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A GAUSS-BONNET FORMULA
FOR DISCRETE ARITHMETICALLY DEFINED GROUPS

BY G. HARDER,
Bonn (1).

Dedicated to Ernst Witt
on the occasion

of his sixtieth birthday

INTRODUCTION

Let G/R be a semi-simple algebraic group over the field of real numbers.
Let us denote the group of real points of G/R by G^, i. e. G^ == G (R).
If K is a maximal compact subgroup of G^ then X == K\G^ is a symmetric
space, we know that X is diffeomorphic to R^.Let FcG^ be a discrete
subgroup without torsion, then X/F is a manifold and

H, (r, R) = Hi (X/r, R) for i e N.

If F is of finite cohomological dimension we define the Euler-Poincare
characteristic of F by

x(r)=2j(-iydimH,(r,R).

It is well known from differential geometry that in the case of a compact
quotient X/F there is a differential form (o^ on X such that

(*) ' f ^x=z( r ) .^x/r

The form co,, can be computed in terms of the Riemannian metric on X,
and it will be called the Euler-Poincare form on X. This formula (*)

C) Supported by the k t Sonderforschungsbereich Theoretische Mathematik " at the
University of Bonn.
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410 G. HARDER

is a generalisation of the classical formula of Gauss-Bonnet, and it is due
to Allendoerfer and Well (comp. [4]).

Now the question arises whether the formula (*) holds also when the
volume of X/F is finite. The goal of this paper is to show that for arith-
metically defined groups F the formula (*) is true without the assumption
of compactness. This is an answer to a question posed by Ono in his
paper [8].

If Fo is the group of integral points of a simply connected Chevalley
scheme over the ring of integers of a number field we will give an explicit
formula for % (To) (2.2). This will be done by using Langland's calcula-
tion of Tamagawa numbers for Chevalley groups. Similar calculations
have been done by Ono in his paper [8].

The problem we are dealing with here has been solved by C. L. Siegel
in the special case of an orthogonal group over Q in [11]. Needless to
say that the most important ideas of the present paper are already
contained in Siege? s note.

The proof of (*) rests on the reduction theory of Borel and Harish-
Chandra; I recall this theory in 1.2 in the different form given in [5].

In the proof of (*) we need a function

h: X/r -> (0, oo)

(i) h~1 ([S,oo)) is compact for S > 0;
(ii) h has no small critical values.

A function h having these two properties has been constructed by
Raghunathan in [9]. For the proof of (*) we need some additional
properties of h, for this reason we give an explicit construction of h in 1.3.
The idea of the proof of (*) is explained in the beginning of 1.3.

1.1. PRELIMINARIES ON X = K\G^. — Let G/R be a semi-simple
algebraic group G^ = G (R) its group of real points. The space of
maximal compact subgroups of G^ is denoted by X. If ^€:X we denote
the corresponding maximal compact subgroup by Ka;. The group G^
acts on X by conjugation

(K,, g) -^ g-^ K, g.

Chosing ^ € X we get an identification

?..: K,\G,^X,
^: KZ. g ^ <7-1 K.z. g .

The map y.^. is compatible with the right action of G^ on both sides.
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The Lie algebra of G^ is denoted by $^, if ^eX we denote its corres-
ponding Cartan decomposition by

9. = ̂  © Vx

and the corresponding Cartan involution is denoted by ©a.. It is well
known that

©,(Y)=Y for Y€k,,
©^(Z) = = — Z for Ze=^.

Moreover it is well known that the Killing form B is negative definite
on ksc and is positive definite on p^. From this we get that the following
quadratic form on Jfl^ :

B,(Y)=—B(Y,0,(Y)) for Y€0,

is positive definite. It is obvious that Bx is invariant under the restric-
tion of the adjoint action to Ka;. By right translations we get a G^-right
and K^-left invariant metric dx s^ on G^. The space X is endowed with
a G^-mvariant Riemannian metric. This metric is related to dx s2 as
follows : The differential of the action of G^ on X yields a linear mapping

r̂ : 9^ -> T\,xf

where Tx,a: is the tangent space of X in the point x. The kernel of \x
is ka; and we get an isomorphism

^x '• Vx ~> TX, x*

By definition of the metric on X this map is an isometry if pa; carries
the metric Ba; | p,c.

Let PcG be a parabolic subgroup. The group P^ = P (R) acts transi-
tively on X. We now collect some facts concerning the restriction of
the metric dx s^ to P^. These facts will be important for the study of
the fundamental domain X/F.

Before doing this I want to give some remarks on root systems.
Let R (P) [resp. R« (P) = U] be the radical (resp. unipotent radical) of P.
Let ScR (P) be a maximal split torus. We consider the adjoint action
of S on the Lie algebra g. Then we get a decomposition

9 = (^©^(a)) © 3 (S).

Here 3 (S) is the centralizer of S in g, the set AC Horn (S, G/,,) = X (S)
is the set of roots with respect to (S, P) and n^ is the root sub-space
which belongs to a.
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If we restrict the action of S to the Lie algebra u of U we get

u= © uW,
aeA+

where A^cA is the system of positive roots of S with respect to P. The
restriction map

Horn (P, G^) -> Horn (S, G^)

is not surjective in general, but it becomes an isomorphism if we tenso-
rise with Q. If %eHom(S, Gm) we get a homomorphism

and we define

by

%.: S.^R*

% ] : S,-^(R-)*

% I : 5 ̂  [ /„ (s)

It follows from the preceeding remark that this homomorphism can be
extended in a canonical way to a homomorphism of P^ to (R4")* which
we also denote by

| % : P,->(R+)*.
The character

yp= ^ (dimi^.a
aeA+

is the restriction of a character of P which is also denoted by fp. This
character is called the sum of the positive roots of P.

If Si C R (P) is another maximal split torus then S and Si are conju-
gate by an inner automorphism of R (P). From this we get a canonical
identification between the systems of roots (positive roots) of S and Si.

After these remarks we come back to the investigation of the restric-
tion of dx s2 to P^. The transform P0^- of P by the Cartan involution is
opposite to P and

L,,, ==P^r\P^

is a Levi subgroup of P^. Let Sx be the maximal split torus in the centre
of L^, w^e apply our previous considerations to S^ and get a decompo-
sition

^= © "(a.^a^A+

where n^ is of course the Lie algebra of U^ = Ru (PL- It ^^ (resp. i^.J
is the Lie algebra of P^ (resp. L^J, then the following proposition holds.
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PROPOSITION I.I.I. — The decomposition

y.=^©( © ^}\ a e A+ /

15 orthogonal with respect to the restriction of B,c to 1|H^. J/* k^ = k^H^
^en ̂  tangent space of X at a; can be identified as a metric space with the
orthogonal complement of k^ in |jl̂ .

pyooy. — The involution ©,, leaves £^ stable. It induces on So; the
mapping y \-> y~1. From this it follows that ©^ sends ti^L onto tl^.
Then the proposition follows from the definition of B^ our previous
remarks on the metric on X, and some well known properties of the
Killing form.

We want to draw a simple consequence from this proposition. Let us
consider an element p€P,. We are going to compare the restrictions
of the metrics d^ s2 and d ^ p S 2 to the group P^. The metric d^p s2 is
defined by the maximal compact subgroup p"1 K^ p and the corresponding
Cartan involution is ©^ •=- ad (p-1) ©^ ad (p). For Ye^l, we get

B „ (Y) = - B (Y, ©^ (Y)) - - B (ad (p) (Y), ©, (ad (p) (Y))) - B.. (ad (p) (Y)).

So the restriction of d^p s^ to P^ is obtained by transforming the restric-
tion of d^s^ by the inner automorphism ad (p) of P^. Especially for the
volume element d^ u on U^ which is defined by the restriction of d^ s2

to U^ we get the formula

(1.1.2) d^u== yp(p)[d.^u.

1.2. PRELIMINARIES ON REDUCTION THEORY. — Let F be an algebraic
number field. Its ring of integers is denoted by ®. Let (6/<D be a flat
affme group scheme of finite type. Moreover we assume that its generic
fiber G = (& X F is semi-simple. Let II == { a, p, . . . } be the system of

©
simple roots of G/F. Actually the set of simple roots is only defined
with respect to pairs (P, S), where P is a minimal parabolic subgroup
of G/F and ScP is a maximal split torus. Then the set A (resp. A4-,
resp. II) of roots (resp. positive roots, resp. simple roots) is defined as a
subset of Horn (S, Gm) (comp. 1.1). But as before we have a canonical
bijection between the corresponding sets if we have two pairs (P, S)
and (Pi, Si). So we are allowed to speak of the set of roots (simple roots,
positive roots) of G/F.

The parabolic subgroups of G/F containing a given minimal one corres-
pond to the subsets of II ([2], p. 86), the minimal subgroup itself corres-
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ponds to the empty subset. The group <& (®) of integral points of (6/©
is denoted by F and we denote the group of real points by G^, i. e.
G , = G / F ( g ) R Y

\ Q /

We consider a point a;eX and a parabolic subgroup P of G/F. The
unipotent radical of P is denoted by U. The quotient U ^ / U ^ n F is
compact. At the end of 1.1 I introduced the measure d^u on U^.
We put

p (x, P) = / ^x u.
^Uoo/uoonr

If P is a minimal parabolic subgroup of G/F and if P^ is the maximal
parabolic subgroup of type II — { a } containing P then we put

pa (x, P) = p (x, PW).

If a€ll is a simple root, we denote by Ya the corresponding fundamental
dominant weight, i. e.

^^^p (a,p€H).

The sum of the positive roots of P100 is a positive integral multiple of
the character ^a

TP^) == /a Ta, /a > 0.

Therefore we can express the simple roots in terms of the characters YP(^)

a == ̂  Ca, p yp(p), Ca, p e Q.
/ Pen

We now introduce new numbers by

na(^P)=]~[pp(;r,P)^.
PeII

Let ScP be a maximal split torus and let ^ be a character on S. This
character defines a homomorphism

%.: S,--^F®R)*.
Let

v | : (F ® R)* — (R4-)*

be the absolute value of the norm mapping. The composite map | v | o ̂
can be extended in a canonical way to a homomorphism

| ^ [ : P,^(R+)*.

