. If we express the numbers p, (y, P) in terms of the numbers
ne (x, P) we get

pa (g, P) =] | ns @0, Py,
Bell

where the a, g are positive integers. Then we get
h@) =] | 5= @ = [ | ns (9, Py,
aell aell
The functions A, are positive and bounded. The numbers n, (y, P) for
a€ll — n are bounded away from zero and infinity, since v € V¥ (cp, Q).

If we take into account (1.3.1.2) we see that p (y, Q) = 0 (") is satisfied
if we choose v} > 0 such that

N do (0) < No.

We have seen that for proof of (2.1.6) it suffices to show

f w} = 0 ((— log &)™),
Uy

?)
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Before I prove this I have to add some remarks on our function

Vo
\ h

AN
Uh >R

Let us consider the function
hy: V¥ (cp 2p) ~R

‘which 1s defined as follows

hh@= [] @)
s,
1Ty x| 7]

where

by @) =] ] = @)+

aecll

The restrictions of hy, and h to V, coincide. Outside of V, these two
functions may be different, since the product defining hy is only a part
of the product defining h. We have neglected the factors

L17- 0%,

aell

where [Q']€ZX; and || ©'| < |= | It is clear that the function A, is cons-
tant on the fibers of the projection map

VI (cp, 20) — A (cp) X
(see proof of lemma 2.1.7) and therefore we obtain an extension of &
h: U—R

L]

Y
he: A (c)xQ —>R

We denote f=log (k) and f, = log (hy). Now let us consider a point

(@, ) = (..., Gy, ..., V)EA (cp)XQ, We assume that the coordi-
nate a,, 1s very small. Then [ claim
ofg
fy == >
°%mm_0

and if (a, v)€U,

it on
“ Ot

=C>0,
(,v) '
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where C is a constant not depending on (a, v) €U provided Vaao 1s small
enough. To see this we go back into the proof of theorem 1.3.3. There
t

we have written f—_—z‘.f\, and we have seen

v=1

Iy >0

Ho‘o (fV) lv = t“om (a t_))— .

The sum defining f, is a part of the sum defining f, and this proves the
first statement. The second statement has already been stated in the
proof of theorem 1.3.3.
For the estimation of the volume we divide the sets U and U (3) into
pieces
Uy, ={ueUju=(..., 0 ..., D), @z, £ ay for all aen},

U, (9) =U (9)nU.

We put
Ao‘0=‘>‘ (..., ao;, ...);eﬁ 1(146(]3)* ),
oF %y §

1. e. we drop the a,-th coordinate. There is an obvious diagram

Uy, —> Aq, (cp) X 2

|

v
oyt Ud, (9) —> Aa, (c) X 2

I claim that 9,, is injective provided ¢ > 0 is small. Otherwise we would
have points (a, v), (a’, v)€U,, (3) such that
ay = ay for all az£a

and
f(a, V) = f(a', v) = log o.

Because ¢ is very small at leats one of the coordinates a, (resp. ay) is very
small. From the definition of U,, it follows that a,, (resp. a,) must be

very small. We know that the derivative of f with respect to the «,-th
variable is strictly positive in (a, ) and (a, »). The derivative of the

extended function f, is positive on the.path
t—>(..,ds, a5 ..., D) ()
which joins these two points. Then we necessarily have (a, v) = (a’, ).

Now we identify U, (3) with its image ¢, (U, (8)) = Uz, (2), and we

compare the volume element ®} with the volume element w3* on U (3).
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d .o . .
The vector field #,, 5;-on A is invariant under translations, and there-
%o

fore of constant length. We have seen that for points (a, v)€U,, (5)
) - ,
ta..afl(n,a)éc > 0.

Therefore we can find a constant C’ such that

25 2.

1]

We have already seen in the beginning of this section that
|| df ll(a.5) = 0 (— log 9).

Now there exists a constant £ > () such that (a, v) €U, and & (a, ) = o
imply that a,>> 2. This follows immediately from lemma 2.1.5.

This yields
o “a dt,, -
f ws éVOl(Szb)<ﬂ...fT>=O((_loga)[ﬂl 1)
U* () oE 3

o

and this implies the limit formula (% %).