This follows again from the fact that Horn (P, Gm) (S) Q = Horn (S, Gm) 0 0.
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PROPOSITION 1.2.1. — Let P be a minimal parabolic subgroup of G/F.
If .r€X and p€P^, then we have

no, (xp, P) = na (x, P)| a [ (p),
pa (rKp, P) = pa (X, P) [ Yp(a) [ (?).

This follows immediately from 1.1.2.

I now state the basic theorems of reduction theory. They are not
formulated in the usual form, but I have shown in my paper ([5], § 2,
p. 51-52) how to translate the present formulation into the language of
Borel's book [1]. For the convenience of the reader I will give some indi-
cations about the relations between these two different points of view
after having stated the main results.

THEOREM 1.2.2. — There exists a constant Ci, such that for every point
a;€X there is a minimal parabolic subgroup P of G/F, such that

n^(x, P) < Ci for all a en.

Let us choose such a constant Ci once for all. If xG X we call a minimal
parabolic subgroup P of G/F reduced with respect to x or simply x-reduced if

na (x, P) < Ci for all a e n.

THEOREM 1.2.3. — There is a constant €3 > 0 having the following
property : J /^GX and if P is reduced with respect to x and if n^ (^, P) < €3
for some ao€ll, then every x-reduced minimal parabolic subgroup of G/F
is contained in P10^.

Let us choose €3 > 0 once for all.
We will need the compactness criterion in the following general for-

mulation :

Let H/F be a connected affine algebraic group. Let )(^, 5^3, . , . , , % r be
a basis of the character module Hom (H, G^). Let C > 1 be a real
constant and

H , ( C ) = = i / i € H J C - ^ < | ^ (7i)<C}.

Let F c H ( F ) be an arithmetically defined subgroup. Then the quotient
H^ (C)/r is compact if and only if the semi-simple part of H/F is anisotropic.

This is a slightly generalized version of Theoreme 8.7 in [1]. The
following fact is a consequence of the compactness criterion :
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Let G/F be a semi-simple algebraic group and let TcG (F) be an arith-
metically defined subgroup. Then the set 2 of T-conjugacy classes of para-
bolic subgroups of G/F is finite.

This is proved in [I], 15.6.

Now I want to explain the relationship between the two theorems above
and the corresponding theorems in BoreRs book [1]. We start with the
following trivial observation : Let us consider a point rrGX and a minimal
parabolic subgroup P of G/F which is reduced with respect to x. Then for
any element y € F the group y"1 P y is reduced with respect to x y. This
follows from the obvious equality

72a (X, P) = 72a (x y, Y-1 P v).

Let us choose representatives Pi, . . . , P( for the F-conjugacy classes
of minimal parabolic subgroups of G/F. We denote

Xf == {rccX | Pi is reduced with respect to x }, 1 ̂  i ̂  /.

From the observation above we get
/ t

x=Mjx, r.
\ ;=i /

We choose points r^eX^ and we denote the corresponding maximal
compact subgroups by K^. The connected component of the identity
of P,^ is denoted by P,^, it acts transitively on X. If y€X, there is
an element peP^oo such that Xip = y . From proposition 1.2.1 follows

Ha (y. Pi) == Ha (x, ?, PQ = 77 a (̂ , Pi) \ a (?).

The group Pi is reduced with respect to y and therefore

^^n^)^'-
If

P^(C\) = ;p€P^ [ a (p)^C, for all aen; ,

then our arguments yield
/ / \X==i ^J XiPt.(C\)\T
\ i=l /

and this is equivalent to
/ { \Gao=( U^^000^))^^•Xi ^ i , ao ^i>

z=l
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By P, ^ we denote the intersection of the kernels of the homomorphisms [ a L
where aell. Then we have a decomposition

po _ A P°s - i , oo — A; f^ 30,

where A, is the product of [ IT) copies of the multiplicative group of posi-
tive real numbers We have P^n r===P^nr and it follows from
the compactness criterion that the quotient

P^/P^nr

is compact. Let co, be a relatively compact open fundamental subset
for this quotient, then

t
\J K.,..A,(C',)u,
i=l

is a fundamental set for the operation of F on G,. The set K^ A, (C^) co,
is easily recognized as a Siegel domain (comp. [I], § 12) and this shows
that theorem 1.2.2 is a translation of theoreme 13.1 in [1].

Before I say some words about theorem 1.2.3, I want to state an impor-
tant compactness criterion (comp. [5], Satz 2.2.2).

PROPOSITION 1.2.4. — For any subset tlcX the following to statements
are equivalent :

(i) 12 is relatively compact mod r;
(ii) There is a constant C > 0, such that for any x^Q, there is a minimal

parabolic subgroup of G/F which is reduced with respect to x and fulfills

n^(x, P) > C for all a en.

The implication (ii) ==> (i) follows quite easily from the general compact-
ness criterion stated above and the previous considerations on the
theorem 1.2.2. I want to mention that in the case of Chevalley groups
the proposition 1.2.4 follows directly from theorem 1.2.2 and the fini-
teness of the class number, in this case one does not need the general
compactness criterion.

Now I want to say some words on theorem 1.2.3 and at the end of
these remarks I will indicate the proof of (i) => (ii) in the proceeding
propostion. We consider a point r r€=X, we say that x is close to the boun-
dary with respect to the root a € II is there is a minimal parabolic subgroup P
of G/F which is reduced with respect to x, such that n^ (x, P) < €2.

Ann. Sc. Norm., (4), IV. — FASC. 3. 53
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Let us denote by Xa the set of points in X which are close to the boundary
with respect to a.

The set Xa is obviously r-invariant. Theorem 1.2.3 tells us that a
point a;€=Xa determines a distinguished parabolic subgroup P^ of type
11 — { a }, this group contains all minimal parabolic subgroups of G/F
which are reduced with respect to x. Let QC G/F be a parabolic subgroup
of type 11 — { a } we put

Y^^eXalPL^Qi .

The following facts are obvious :
(i) If Q^Q,, then ¥^¥^=0;

(ii) YaT^YF^ tor all yeF;
(iii) An element yeF leaves Y^ stable if and only if y € Q ( F ) n r .

Let us consider an example. We take G = SL (2)/Z and X = H
is the upper half plane. As a minimal parabolic subgroup we take

^{^(S A) ^M^R)}.

Then we may choose our constants Ci and €2 such that

Yg= { z e H I m ( z ) > 2 { .

This follows from reduction theory and the fact that p (z, Q) == ,—,-.

for all jseH. Let us have a look at the set Xa itself. The parabolic
subgroups of SL (2) correspond to the point oo and to the rational
points pfq on the real axis. If (p, q) = 1 we denote by Dp^cH the
disc which has radius (2 ^)~2, and is touching the real axis in the point p i q ,
then we have

Xa-(^jD^)uYa°.

Of course these discs are also sets of the type Ya.

Now we come back to the general case. The group r acts on X we
denote by

f: X-^X/r=V

the natural projection of X onto its quotient under the action of F.
The set Xa is r-invariant, therefore we get

Xa/r = f(Xa) = Va and Xa == f-1 (Va).



A GAUSS-BONNET FORMULA 419

We call Va the set of points in V which are close to the boundary with
respect to the root a.

Let us consider a point v € Va and two points x, y in the inverse image
of u. There is an element yeF such that x y == y and this implies
Y-i pw ^ ̂  pw g^ ^ h^ve seen that to any point u € Va corres-
ponds a r-conjugacy class of parabolic subgroups of type II — { a }.
We choose representatives Q,, . . . , Q^ for the r-conjugacy classes of
parabolic subgroups of type II — { a }. Let us denote the classes them-
selves by [Q,], . . . . [QJ. Then

Va011 = = { y e V a | f o r a : e / - 1 (u) we have P^e [Qz]}

and Va is the disjoint union of the sets Va^. Moreover the projection
mapping

Yg-^Va^

is surjective. If x, ^yGYa 1 then it follows from the properties (i), (ii)
and (iii) of the set Ya that y1 Q, y == Q, and this yields Y€Q, (F)nr .
From this we get an isomorphism

YgyQ^nr-^v^.
At this point the relation of theorem 1.2.3 to proposition 17.9 in [1]
and the lemma 2.1 in [9] becomes clear.

Now I want to define an important C^-function which is defined on the
set Va. For a point rreXa we put

pa (X) = p (X, P$?).

By definition, we have ^eYa^ and this is an open set in X. This implies
that pa (^) is a C^-function on Xa. Moreover this function pa is obviously
invariant under the action of r theorefore it induces a C°°-function

pa: Va-^R-^-^Oj.

Remarks. — 1. These functions pa are related to the functions of
type (P, %j in ([I], § 14). Actually in our case we have ^ = ̂ p^ and
the connection becomes clear from the relation

pa (xp) = pa (x) yp(a) | (p)
(Prop.1.2.1).

2. Using these functions pa one can easily derive the implication (i) ==> (ii)
in proposition 1.2.4. If t^CX does not satisfy (ii) then at least one of
the functions pa tends to zero on XaH^. For details, compare [5], p. 43.
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3. The set of points in X which are not close to the boundary with
respect to any simple root is relatively compact mod F. On the other
hand a point which is close to the boundary with respect to some simple
root determines a parabolic subgroup of G/F. This observation leeds to
a simple proof of the compactness criterion of Borel and Harish-Chandra
(comp. [5], 2.2).

Let us consider a set T; of simple roots. We denote

X^ == ̂  Xa and V^ = ̂  Va.
ae^ ae^

It is clear that a point a;€X^ determines a'parabolic subgroup Qa; of type
11 — 7i of G/F and that a point P G V ^ determines a r-conjugacy class of
such subgroups. Let QcG/F be a parabolic subgroup of type 11— TI,
hy [Q] we denote the r-conjugacy class containing it. Then we put

Y ^ = { a : e X ^ ] Q , = Q } ,
V^ = j y e V ^ ] f o r a ; e f-1 (v) we have Q^e [Q] }.

An obvious generalisation of our previous considerations shows that the
restriction of f to Y^ yields a surjective mapping

Y^V^1

and from this map we get an isomorphism

^Q : Y^/Q.nr-^V^.

This isomorphism will give us important informations about the struc-
ture of the sets V^. If Qi, . . ., Q^ is a set of representatives for the
r-conjugary classes of subgroups of type 11 — 71, then V^ is the disjoint
union of the sets V^.

Now I want to investigate the structure of the sets V^. As usual
we denote the radical of Q by R (Q) and we put M == Q/R (Q). K.
If is a maximal compact subgroup in G^y then Q^nK == Kg is a maximal
compact subgroup in Q^ (this follows from the Iwasawa decomposition).
By KM we denote the unique maximal compact subgroup of M^ contai-
ning the image of Kg. We have constructed a map

+Q: X^XM,

where X^ is the space of maximal compact subgroups of M^. This map
factors through the action of Q^. Therefore we get a map

. ^Q: x/rnQ,->XM/rM,
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where 1̂  is the image of FcQ is M^. This is an arithmetically defined
group ([I], 7.13).

Let PcQ be a minimal parabolic subgroup, the image of P in M is
denoted by P and this is a minimal parabolic subgroup of M/F. The
simple roots of M can be identified with the elements of II — TI. An equi-
valent of lemma 2.3.4 in [5] tells us

(1.2.5) Ha (x, P) X na (^Q (x), F) for all aeI I—Tr.

Here >^ means that the quotient of both sides is bounded away from
zero and infinity by a constant not depending on x, P, and Q. Let
SCR(Q) be a maximal split torus. The roots aell can be restricted
to S, these restrictions will be denoted by a^. We may express the roots
a € ^ in terms of the roots a € 11 — Ti and the fundamental dominant
weights Va corresponding to the roots a€7c. We get

(1.2.6) ^==2^PYP+^ da,pP for aerr.
^e^ P<£^

If we restrict a to S we obtain

(1.2.7) ^=^cS,pyp.
pe^

Now we put

(1.2.8) nS(^, Q) -n?? (^ Q)^-
•}€7t

As in 1.2 the characters a^ yield homomorphisms

1 ^ 1 : Q.-^R-T
and for q € Q^ we get the formula

(1.2.9) nS (xq, Q) = nS ( ,̂ Q) | ̂  | (^) for a e TT.

Now we define the map

TO : X ̂  (R4-)* x ... X (R^*,

FQ: a;h>(..., nS(^, Q) ...).

The number of factors is equal to [ TI [ = the number of elements in u.
The map r^ factors through the action of FnQ^. This factorisation will
be denoted by FQ.

Let us denote
A == A^ == (R4-)* x . . . X (R4-)*, | TT factors,
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then we get the following important diagram :

FQ x ^Q : X ——————> A x XM

(1.2.10) i [
roX^Q: X/rnQ,—^AXXM/FM

The fibers of the map r^ X ̂ Q are the orbits of the group

R ( Q U l ) = { p e R ( Q ) , M ( p ) = = l for all a^n\.

The fibers of ^X^Q are equal to these orbits divided by the action
of R(QLnr , and they are compact.

Let me say a few words about the functorial properties of the dia-
gram 1.2.10. Suppose Qi is another parabolic subgroup of type 11 — 11
which is conjugate to Q under F. If Qi = y Q y-1 then this transfor-
mation yields an identification

p: AxXM/rM-^AxXMjrM,

which does not depend on the choice of y. The isomorphisms

^ : Yg/rnQ, ^V^
^: Y^/rnQ^^V^11

yield the following commutative diagram :

^-^ YS/r n Q, ̂ ^ A x XM/FM

(1.2.11) V^ / P <

(^r^yQi/r^o ^I^AYX /r' 1 71 / 1 f I V l o o ——————^ A X AMJI Mi

I am going to study the infinitesimal properties of the map

FQ X ^Q : X -> A x XM.

Let us denote the tangent bundle of X by T, the tangent bundle of A
(resp. XM) by T^ (resp. TM), and the bundles induced on X by T^ (resp. Tn)
by T^ (resp. T^). The Riemannian metric gives an orthogonal decompo-
sition

T=TF©Tf i©T5 .

The bundle Tp is the bundle of tangent vectors along the fibers.
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The group CL acts o11 the spaces X and AX XM. It acts on A by trans-
lations. The map ^gX^g is compatible with this action. The tangent
space Ta; at the point r r€X can be identified with a quotient of the Lie
algebra fflt^ of CL, we have

^U^n^-^T,,

We consider a refinement of the decomposition in proposition I.I.I

^ == ̂  © / © ^\ = ^,00 © ^,00 © / © <lo\,

^€AQ ; ^eAQ ;

where 1)̂  is the Lie algebra of the centre H^ of L^ == Q^nQ^.
This decomposition is orthogonal with respect ot Ba..

Now we consider the torus H = R (Q)/R(, (Q). Let us denote its Lie
algebra by 1), the Lie algebra of H^ is l)^. The injection of ]-L^ to R (Q)^
yields an isomorphism

F.r: ^,°o-^ boo-

To any character % : H -> Gm we associated a homomorphism

1 ^ ] : H,^(R^-)*

and H^ (1) is the intersection of the kernels of these homomorphisms.
The Lie algebra of H^ (1) is denoted by 1)^ and its orthogonal comple-
ment with respect to the Killing form is denoted by d. Then we have
the following decompositions

^ = b; © ^
^,00 ==1^,00 ©d^,

where the second decomposition is induced by p-a;. From the mapping
from ffit^ to Ta; we get following isometries

^/^.nl̂ Ta,.,
^X ~> T-l, X9

^^,-nKr©/ © ^^-^TF,..b^/^nKr©/ © ^\-^TF,.
^aeAQ ' ;

By means of the isomorphisms ^ we get a natural trivialisation of T^

T$==Xxa

and this trivialisation is compatible with the action of Q^. We may
associate to any vector Z€( l a Q^-invariant vector field Z € r ( X , T t ) .
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Then we get from (1.2.9) the formula

(1.2.12) Zn^\^==^(Z)n^(x,Q),

where a' : a -> R is the differential of | a for a€^.

Let Qi be a parabolic subgroup containing Q and let II — TI^ be its
type, we know ^i C ̂ . We have a natural inclusion Hi ===R(Qi)/R« (Qi)—H
and this yielsd an imbedding di c—^ a. Using our result above we get

Tj^Xxa,
01 • }•^ ^
T^ ̂  X.X a

Remark. — In our situation we have an obvious mapping X^i — X^
and we get a commutative diagram

^ : X/rnQ, — XM/FM

^: x/rnQi,.-^XM,/rM,

but there is no commutative diagram including also the map FQ. This is
due to the fact that FQ is defined by " neglecting 59 the roots in 11 — TT.

1.3. A DISSECTION OF X/T AND THE CONSTRUCTION OF h. — At this

point I want to explain briefly the idea of the proof of the Gauss-Bonnet
formula. I will construct a function

h: X/r = V -^ (R4-)*

which can be written h (^n^00^
aell

where o-a is a bounded positive C^-function having support in Va. The
set h~1 ([§, oo]) will be compact for any S > 0 and h will not have small
critical values. We consider the set

V (^) = { u | h (v) ̂  3 }.

If (Oy is the Euler-Poincare form on V (we assume from now on that T
has no torsion), then (comp. [4])

f cov=^(V(3))+F n§,
^V(o) J^^}
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where IIo is a form of highest degree on ^V (S). The only thing which
remains to be shown is
(**) lim f IIo^O.

S>oJ^.^

This will be done in 2.1.
Here we are going to construct the functions G-^. This will be done by

covering V by subsets V^ (CQ; I^) of V1?1, constructing these cr^ separately
on these subsets, and adding up. The decomposition of V by the sets
V^ (eg, H'o) may be of independent interest (Th. 1.3.2). We look at
the following diagram :

Y^c__——^X—^^AXXM——^XM
j^T |^X _ ^ J^M |^M

(1.3.0) Y^/rnQ, c_^x/rnQ,^-$AxXM/rM^XM/rM
<p^-1

VI?1

Let ^CXM/r^i be a relatively compact set. Then X (Q), Y^ (12) and
V^1 (II) are the inverse images of H in X, and V^. Let c > 0 be a positive
real number, and 12 C X^i/r^ be relatively compact. Then

and
A (c) == {(x,, ..., rr,)€A 0 < x,< c }

X(c, ^)=={x€X\(rQX^) (a;)eA(c)x^.

LEMMA 1.3.1 . — Let I^cXM/r^ 6e relatively compact. Then there
exists a constant c > 0, 5uc/i t/iat

X(c,^)cYt

Proof. — It follows from the relative compactness of 12 that there are
constants 0 << CQ <; CQ, such that for all r K € X (Q) there is a minimal
parabolic subgroup PcM for which

CQ. < Ha (^Q (x), P) < CQ for all a ell—TT.

Let PcQ be the preimage* of P then we get from (1.2.5)

CQ. < Ha (x, P) < ch for all a e n — TT,

where CQ, CQ are constants depending only on Q, and where x varies in
X(Q). We get from (1.2.6) for a €11

(1.3.1.1) na ̂  P) -fripp ̂  ̂ ^ fn^ (x9 py^\
\Pe^ / \p^7t /

(X,P)^^ \i^^(x, pr-? .
3e^ / \p^7t /

Ann. jEc. Norm., (4), IV. — FASC. 3. 54
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Now we have by definition pp {x, P) == pp (rr, Q) for ^e^ and we see
that the first factor on the right hand side is equal to n^ {x, Q) [comp. (1.2.8)]
The second factor on the right hand side is bounded away from zero and
infinity by constants depending only on Sl. So there is a constant C > 1
which depends only on ^2, such that

(1.3.1.2) C-ln^(x,Q)<n^x,P)<Cn^(x,Q) for OCTT.