2.2. Expricit cALCULATIONS FOR CHEVALLEY Groups. — Let F be
an algebraic number field, the ring of integers of F will be denoted by ©.
We consider a simple, simply connected Chevalley scheme G/® and we
denote by I'y the group of its integral points. Again we denote the group
of its real points G (L @ (R) by G. and the variety of maximal compact
subgroups of G_ by X. Let I'cT, be a subgroup of finite index operating
freely on X. Then it follows from 2.1

fx = ).

We now put y (I'y) = [[, : I']7* 7 (Ty) and get

f wx = 7 (L),
x/T,

I want to give an explicit expression for this integral. For this purpose
we may assume that F is totally real, otherwise the form wy is identically
zero and we only get y (I',) = 0. Let us take a left invariant differential
form @ on G/® of highest degree whose reduction mod p is not zero for
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all finite primes p. This form yields a measure on the group G (A) of
adeles (comp. [12])
(nk =1—pr.
»

Here.p is running over the set of all primes and w, is the measure on G (K,)
induced by w. The Tamagawa measure on G (A) is defined by

__dimG
Wy = ! dF l 2 (‘):\’

where d; 1s the discriminant of our field F. In [7] Langlands has shown

f wy = 1.
G(A)/G(F)

The strong approximation theorem for simply connected split groups
yields
G AW/G (F) =G, /Ix ] G(©@,)

P finite

and it follows from [12] and [13]

1= j o= [ a, ] vols, (G ()= f o, [ te (my.
GA)/GF) G/ Ge/lo

P finite ®

Here {; is the Dedekind (-function of F, and the numbers m; are the
degrees of the invariant polynomials of G/F (comp. [3], chap. V, § 5-6).

Let us denote by g/® the Lie algebra of the scheme G/®, and by g (©)
we denote the algebra of its points in @. Then g (®) is a lattice in
g, =g (0®) ®R. There exists a volume element ®_ on g, which to
corresponds to the volume element ®w, on G, and by definition of the
Tamagawa measure we have

voly,, (3./8 (©)) = 1.

Let g§,/Z be the Lie algebra of the corresponding Chevalley scheme over Z.
Let ®, be the measure on g (R) such that

volx (30 (R)/90 (Z)) = 1.

We have g, = 4, (R) @ ,L, and g (0) = g, (2) ® ;@. The measure &,
induces a measure @, on §, and it is well known from number theory

that we have
dim G

Vol (3./3 (@) = | de| * .
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We are going to compare the measure @_ on g_ with the measure &, which
is defined by means of the Killing form. This will be done by doing this
first on g, (R). Then we observe that the measure defined by the Killing
form behaves nicely under base extensions.

Let A be the system of roots of g,. Let us choose split Cartan algebra
hoCgo. We may find a set of root vectors e, €4, (Z), such that

(1) [ea, €g] = ra, €ass With r, g E€N;

(2) [eay €_o] = hy with a (h,) = 2;

(3) The elements h, where « is running over the set II of simple roots,
and the element e,, where €A form a basis of g, (Z).

If we denote by ( , ) the Killing form on g, we get for the volume
of g, (R)/go (Z) with respect to @, .

Vol (80 R)[80 () = Vdet (b, hg))s,se) [ | (ear €-0) = Ca.

2 e A+

Then it is clear that we have
dim G

&, =[d; |_— 2 CA". 0
This together with our previous formula yields

dim G

2.2.1) f o= | tr (m).C&. 1 de | =
Gw/Lo i

Now we have to compare this integral with the integral

f ®Wx.
x/I

Let K be a maximal compact subgroup of G,. We assume that K is
of maximal rank, 1. e. there is a maximal torus T C K having rank equal
to the rank of G_. Otherwise the form wy is zero and we only get
% (o) = 0. .

We identify X = K\ G and put Y = T\ G.