If n^ (x, Q) is very small then the number Uy, {x, P) is very small too. It
follows from therorem 1.2.2 and 1.2.3 that any minimal parabolic
subgroup P' which is reduced with respect to x must be contained in Q
if n^ (x, Q) is sufficiently small. This is clear because for a e l l — 7 1
the numbers riy, (x, P) are bounded from above, and for a G n the numbers
TZa {x, P) are very small. Now if P' C Q is reduced with respect to x it
follows from the compactness criterion (prop. 1.2.4) applied to X^i/I\
and (1.2.5) that

Co1 < na (x, P') < CQ for all a e n — n,

where CQ > 1 depends only on H. Reversing our previous argument we
see that for a€^ the numbers n^ {x, P') will be very small if n^ (x, Q)
is very small. But if for an ^-reduced subgroup P'CQ the numbers
TZa {x, P') are small for a€^ , then we have by definition r^eY^. This
proves the lemma.

Remark. — The difficulty in the proof of the lemma arises from the
fact that we do not know a priori that Q contains a minimal parabolic
subgroup which is reduced with respect to x.

If we have chosen 0 and c > 0, such that the lemma 1.3.1 holds we
put

V^ (c, P-) - ̂  (X (c, ^))/rnQ00.

It is easily seen that the map

X (c, ^) -> A (c) x f2,

where 12 == p^1 (Q) is surjective. The fibers of this map have been descriebd
already in 1.2. The fibers of the map

V^(c,^)->A(c)x^

can be identified with R (Q), (l)/rnR (Q),.

During the proof of lemma 1.3.1 we have seen that the sets V^ (c, £1)
have the following property : If u € V^ (c, Q), and if x^. X is in the preimage
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of y, then for any minimal parabolic subgroup P which is reduced with
respect to x the numbers n^ {x, P) for aell — ri are bounded away from
zero by a constant which only depends on £1.

A subset OCX^/FM is called a subset of special type if it can be des-
cribed in the following way : There is a real number to > 0, such that a
point v € X^/FM is in Q if and only if there is a point y € Y^ which is in
the preimage of v under the map

PM ° pi ° O-Q x ^o) o f : Y^ -> XM/FM,

and a minimal parabolic subgroup P which is reduced with respect to y ,
such that

Ha (x, P) > to for all a e n — TT.

Then we denote Q = (i^. It follows from theorem 1.2.3 that P C Q.

Remark. — I claim that these sets of special type are relatively compact.
We know from (1.2.5) that the numbers n^ (^Q (y), P) are bounded
away from zero and infinity for a^II — TC so we apply the proposition 1.2.4
for ̂  C X^/F^. Moreover we have

^J ̂  = XM/FM.-<0

<o>0

This is an immediate consequence of lemma 1.3.1
We have introduced the sets £1^ for technical reasons which will become

clear in the proof of theorem 1.3.2 (iv).
If 7i ell we denote by 2^ the set of r-conjugacy classes of parabolic

subgroups of G/F which are of type II — TI. We put 2 == [ j 2^. The
Txci r

elements of these sets will be denoted as before by [Q], [ Q i ] ? . . . . We
assume that we have chosen a group Q€[Q] for all elements of 2. If
iTiC^, and [Q]€^, [Qi]el^ wesay that [Qi] dominates [Q] if there is an
element Y^F, such that YQy^CQi.

In the formulation of the next theorem we consider G/F itself as a
parabolic subgroup which is of course of type II. I hope that the reader
does not take offence at the fact that this group is " more maximal 5?

than the maximal one's which are of type 11 — { a } .

THEOREM 1.3.2. — We can choose for all [Q]€^ relatively compact open
sets QgC C^gC XM/F^, and constants 0 < CQ < CQ such that the folio'
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wing statements are true :

(i) Lemma 1.3.1 holds for all pairs (eg, Og);

(ii) We ha^e
x/r==v==^J^^Jv^(cQ,^)V

^Cn\[Q](2S, /

(iii) If | 'K [ ̂  TCi , and if

V^^nV^ (4,^)^0,

(/i^/z iii C TC one? [Qi] dominates [Q];
(iv) //' 11:1 C ^5 ^M^ ^T*

yeV^^^nV^^,^),

then the fiber of the map

V^(CQ,^Q)->AX^

which passes through v is contained in V^ (c^, ^gj.

Proof. — We will choose the constants CQ, CQ and the sets ^gC C^gby
decreasing induction on | Ti [ where [Q]€^.

If Ti === n we put for all [Qje^n

^ == ^Q === XM/FM.

Then we choose 0 < CQ < CQ such that the condition (i) is fulfilled. It
follows from theorem 1.2.3 and the following considerations that for
[Q] T^ [Qi] we have

ViY^^nV^^,^)^^

and this tells us that the conditions (iii) and (iv) are satisfied.

Let us assume that we have chosen for all [Q]€S^ with [ IT > s the
constants CQ, CQ and the sets i^CC^Q such that the conditions (i), (iii)
and (iv) are fulfilled. Moreover we require the following condition to be
satisfied :

{ii)s : There exists a constant ts > 0 such that for any point

^ U fUw^^))
^m>A[Q]e^ /
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there exists a point r^eX in the preimage of P, a minimal parabolic sub-
group P which is reduced with respect to x, and a subset TiiClI with
] Tii [ == 5, such that

Ha (x, P) > is for all a ell — Tii.

This rather technical condition garantees that eventually the condition (ii)
will be fulfilled too because we have (ii)_i <=> (ii). It is clear that (ii) 17:1-1 is
satisfied by our initial choice.

Now we choose the sets Qg for all [Q] € 2^ with TC == s : for ^Qg we take
the sets of special type

.QQ===^,= ̂ .

Then we choose for I^Q relatively compact open sets of special type such
that tIgC C^Q. Now we have to choose our constants. Before doing
this I will show that the condition (ii)^_i is fulfilled automatically if the
constants CQ > 0 are chosen sufficiently small. To see this let us choose
the constants CQ > 0 provisorily. We consider a point

^ U fu^^A
•",l7ti>A[Qie^: J

The condition (ii), is satisfied, we can find a point x in the preimage of y,
a minimal parabolic subgroup which is reduced with respect tot x, and
a subset Ti^cII consisting of s elements such that

Ha (x, P) > ts for all a e n — TT.

Let Qi D P be the parabolic subgroup of type II — 7-1 containing P, we
may assume that Qi is the representative in its F-conjugacy class which
we have chosen before. By assumption we have

^WCQ,,^).

I claim that there is a root [^G^i such that np1 {x, Q)i^^. To see
this we compare the numbers nj1 (^, Qi) and /zp (x, P) by using the
formula (1.3.1.1) in the proof of lemma I.I.I. The numbers n^{x, P)
for a € II — Ti are bounded between two non zero constants which depend
only on our previous choices (actually these constants are ts << Ci). Then
it follows from formula (1.3.1.1) that there is a constant C^> 1 which
depends only on il^ such that

( 1 . 3 .1 .2 ) Co,1 np (x, P) < nj1 (x, Qi) < CQ, np (x, P) for (3 € 7:1.
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Now it follows from nj1 {x, Qi) << c^ that n^ (x^ P) < €3 if c^ is chosen
suffiently small. Here Ca is the constant in theorem 1.2.3 and therefore
way can conclude that rreY^. If we denote by abuse of langage (2)
^ •==. p^ o p^ o (^X^oJ ° i in the diagram (1.3.0) then this last
assertion implies immediately that ^ {x) €^Q, = ^Q^- But then it
follows from ^ {x, Qi) < CQ^ for all Re^ i that ^ € V^011 (^5 tigj and
this contradicts our assumption. To fulffill (ii)^-i we only have to chose
t,_i < CQ^ c^ for all [Qi]e2^ with | r^ -== s.

Now I claim that the conditions (i), (in) and (iv) are satisfied if we
choose the constants c'^ sufficiently small. If this is shown then the
proof of our theorem will be finished. This is clear because we have a
description of the sets ^Q,C C^Q, for all [Qi]e2^ where [ T^ = s, then
we choose the constants c'^ such that (i), (iii) and (iv) are satisfied, and
then we choose arbitrary constants 0 << CQ^ << c^. The condition {i)s-i
is fulfilled automatically as we have seen before.

There is no trouble with condition (i) because of lemma 1.3.1. We
consider condition (iii). Let rii, 713 be sets of simple roots, we assume

Tii ^ 713 = s. We take a class [Qi]€^,? and a class [QaJ^S^ and
we assume

^V^^^JnV^^,^).

We choose a point rreY^ in the preimage of u. If we replace Qs by
another representative in its r-conjugacy class we may also assume that
^€=Y^. Let P be a minimal parabolic subgroup which is reduced with
respect to x. It follows from our definitions that PcQiHC^- Now
let us assume that there is a root a€^ i which is not contained in ^2.
Roughly speaking we will get a contradiction because a^r^ yields that
TZa (^5 P) is bounded away from zero, and aGri i yields that Uy, {x, P) is
very close to zero. Now I will give the precise argument. In the first
step I show that a^u^ implies that n^ {x, P) is bounded away from zero
by a constant not depending on y, x and P. We have by definition
4^ (^) ̂  ^Qa* Moreover there are constants Ci, x^ < 0 such that

Ci ZZa (X, P) ̂  7?a (+Q. (^), P) ̂  ̂  Ha (x, P).

This is the relation (1.2.5). The group P is reduced with respect to x
and we obtain the inequality n^ \^Q,[x\ P) ̂  c^ Ci where Ci is the
constant in theorem 1.2.2. The compactness criterion (prop. 1.2.4)

(2) This map is essentially the same map as the map denoted by ^Q, before. These
two maps differ only by the projection py and therefore I denoted them by the same
letter.
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applied to X^/F^ shows that the number n^ (^(^), P) is bounded
away from zero by a constant not depending on x, v and P. The inequa-
lity above yields that the same is true for n^ [x, P).

In the second step we make use of the fact that a 6:^1. This shows
that n ̂ {x, Qi) < c^. But we know from the proof of lemma 1.3.1
that [comp. (1.3.1.2)]

C^n^(x,P)^n^(x, Qi),

where C^ > 0 depends only on D^. If c'^ > 0 is sufficiently small
we get a contradiction, and therefore we have TiiC^.

Now I will prove that (iv) is fulfilled of the numbers CQ are chosen
sufficiently small. We keep over the notations of our previous consi-
derations. Let v be a point in the intersection

V^^^JnV^^,^).

We know already that Ti iC^? and we may assume that Q^CQr Let
yCSY^ be a point in the preimage of y. Because we have obviously
Y^CYS; it follows that y € X (4, ^JcYS;. We put

^(y) =u^^

The sets il'^ are of special type, say ^^ == ii^. By definition there is
a point ^/i€Y^ in the preimage of y, and a minimal parabolic subgroup P
which is reduced with respect to y^ such that

Ha ((/i, P) > t's for all P e n — 7:1.

From the fact that y , and yi have the same image in X^/T^ we get
yq === y^ Y where ^ € R ( Q i ) ^ , and yGQi^nr . We may replace P by
Y"1? y, and yi by yi y, therefore we may assyme that 'y == e. Now I claim
that P is also reduced with respect to y . We get from proposition 1.2.1,

Ha (y, P) = Ha (yq, P) == Ha (l/i P) for all a e n — 7:1.

Now it follows from n^ (x, Qi) ̂  c^ for ae^i that ^a (?/? P) ̂  €3 for
a€^ i if c'^ is chosen suffiently small. (This follows from a standard
argument which has been used already several times.) So we have seen
that P is reduced with respect to y . Then we get from our theorem 1.2.3
that PcQa. We want to show that the fiber of the map which passes
though v

V^^^J-^A^Jx^,
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is contained in V^21 (c^, ^). But this fiber is the image of the set
{ y q y € R ( Q 2 L ( l ) } under the projection map. Now PcQa implies
that R (C^C P. Now we apply proposition 1.2.1 again and we get

^a (yq, P) = na (y, P) for all a e II — TTi.

This tells us that ^ (yq) €^Q, = ̂ . On the other hand we have
^Qi (y^) === ^i (2/)? an(! hoth facts together yield

(^i X ̂ ) (yq) e A (CQ,) x ̂  for all g € R (QQ, (1)

and this proves that (iv) is fulfilled if the CQ are chosen sufficiently small.
This finishes the proof of the theorem.

Now we are able to construct the function

h: V — R - ^ — - { O j ,

h(v)=f[p^(ur^\
aeli

where a-a will be a suitably chosen bounded positive C°°-function having
its support in Va. If we have constructed these functions a^, then it
is clear that the expression for h is well defined, because o-a vanishes outside
of Va. The construction of a^ will be done by constructing functions

^: V.? (CQ, ^o)->[0, 1]
and then we put

^0-2 ̂
[Q]€S

Roughly speaking a^ will have the following shape : If Q is of type IT — -.
and a€^, then cr^ will be equal to one on Vi? (c^, ^0) and its support
will be a compact subset of V^-?3 (eg, ^0). If a^Ti the ̂  will be identically
zero. To be more precise we choose a C^-function

^: ^[0,1]

which is equal to one on I^Q and has compact support in Qg. Then we
choose a function

w: (o,cy-^[o,i]
which is C00, equal to one on (0, Cg), and has support in (0, CQ — £). Then
we put for a = ( . , Oa, . ) ae^€A

^(d)==f[W(a^
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We define for PCV^ (4 ̂ )

( 0 if OC^TT,
O-Q (f;) == <> r 9 _

(1y(^((^)-l(^)))^(^((^)-l(^)) if ^TT.

This function will be extended to a C°°-function on V by zero. The
extended function will also be denoted by cr^. We put

^ = ̂  ̂
[Q]€S

Now we may define h by the expression above

THEOREM 1.3.3. — The function h is C00 on V. IfS^> 0, then the set
h~~1 ([S, oo]) is compact. The function h has no small critical values, i. e.
there is a constant So > 0 such that h {u) < So implies dh \y 7^ 0.

Proof. — The first assertion is clear. For the second assertion we
restrict h to one of the sets V^ (CQ, Qg). On this set we consider the
functions

^ V^ (CQ, ^o) -> (0, CQ) for a ETT,

n2: y-^^(y, Q),

where y is a point in the preimage of v. Inverting the relation (1.2.7)
we may express the characters fa in terms of the characters ^

Ta=^W..

Pe^

It is well known that in this expression b^ ̂  ̂  0, and &^,a > 0. From
this formula we get an expression for the functions pa

pa (y) == 17 ̂  00^'p for a e TT.
?€^

As we have seen in the proof of lemma 1.3.1 there is a constant C > 1
depending only on il^ such that for all minimal parabolic subgroups P
which are reduced with respect to a point y in the preimage of v we have

C-^SW^M^^^^SOO for ^TT,
C-1 ̂  Ha (y, P) ̂  C for a ̂  TT.

For the proof of the second statement of our theorem we have to show
that h takes arbitrarily small values on a subset D C V^ {c^ il^) which
is not relatively compact. It follows from proposition 1.2.4 (the corn-
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pactness criterion), and the inequalities above that there is a root ao€^
such that n^ takes arbitrarily small values on D. It follows from our
definitions that cr^ (^) ̂  1 for y € D . Now we look at the expression
for pa (^) in terms of the .n^. The values n^ {u) are obviously bounded
from above, so we see that the values pa (^) are bounded from above
on D. But from fe^o > 0 we get that p^ (c)^0^ takes arbitrarily
small values on D. This alltogether shows that h takes arbitrary small
values on D.

For the proof of the last assertion we replace the function h by the
function f{u) = log (A (u)). We shall see that the lenght of the derivative
df\^ is bounded away from zero by a strictly positive constant if h {v}
is sufficiently small. The lenght is of course taken with respect to the
given riemannian metric on X.

Let me make a small remark before the proof starts. We consider
two r-conjugacy classes [Qi] and [Qa]? and we suppose

V^ (4, ̂ ) nV^ (4, ̂ ) ̂  0.

By theorem 1.3.2 we may assume that TC^C^. Let us consider a root
a € T C 2 — ^i. The function n^ is defined on the intersection, and it follow
easily from the arguments we have ussed in the proof of theorem 1.3.2
that the values of this function on the given intersection are bounded
away from zero by a strictly positive constant which depends only on
the choice of the sets tig. If (3 € T^, then we may consider the functions n^\
and n^ on this intersection. It follows from the same kind of arguments
that the quotient of these two functions is bounded away from zero and
infinity on this intersection.

Now let us consider a point y € V where the value h [v} is very small.
We consider all r-conjugacy classes [Qi], . . ., [Qj for which

^V^(CQ^) ( .==1 , . . . , Q .

As we have seen before there is a class, say [Qi], and a root -aoG^i such
that n^ {u) is very small. Our preceeding remark shows that we have
^oG^ for all l^v^t, and that n^ (v} is small for all r^. From the
definition of the function o'a we get

f=^f.
where

/^S^0)10^^))-
aeH
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At the end of 1.2 we have defined a certain Lie algebra

a,cLie(R(Qv)/R.(Qv)),,

and to any element HGr t^ we associated a vector field H on X which is
invariant under the action of Qv,,. If we restrict H to Y^ the projection
yields a vectorfield H on V^. Let H^Gdv be the element defined by

a' (HaJ = §a,ao for all a e Try.

(Here a' is the derivative of | a |.) It follows from the diagram (1.2.13)
that the vectorfield Ha, restricted to

t
HV^Q^Q,)
p.=i

does not depend on v. The last assertion in our theorem will be proved
if we have shown that in our situation

t
Ha« (/•) 1. =^ Ha. (fv) !„ =, M > 0,

v==l

where M is a constant not depending on y. Because the lenght of the
vectors in our vector field H^ is constant this proves also that the length
of df\^ is bounded away from zero if h {u) is sufficiently small. Let us
recall the definition of the functions f^

f. (u) = log (h, (v)) =^ ̂  (u) log (pa (P)).
aell

The functions o"^ have been defined as follows : Let be

r, x ̂  == (JQ, X ̂ ) o (^v) -^ : V ̂ (c ,̂ ̂ ) -^ A (CQ,) x ^Q,,

then for (a, u) = (r/ X ^v) (y) we have

^(y)=^(fl)^(l;).

The function pa is given by pa == pa ° (^X ^v) where we have for
a = = ( . . . , Oa, . . • )ae ' rcv^^?

pa(a,y)==pa(a)='|'Ja^3

Pe^v
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[comp. (1.3.4)], and if we write /*v ==/v o (^ X ^v) we obtain

/•v (a, u) = ̂  (a) ̂  (D) ( ̂  log (pa (d))\ == ̂  (a) d\ (u) ( ^ b^ log (ap)\
\a€-7T:v / \a,pe7Tv /

It is clear from the definition of Ha, that

Ha<, (fv) |v = ty., ^- (fv) |(̂ )

i. e. essentially we have to take the partial derivative with respect to the

ao-th variable in A^ =}-[(R+)*. We assumed that a^ = n^ {u) is very
ae^v

small, an this implies that ^ does not depend on a^. Now we get

Hao (fv)k = +v (a) ̂  (u) / ̂  b^A
Vae^v /

We know that the sum in the bracket is strictly positive. It follows
from theorem 1.3.2 (ii), that there is an index Vo such that ^^(a)^^{u) =1.
This shows that Ha, (/) \v is bounded away from zero, and the theorem
is proved.