Let hc g, be the Lie algebra of T, then we have

8. =h®<a§%¢®“>=h@@’

where €, is a two dimensional real vector space corresponding to the
roots @, — o and where A} is disjoint union of n = [F : Q] copies of the
set of positive roots of G/@. The Killing form restricted to €, is posi-
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tive definite if « is not a root of K and is negative definitive if « is root
of K. On the space €,, where « is a root of K we replace the Killing
form by its negative and the sum of these forms on the €, yields a posi-
tive definite form B on € which is invariant under the operation of ad (T).
We identify the space € with the tangent space at Y in the point T e.
Then B yields a positive definite G_-invariant metric on Y. Let us denote
by ®y the corresponding Euler-Poincaré form on Y. Then we have

2.2.2) f oy =2 (T\NK) [ ox = % (T\K) % (To).

T, x/I

Now we transform the integral .
[
Geo /T

into an integral over Y/I',. For this purpose we consider the Lie algebra
p. ® CGCg, ® C. These algebras are direct sums of n = [F: Q] copies
of by, (G)C g, (C), i e.

ho (C) @ .. ho (C) = h Br C,
3} g}

5 (0. B9 (0) =1.@nC

n-summands

The basis { ko e of ho (Z) yields a basis of h, (C) D...Dh, (C) if we
repeat it n-times. Now the elements 2wy — 1h, are contained in h

and the kernel of the map
exp:h—>T

is equal to the lattice generated by these elements. If we consider on T
the volume element ®} defined by means of the Killing form the previous
considerations show

f o] = @ 7)™ (et (o g pet)”

T

and we get

2.2.3) f =@ (et (s Ba))mpet)” f ok
G/l Y/,

where ®} is the volume element defined by the metric on Y. Our pro-
blem is now reduced to the comparaison of }, and the Euler-Poincaré
form wy. The form w, is calculated from a connection on Y. Usually
one take the connection without torsion, but here we take the canonical

connection an Y as defined ([6], vol. II, p. 192).
Ann. Ec. Norm., (4), IV. — Fasc. 3. 57



450 G. HARDER

The curvature tensor of the canonical connection at the point Te€Y
i1s given by

R (U, V) W = — [[U, V], W]]

([6], chap. X, Th. 2.6).

In each of the vectorspaces €, we choose an orthonormal basis U,,
V. with respect to the metric B. It is obvious from the definition

of R (U, V) that the endomorphism R (U, V) leaves the subspaces €,

invariant. Moreover one checks easily that

(R (U’ V) Ua, Ua)’g == O,
(R (U, V) Va, Vo) = 0,

With respect to the basis formed by the U,, V, the curvature tensor looks
as follows :

0 (R (U, V) Us, Vo) 0
(R (U, V) Vs, Us)e 0

R (U, V) = e
0 s

Now the map
U, V) >R U, V) Usy

is a skew symmetric bilinear map form € X € to R and so it may consi-

i v .

dered as an element T, ® A €. If we consider € X G = Ge, + Ce_,
and express the elements U, V, in terms of the e, e_, an easy calcu-
lation shows '

2 (e, e—a) <
Ty = —= L (— 1) o (hg) U Vs,
6§x+ 5 eqp DT H U AT

where ¢ (2) = 1 if « is a root of K and ¢ («) = 0 if « is not a root of K.
Now the form oy in the point T eis given by (comp. [6], chap. XII, Th.5.1)

)
1

. 74

( . 1) Q" qud’ AT“’

where d' = %dim Y and this is the number of elements in A,
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The number of roots « with ¢ («) = 4 1 1s equal to the number n,

of positive roots of K. We put o’ = % dim X = d’ — n; and get

oy = (=1 s 2)«1 /\ < 2 2(6(;0:;652) (hﬁ)_ Ug A Vﬁ)
-t Wt ) (S ) (e v

© aely

and ¢ 1s running over the set of permutations of the set A;.

The expression

ol | K1)

o ol

has been calculated by Steinberg in a letter to Tits. This letter is copied
(up to notation) in the appendix with the kind permission of Steinberg.