2.1. THE PROOF OF THE GAUSS-BONNET FORMULA. — I am going to

prove the limit formula

(^ ^) Urn f IIg = 0.
5-^0 J^y (o)

We always assume that 8 > 0 is very small so ^V (S) is a hypersurface
The first step in the proof consists in compairing the differential form IIo
with the volume element 01)3 on the hypersurface ^V (S). The form o0o
is nowhere zero; and therefore we may consider the ratio between these
two forms. I claim

(2.1.1) ^o((-log(y1),
C»)o

where the 0-constant and M are independent of §.
The proof of (2.1.1) consists in some rather technical estimations

which we shall carry through now. Let us denote the sphere bundle of
unit tangent vectors at V by SV. In the following considerations we
identify the tangent and the cotangent bundle on V by means of the
riemannian metric. If Yi and Ya are tangent vectors at the point y € V
we denote by < ( Y i , Y 2 > ^ their scalar product, and the length of Yi
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is denoted by || Yi ||,. If p € ^ V ( S ) the vector N, == dh— is a unit
||a"||v

normal vector to <^V (S). The vector field N == n „ . , is defined outside
_ 11^11

of a compact set (theorem 1.3.3). This vector field of normal vectors
defines a section

.SV^i/ 4-
^V(3)£__^ V

In his paper [4] Chern has constructed a differiential form x of degree
dim V — 1 on SV such that p^ (x) = II§. On SV we have a canonical
riemannian metric is defined by means of the canonical symmetric connec-
tion on V. The lenght of the differential form x is bounded with respect
to this metric. This is clear because x can be calculated from local data
on V, and these local data are determined by the metric. The boundedness
then follows from the fact that V is the quotient of a symmetric space.
Let us denote by co^ the volume element of the manifold p^ (^V (S)). Our
previous remark shows

(2.1.2) ^^^^OO).
C05

Now we identify the manifolds p^ (^V (S)) and ^V (S), and we compare
the forms 003 and co^. To do this we look at the differential of the map po.
For y € ^ V ( S ) we consider

dp§: T^-^Tpg^),

where T^ (resp. Tpg^) is the tangent space at v [resp. po {u)]. It is clear
that

^[i^r-v-1,
where || rfpg [| is the norm of the linear map rfpg. From well known
formulas in differential geometry we get for a tangent vector Y€T^

| |dp5(Y)[ | , 2 =l |Y^+[ |VY(N) | |^ | |

I claim that from this expression we get an estimate

(2.1.3) NpsH^O^-log^).

This together with (2.1.1) yields (2.1.1). To prove (2.1.3) we consider

the function f=log{h) it is clear that -n-ji-n = n / ' If Y is a tangent
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vector at a point vG^V (S), then we have

V ( df \ _(-^\\df\\\df\^+\\df\\^df\^
^m).- \\df[\S

We have seen in the proof of theorem 1.3.3 that the denominator in this
expression is bounded away from zero. We shall give an estimate for
the numerator for all tangent vectors Y which are of lenght ̂  1. As in

t
the proof of theorem 1.3.3 let us write f = V /*v where

v==l

/•,=^Hog(pa).

aeIT

Then we have
^=y(o•g-^a+log(pa)^y

ae^ pa /

At first we will estimate the length of the forms df^ then we will estimate
the length of the covariant derivatives Vy^/^ and from there we will
easily get the desired result. The functions o-^ are bounded, and also
the differential forms d^' are of bounded length. The vectors in the
vector field d log (pa) are of constant length. To see this we consider
the function

Pa : X h> pa (X, Qv)

on X. This function is invariant under the action of Qv^nF and it
induces on Y^/FnQ^ „ = V^ the function pa- Now it follows from
proposition 1.2.1 that d log (pa) is a form on X which is invariant under
the action of Qv,^. But this form induces d log (pa) on VS?^, and there-
fore the latter vector field is even paralell, this fact will be needed later.

The only non bounded terms in our expression for df^ are the functions
log (pa (^)). To estimate these terms we prove the following.

LEMMA 2.1.5. — There exist constants M > 0 and t > 0 such that for
all y € V a

pa (u) ̂  M h (uy.

Proof. — Let us distinguish two cases. In the first case we assume
that u is contained in a set V^ (CQ, t^), and that ae^i. Then we have
by construction o"a (u) ̂  1. But then the assertion is clear because of
the definition of A, and the fact that the functions pp (y)^^ are bounded
from above on V. In the second case we assume yeV^CQ,^), and
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a 4=7:. In this case the argument is more complicated. Let x be a point
in the preimage of y, and let us choose a minimal parabolic subgroup P
which is reduced with respect to x. Now we express the character ^a in
terms of the roots a € 11 — TI, and the fundamental dominant weights y^,
with P' € 'n;. This linear expression yields as usual a multiplicative relation

p^(v)=f'\^p^(v)^\[ 1[[ np^P)^
VP'GTI / VpeIl-Tl • /

We know that the second factor is bounded away from zero and infinity
on V^ (CQ, Q.o). This reduces the second case to the first case. The
lemma tells us that for y € ^ V ( S )

[|^[|,=0(-logc0.

Now we consider the covariant derivatives Vyd^ for tangent vectors
of length ̂  1. The covariant derivatives Vy (rfcr^) and the derivatives
Y (c^) are bounded. The covariant derivatives Vy(^ log (pa ) ) do vanish
because dlog (pa) is parallell as we have just seen. The derivatives
Y (log (pa)) ^^Y, ^ log(pa)^ are bounded too. Again we have that the
only non bounded term in our expression for Vyd^ are the terms
log (pa (^)). If we apply lemma 2.1.5 a second time we get

[IVydfvII.^O^loga).

If we add up we get the same estimates for [| df\\, and [ Vy^Hy. Now we
come back to the estimation of the numerator of our expression for

rif

V y - n j r n - - The term Y H ^ / ] ^ is estimated as follows : We have
tWI

^[\df[\=^(^df,df^== <VY^^>
1 1 ^ 1 1

and this together with our previous estimates yields

Y f df (| ], == 0 ((— log §)2) for v e ̂ V (S).

One glance at the numerator in question shows that it can be estimated
by 0((- log8) 3 ) if ye^V(S) and [|Y||,^1. This yields the desired
estimate (2.1.3).

Now we come to the last step in the proof of our limit formula, this
is the estimation of the volume of ^V (S). Actually we will prove that
there are constant Mi ̂  0 and T] >> 0 such that

(2.1.6) f cog == 0 (^. (— log (^0.
^WO)
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Once this is proved, then our limit formula follows easily from our previous
estimate (2.1.1).

To any point v € V we may associate a set TI (v} of simple roots, and a
class [Qje2^) such that

(i) ^ev^(^^);
(ii) If ue V;? (CQ, £TQ), then T i (p )c^ .

It follows easily from theorem 1.3.2 that this can be done. Now we
introduce the sets

V^CQ, ^o) == { v | peV^ (CQ, ^o) and TT (i;) == TT }.

We have an alternative description of these sets

v.01 (CQ, ̂ ) = v.01 (CQ, ̂ ) -( \J VS?:1 (CQ, ̂ )\.
\ [Q']e^ /\ ITT' |< |TI | /

This shows that V^ (CQ, ̂  is closed in V^ (CQ,^). It is clear that V
is the disjoint union of the sets V -̂?1 (c^ ^o). Therefore it suffices to
prove (2.1.6) on the pieces

^V(a)nVi?1 (cc,^).

Let us simplify the notations. We put

VQ = ̂ w (CQ, ^o) and VQ (^ = ^V^01 n (CQ, ^o).

Let
FQ: VQ-^A(CQ)X^

be the natural projection from Vi? (CQ, ^0) to A (co) X ^Q restricted to VQ.

LEMMA 2.1.7. — A fiber of FQ is either empty or it is equal to the corres-
ponding fiber of the projection

V^(CQ,^Q)^A(CQ)X^Q.

The function h restricted to VQ is constant on the fibers of FQ. If U == Fn (V^)
and h === A o FQ, (ACM A : U -^ R 15 a C0''-function on U, ^. c. ^ 15 <Ae
restriction of a C^-function defined in an open neighbourhood of U.



A GAUSS-BONNET FORMULA 441

Proof. — The first assertion is obviously a consequence of theorem 1.3.2
(iv). To prove the second assertion let us write as in the proof of
theorem 1.3.3,

h(u)=1[^(u),

where

M^-n^)^
aell

The function h^ is by construction constant on the fibers of the projection

V^^^-^A^Jx^

and since we know iiC^v these fibers contain the fibers of FQ.
The last assertion follows from the simple observation that we can

find an open neighbourhood V^VQ such that for the map

FQ: VS-.A(CQ)X.%

the first two assertions of the present lemma remain true. The existence
of such a set V^ follows from the fact that the functions

^: V^^,^)-^^,!!

are compactly supported.

At this point it seems to be reasonable to give a rough idea of what
follows. Let us put U (S) = FQ (Vg (§)). Then we shall see that

/ "8=/^v,.^) ^mo
^ = = 9 ^ ,

^(5) ^U(o)

where ^ is the volume element on U (S) (this will be specified later),
and where g (u) is the volume of the fiber Fo1 (u). The point of the
whole story is that these fibers " shrink 9 ? very rapidly if S tends to zero
(Lemma 2.1.8). The reason for this " shrinking of the fibers 5? is that
their volume is essentially equal to the number p (u) == p (y, Q) and we
will see that this tends to zero as fast as 8^.

The next step consists in the proof of the formula

/ ^ = f g ̂
^,(0) ^U^)

Ann. Sc. Norm., (4), IV. — FASC. 3. 56
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For this purpose I have to recall the infinitesimal properties of the map

TO x ^Q : X -^ A x XM

which have been studied in 1.2. For a point xG X we gave an orthogonal
decomposition of the tangent space

Tx^.=T^©T;t,©T?i,,

and this decomposition is invariant under the action of Q^. If
F Q X ^ Q {x) = (a, x), then we get from the definition of an induced bundle

Tt,eT|^-^T^©T^,

where T^a (resp. (TM,^) is the tangent space of A (resp. Xjn) in the point a
(resp. x). The restriction of the metric on Tx^ to T^ O) T^ yields
a well defined metric on T^, © T .̂. This metric is well defined because
the metric on the tangent bundle Tv is invariant under the action of 0 .

0 A x- -a

Therefore we have constructed a riemannian metric on AxXjn which is
invariant under the action of Q^, and which is ,, nicely adapted ? ) to the
metric on X.

Let us choose an open neighbourhood V^ of VQ in V^ (eg, Qo) such
that the assertions of lemma 2.1.7 are still true for the extended map
FQ : V^ A (c^) X ^Q. Let us denote FQ (V$) = U* and let V^ (S)
[resp. U* (§)] be the hypersurfaces defined by h {u) = S [resp. h (u) = 8]
in V^ (resp. U*). Let co^ be the volume element on U* (S) which is defined
by the metric we have constructed above. From the decomposition of
the tangent bundle of V^ which is induced by the decomposition of Tx
we obtain

^ = ̂  A FS (c^-),

where CDy is the volume element on the fibers. This implies the formula
we wanted to prove.

LEMMA 2.1.8. — There exist constants C ̂  0 and TJ > 0 such that

r o^o ̂  c ̂  r o^t.
^VG) -'U(o)

Proof. — Let us consider a point u € U (8) and a point ^ ^ V Q (8). Let
t/€Y^ be a point in the preimage of y. Then the natural map

y R (Q), (1)/R (Q), (1) n r ̂  F^ (u)
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is an isometry [comp. diagram (1.2.10) and the considerations following
it]. Let dy q be the measure on R (Q)^ (1) which is obtained from the
metric dy s restricted to R (Q)^ (1). Then we have

voi (F^> (u)) = k [ d , q,
J\\

where W == R (Q)^ (1)/R (Q), (1) OF. and where k is a constant : it is
the volume of the compact torus K j H R ( Q ) ^ . The integral on right
hand side is equal to

vol(H,(l)/rH)pO/,Q),

where H = R (Q)/R. (Q), and 1̂  is the image of F U R (QL in H,. The
first factor is a constant, and therefore the lemma is proved if we have
shown p (y, Q) == 0 (S"^) with T) > 0. To see this we express the func-
tion p (y, Q) = p {u) in terms of the functions n^ [u) on Vi?3 (CQ, ^o).
We have multiplicative relation

P(p)=}[^(u)'^
aen

where the exponents riy. are strictly positive (the function p corresponds
to the sum of the positive roots of Q).

Let P C Q be a minimal parabolic subgroup which is reduced with
respect to y. If we express the numbers pa (?/? P) in terms of the numbers
Hoc, {x, P) we get

Pa(y,P)=J7npO/,P)^,
Pen

where the Oa,p are positive integers. Then we get

h W -n^ ̂ a(y) = nna (^ p))a(v)•
aell aeH

The functions Xa are positive and bounded. The numbers Ha (y? P) for
a ell — 7i are bounded away from zero and infinity, since ^eV^ (CQ,HQ).
If we take into account (1.3.1.2) we see that p {y, Q) == 0 (S71) is satisfied
if we choose T] > 0 such that

ri ^a (u) < Ha.

We have seen that for proof of (2.1.6) it suffices to show

r ^=o((-iog^).c*)

^(O)^Vl<j}
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Before I prove this I have to add some remarks on our function

VQi\^ - \
U———^R

Let us consider the function

A Q : V^(CQ,^Q)-^R

which is defined as follows '

w== n hv^
[QvieS^
l ^ l ^JTT i

where
h.(u)=f[p.(uy^.

a en

The restrictions of h^ and A to VQ coincide. Outside of VQ these two
functions may be different, since the product defining h^ is only a part
of the product defining h. We have neglected the factors

n )̂'̂
aell

where [Q^G^ and ]| TI' | < j Ti [. It is clear that the function h^ is cons-
tant on the fibers of the projection map

V^Q^Q)-^A(CQ)X^

(see proof of lemma 2.1.7) and therefore we obtain an extension of h

h : U————^R
1
^

/IQ: A(CQ)X^Q——>B.

We denote / == log (h) and /Q == log (^g). Now let us consider a point
(a, u) = = ( . . . , a^, . . ., y) € A (eg) X ^Q. We assume that the coordi-
nate a^ is very small. Then I claim

/ ^Q ^0^.jf , -^u
^tao (a,v)

and if (a, u) € U,
,/ ^/Q ^ r ̂  o^o^- ^t, > u,

^ao (a,u)
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where C is a constant not depending on (a, u) € U provided a^ is small
enough. To see this we go back into the proof of theorem 1.3.3. There

t
we have written f =^.f^ and we have seen

V==l

Ha.(fv)|.=<a^. .^0.ut'^Q \a,v)

The sum defining /Q is a part of the sum defining/, and this proves the
first statement. The second statement has already been stated in the
proof of theorem 1.3.3.

For the estimation of the volume we divide the sets U and U (S) into
pieces

Ua, = { u e U | u == ( . . . , aa, ..., v\ a^ ̂  fla for all a e TT j,
Ua^)=U(^)nU.

We put
Ao^ = K. . ., «a, . . .)ae7r ffa€(R)* L

( a^ao )

i. e. we drop the ao-th coordinate. There is an obvious diagram

Uao—————^Aa,(CQ)X^Q

t
U

?ao : Uao (3) ——> A^ (CQ) X ^Q

I claim that 9ao ls injective provided S > 0 is small. Otherwise we would
have points (a, u), (a', y)€Ua,(8) such that

and
dy, = a'a for all a 7^ ao

f(a, y) = f (a ' , v) == log ^

Because § is very small at leats one of the coordinates dy. (resp. a'^) is very
small. From the definition of Ua, it follows that a^ (resp. a!^) must be
very small. We know that the derivative of /* with respect to the ao-th
variable is strictly positive in (a, v) and (a', u). The derivative of the
extended function /g is positive on the/path

Z-^(...,«1, . . . , y ) (O^^l)

which joins these two points. Then we necessarily have {a, u) = (a', u).
Now we identify V^ (S) w^th its image <y^ (U^ (S)) ^ U^ (8), and we

compare the volume element co^ with the volume element co^* on U^ (8).
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The vector field t^ ..- on A is invariant under translations, and there-
0

fore of constant length. We have seen that for points (a, u) € Ua, (S)

^-^fk.)^C>0.
"^o

Therefore we can find a constant C' such that

l̂ c'lldf-ll.

We have already seen in the beginning of this section that

||rf/1L-.)=0(-logcO.

Now there exists a constant ^ > 0 such that (a, v) € U, and h {a, u) === S
imply that Oa ̂  S^. This follows immediately from lemma 2.1.5.
This yields

r ^r^ voi (^y f ^p.. r ̂  = o«- iog 3)'7t ' -1)
*/U* (§) \^ ^ J — /

^"0

and this implies the limit formula (**).

2.2. EXPLICIT CALCULATIONS FOR CHEVALLEY GROUPS. — Let F be
an algebraic number field, the ring of integers of F will be denoted by ®.
We consider a simple, simply connected Chevalley scheme G/© and we
denote by Fo the group of its integral points. Again we denote the group
of its real points G (L (g) oR) by G^ and the variety of maximal compact
subgroups of G^ by X. Let rcFo be a subgroup of finite index operating
freely on X. Then it follows from 2.1

f ^x=x(r) .
^X/L

We now put j (To) = [To : F]-1 j (To) and get

f ^x=x( ro ) ,^x/Fo

I want to give an explicit expression for this integral. For this purpose
we may assume that F is totally real, otherwise the form (Ox ls identically
zero and we only get ^ (To) = 0. Let us take a left invariant differential
form GO on G/® of highest degree whose reduction mod p is not zero for
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all finite primes p. This form yields a measure on the group G (A) of
adeles (comp. [12])

Ct/A=^-['^.

V

Here p is running over the set of all primes and coy is the measure on G (Kp)
induced by co. The Tamagawa measure on G (A) is defined by

dimG

^A == | ^F 2 "A,

where dy is the discriminant of our field F. In [7] Langlands has shown

/ c^=l .
^G(A)/G(F)^G(

The strong approximation theorem for simply connected split groups
yields

G(A)/G(F)=Gjrox]~lG((^)
p finite

and it follows from [12] and [13]
r

1 = [ ^ == f c., TT vol^ (G (C^)) = f o), [J Sp (m,)-1.
^(A)/G(F) ^Goo/Po ^^ ^Goo/ro -^,

Here ^ is the Dedekind ^-function of F, and the numbers mi are the
degrees of the invariant polynomials of G/F (comp. [3], chap. V, § 5-6).

Let us denote by fl/® the Lie algebra of the scheme G/®, and by g (®)
we denote the algebra of its points in ®. Then fl (©) is a lattice in
jg^ -= g (®) (g) R. There exists a volume element cT^ on g^ which to
corresponds to the volume element oo^ on G^ and by definition of the
Tamagawa measure we have

vol., (U8 W) = 1.

Let $o/Z be the Lie algebra of the corresponding Chevalley scheme over Z.
Let (So be the measure on g (R) such that

vol^ (90 (R)/9n (Z)) - 1.

We have ^ = flo (R) 0 zL, and fl (®) = go (Z) (g) z®. The measure <5o
induces a measure (5^ on fl^ and it is well known from number theory
that we have

dimG

vol~,(9,/8(®))=|dF| 2 .
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We are going to compare the measure o3^ on $^ with the measure (S/^ which
is defined by means of the Killing form. This will be done by doing this
first on go (R). Then we observe that the measure defined by the Killing
form behaves nicely under base extensions.

Let A be the system of roots of go. Let us choose split Cartan algebra
l)oC$o. We may find a set of root vectors <?a€fio (Z), such that

(1) [e^ e^\ == r^^e^ with ra ,peN;
(2) [e^ e_a] == ^a with a (Aa) = 2;
(3) The elements hy, where a is running over the set II of simple roots,

and the element e^ where a^A form a basis of flo (Z).