His result i1s ‘
> 11- <h@(a)>»=<[1ml-x> ,
v aelr i=1

where the m; are the degrees of the invariant polynomials of G/@®. The
set A7 is the disjoint union of n copies of the set A of simple roots of G/©,
we have d' = nd, where d is the number of positive roots of G/@. We get

Wy = (— l)ar 2"(117["[1 < n (ea’ le_a)‘”> <Um, !> (AU& N Von).

aeA;

The measure on Y defined by the metric is

‘We obtain the formula
1 g 1 ’ .
@.2.49 o = (=0 g | m<ﬂ<’"’ !)) o
ae Ay i=1
Combining (2.2.2) and (2.2.4) we obtain

1 1 : "
L) ¢ (TNK) = = (—1)~ k-
% (Fo) % (T\K) Lov=(=1"57 ””dag;;(ea, e_a)"<zI=I1(m[ l)> fY/rowk

vy Iy
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Now formula (2.2.3) yields for this last expression

1 1 T "
v g I () <[!<mf ’)> '

Using (2.2.1) we get

dime "

= =V e <I_]m!>| el = ] ] e (mo.
Let Go/Z be the Chevalley scheme of the same type as G/@. Then we have
G, =f] Go (R).
Let be K, a maximal compact subgroup of G, (R) then
.

We put a = %dim K\ G, (R) then o’ =a.n. If TCK is a maximal

compact torus, then

™K=]] TO\KO

and for the Euler-Poincaré characteristic we get
2 (TNK) = (2 (TN Ko))™

It is well known (Theorem of Hopf-Samelson) that
% (To\Ko) = | Wg, |,

where Wy, 1s the Weyl group of K,. This gives the formula

r n g.lm_G
mt)iar=,

% (T) = (— 1) <(2;),l(d+,4, wo— I,

We are going to use the functional equation of the Dedekind {-function
to bring this expression into a much prettier form. The functional equa-
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tion tells us (comp. [14], chap. VII, th. 3)

—n — m;\"* n /n;—1 -1——m.'
Cl(ml)zt_F(]_—ml)or<l_p2_’> r<1 21)11) . ( 2)'ldl«‘]2 g

The following relations are well known ([3], chap. V, p. 122)

Emz =d+r,
i=1

1Im=1Wel
i=1

where W, 1s the Weyl group of G. Using these facts a simple calculation
yields

Wolt 1
10 = gy Lo —m.

APPENDIX.

In the last section I used the formula

11 = (o) = [[ m; .

ae A+

This formula has been proved by Steinberg in a letter to Tits. Steinberg
considers the real vector space V generated by the roots and evaluates

h=3 1] ¢ @),

o a€A+

where (, ) denotes on inner product on V which is invariant under
the operation of the Weyl group W. Now I am going to copy Steinberg’s
argument with his kind permission :

The given inner product on V extends to one the symmetric algebra
of V by the formula

(o .oty PBree. Bo) = Z (i By—1) oy Bi€V.

@ permutations
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Thus if P:II o, the product of positive roots, then h = (P, P)

aeA+

We may evaluate as follows. Let d = |A*]|, =% Z o. From Weyl’s

e A+

identity (of formal power series) )comp. [3], chap. VI, n° 3.3)

Z ¢ (w) ev = H (eg— e i) (c (W) = sgn w)

weEW ae A+

it follows that (compare terms of degree d)

e @) @ o)? = (@) P.

Thus
h= (P, P) = a1‘1< S ew @ [ a>

wew xeA+

= dl! | W |.<p'l, [] o:> because Il a is skew
ae A+ xeA+

1
=7 Wil a)
o, o 2(p, @
— Wi T] 42 ] 2
o e A+ xel+

Now for any root «, 2 (p, «)/(«, @) = ht « (the height of ) and it is know
that if my, =< m, =...= m, are the degrees of the basic invariants the
number of roots of height j minus the number of roots of height j 4 1
is just the number of m, s equal to j + 1.

Thus

] Er=a | [

ae A+
)

Since also | W[ =] ] m: the earlier expression becomes
I

i=1 ae A+

This is Steinberg’s argument. If we identify V with its dual V and con-
sider the kg as elements of V, we have

hg=a(3@
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and get
S 11 <00 =3 I vtres={ 1] o)
@ medT ¢ acht ' A+
=< ll aa>*‘ 214 I[ m;! I'I o (fz).
aeA+ i=1 ae A+

Now « (h,) = 2 by definition. This yields the desired formula.
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