If we denote by ( 5 ) the Killing form on go we get for the volume
of So (R)/$o (Z) with respect to <So, /c

vol^ ^ (go (R)/3o (Z)) = v/det (((ha, /?3))a, P € n) ^~|' (^, e-a) == CA.
a e A+

Then it is clear that we have
dimG

^oo == I ^F I 2 •CA71.^.

This together with our previous formula yields
r dimG

(2.2.1) f ^==Y}^(m^C^\d^\~.
^G./ro -^

Now we have to compare this integral with the integral

i c^x.
X/FO

Let K be a maximal compact subgroup of G^. We assume that K is
of maximal rank, i. e. there is a maximal torus TcK having rank equal
to the rank of G . Otherwise the form co^ is zero and we only get
x (ro) = o.

We identify X = K\G and put Y = T\G.
Let l)CJfl^ be the Lie algebra of T, then we have

9 . = b © f © €a\==l)C^
\aeA,t- ;

where C£a is a two dimensional real vector space corresponding to the
roots a, — a and where A^ is disjoint union of n = [F : Q] copies of the
set of positive roots of G/®. The Killing form restricted to (Ka is posi-



A GAUSS-BONNET FORMULA 449

tive definite if a is not a root of K and is negative definitive if a is root
of K. On the space (£a? where a is a root of K we replace the Killing
form by its negative and the sum of these forms on the ®a yields a posi-
tive definite form B on (£ which is invariant under the operation of ad (T).
We identify the space ® with the tangent space at Y in the point T e.
Then B yields a positive definite G^-invariant metric on Y. Let us denote
by coy the corresponding Euler-Poincare form on Y. Then we have

(2.2.2) f ^==^(T\K)f c.x=%(T\K)x(ro).
^Y/FO ^x/Fo

Now we transform the integral

^ ^
-AwFo

into an integral over Y/Fo. For this purpose we consider the Lie algebra
Poo ® ^^(L 0 ^- These algebras are direct sums of n = [F : Q] copies
of t ) o ( C ) C f l o ( C ) , i .e.

l )o(C)©...©l)o(C)=l)eRC!,
n n

9o(C)©. . .©9o(C)=^®RC!

The basis { h^ }a<=n ^ t)o (Z) yields a basis of t)o (C) ©. . .© t)o (C) if we
repeat it n-times. Now the elements 2 TI \/— 1 h^ are contained in t)
and the kernel of the map

exp : 1} -> T

is equal to the lattice generated by these elements. If we consider on T
the volume element oo .̂ defined by means of the Killing form the previous
considerations show

fc4 = (2 7:)- (^det^ha^^a^en))'
»/T

and we get

(2.2.3) [ ^ = (2 ̂ rn (y/det (((Aa, Ap))a, ̂ n))' f ^,
^Goo/ro ^Y/ro

where 00^ is the volume element defined by the metric on Y. Our pro-
blem is now reduced to the comparaison of ̂  and the Euler-Poincare
form (OY- The form (Oy is calculated from a connection on Y. Usually
one take the connection without torsion, but here we take the canonical
connection an Y as defined ([6], vol. II, p. 192).

Ann. EC. Norm., (4), IV. — FASC. 3. 57
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The curvature tensor of the canonical connection at the point T e € Y
is given by

R (U, V) W == - [[U, V]^, W]]

([6], chap. X, Th. 2.6).

In each of the vectorspaces €a we choose an orthonormal basis Ua,
Va with respect to the metric B. It is obvious from the definition
of R (U, V) that the endomorphism R (U, V) leaves the subspaces €a
invariant. Moreover one checks easily that

(R (U, V) Ua, Ua)^ = 0,

(R (U, V) Va, Va)^ = 0,

With respect to the basis formed by the Ua, Va the curvature tensor looks
as follows

/ 0 (R(U,V)Ua,Va)^ n
R ( U , V ) = ( (R(U,V)Va,Ua)^ 0

0

Now the map
(U, V) -> (R (U, V) Ua)^

is a skew symmetric bilinear map form € x ® to R and so it may consi-
v v

dered as an element Ta€® A ®. It we consider € (g) C == C^a + Ce_a
and express the elements Ua, Va in terms of the e^ e_^ an easy calcu-
lation shows

^-^^^(-^-(^UpAVp,

where £ (a) = 1 if a is a root of K and £ (a) == 0 if a is not a root of K.
Now the form coy in the point T eh given by (comp. [6], chap. XII, Th. 5.1),

(-^'^A^_}_
2^7^

where d' = ̂  dim Y and this is the number of elements in A^.
A n
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The number of roots a with £ (a) = 4- 1 is equal to the number rip

of positive roots of K. We put a = ̂  dim X = d' — TI], and get

—{-l)•^/^{^^'wvf^)
^-'^(^^(sip^^A0-^-)

and y is running over the set of permutations of the set A^.

The expression
^ lj[a(^(a))

? aeA^-

has been calculated by Steinberg in a letter to Tits. This letter is copied
(up to notation) in the appendix with the kind permission of Steinberg.
His result is

/ r \n

2 U^^)-lf[m.\\,
y aeA^ \ ;=i /

where the mi are the degrees of the invariant polynomials of G/®. The
set A^ is the disjoint union of n copies of the set A of simple roots of G/©,
we have d' = nd, where d is the number of positive roots of G/®. We get

"^(-D-^^n^dn-'yc^"-^"}
The measure on Y defined by the metric is

c4 = A Ua A Va.
dfeA^

We obtain the formula

(2.2.4) ,,=(-iy.'^];J-^ ( r , n

(2.2.4) ,,=(-iy.'^JJ-^^ n^-'))^
aeA^ /=1 /ae^f ' \ /=1

Combining (2 .2 .2) and (2.2.4) we obtain

( /• \ n% (^») x (T\K) =r ^= <-1)' 2^ n (d̂ -" n <-<')) f^ ̂x/ i o <xeA+ ;=i / ' 0«e^ \ ?=i
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Now formula (2.2.3) yields for this last expression

(-l)••(2y^((d^)(ri<"•.•))".
aeAf / / \ ,=i /

Using (2.2.1) we get

1 /—— V ^G r=(~lr(27^)^^)^.^7n^!) 1 ^ 1 2 n^^-
\ i=l / i=i

Let Go/Z be the Chevalley scheme of the same type as G/©. then we have
rG^n^w-

i=i

Let be Ko a maximal compact subgroup of Go (R) then
/•

K=JjK«.
;=1

We put a = ^ dim Ko\Go (R) then a' = a.n. If TcK is a maximal
compact torus, then

r

T\K =JjT,\Ko
i==i

and for the Euler-Poincare characteristic we get

X(T\K)=(^(To\K»))".

It is well known (Theorem of Hopf-Samelson) that

X (To\K») = | WK. |,

where W^ is the Weyl group of Ko. This gives the formula

/ '' \" dimfi(n7" '1)!^2 .x (r.) = (-1)- \^^,î i; nsr (m-)-
1=1

We are going to use the functional equation of the Dedekind C-function
to bring this expression into a much prettier form. The functional equa-
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tion tells us (comp. [14], chap. VII, th. 3)

s^) == ̂ (l-n.,)o^(^)-'l^(l^y..l("l(-0.|^rmi.

The following relations are well known ([3], chap. V, p. 122)

r

^mi==d+r,
i==l

r

JJm,.=|Wc|,
i=l

where W^ is the Weyl group of G. Using these facts a simple calculation
yields

x^^^^n^^-^-)-;=i

APPENDIX.

In the last section I used the formula
r

Y[ a(/^(a)) ^^ Îm,!.
aeA+ z=:i

This formula has been proved by Steinberg in a letter to Tits. Steinberg
considers the real vector space V generated by the roots and evaluates

h "s n (a? ^ (^
® a e A+

where ( , ) denotes on inner product on V which is invariant under
the operation of the Weyl group W. Now I am going to copy Steinberg's
argument with his kind permission :

The given inner product on V extends to one the symmetric algebra
of V by the formula

(a, . . . a,, pi ... p,) = ^ (a,, P,-.,) a,, (3, €V.
cp permutations
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Thus if P= J^j[ a, the product of positive roots, then h = (P, P).
aeA+

We may evaluate as follows. Let d = | A-^ [, == ^ V a. From WeyPs
aeA+

identity (of formal power series) )comp. [3], chap. VI, n° 3.3)

^ . (w) e-' == f[ [e2— e ~ 2 ) (e (w) = sgn w)
»' e w a e A+

it follows that (compare terms of degree d}

^(w)(w^==(dl)P.

Thus
1 /v" XK^,TT ^A-(P,P)=^^£^)(n;p)^[[

\ w € w a e A-4

.rf== fT\ I ̂  ' ̂  P^5 I I a ^ because | I a is skew
\ aeA+ / aeA+

=^|W|.d!(p,a)

- i w i Tf (a' ^ W 2 ̂ 'ai)
- I W I 11 -2— 11 (a, a) '

a e A-+- a e A+

Now for any root a, 2 (p, a)/(a, a) = At a (the height of a) and it is know
that if m i ^ m a ^ . - . ^ m r are the degrees of the basic invariants the
number of roots of height ] minus the number of roots of height j + 1
is just the number of m'v s equal to j + 1.

Thus

n^-ric"-').
a e A-r- i = i

/•

Since also | W [ ==^^mt the earlier expression becomes
!'=1 A=2~rf^ /"•!^I ^> a ) -

z=i aeA+

This is Steinberg's argument. If we identify V with its dual V and con-
sider the Ap as elements of V, we have

Ap === ap P
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and get

2 iia ̂ (a))==^ n (a9 ? ̂  ̂ = ̂ f naa)
• qp aeA+ (p aeA+ \aeA+ /

/'

=(^aayl^IIm-!^a</^a)•
\aeA+ / i=i aeA-+-

Now a (/^) = 2 by definition. This yields the desired formula.
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