@article{ASCFPA_1989__93_8_105_0, author = {Nguyen Van Hung and Dinh, Quang Luu}, title = {Relations between laws of large numbers and asymptotic martingales in {Banach} spaces}, journal = {Annales scientifiques de l'Universit\'e de Clermont-Ferrand 2. S\'erie Probabilit\'es et applications}, pages = {105--118}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {93}, number = {8}, year = {1989}, mrnumber = {1052234}, zbl = {0698.60034}, language = {en}, url = {http://www.numdam.org/item/ASCFPA_1989__93_8_105_0/} }
TY - JOUR AU - Nguyen Van Hung AU - Dinh, Quang Luu TI - Relations between laws of large numbers and asymptotic martingales in Banach spaces JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications PY - 1989 SP - 105 EP - 118 VL - 93 IS - 8 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFPA_1989__93_8_105_0/ LA - en ID - ASCFPA_1989__93_8_105_0 ER -
%0 Journal Article %A Nguyen Van Hung %A Dinh, Quang Luu %T Relations between laws of large numbers and asymptotic martingales in Banach spaces %J Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications %D 1989 %P 105-118 %V 93 %N 8 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFPA_1989__93_8_105_0/ %G en %F ASCFPA_1989__93_8_105_0
Nguyen Van Hung; Dinh, Quang Luu. Relations between laws of large numbers and asymptotic martingales in Banach spaces. Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications, Tome 93 (1989) no. 8, pp. 105-118. http://www.numdam.org/item/ASCFPA_1989__93_8_105_0/
[1] Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probability 9(1981), p.157-161. | MR | Zbl
,[2] Espaces p-lisses et q-convexes. Inegalites de Burkholder, Seminaire Maurcy-Schwartz (1975), exp XV. | Numdam | MR | Zbl
,[3] The law of large numbers for identically distributed Banach space valued random variables, Teorya Veroyatnostcy i Pim, 26 (1981), p.584-590. | MR | Zbl
and ,[4] A law of large numbers for identically distributed martingale differences, Ann. Probability 9(1981), p.405-412. | MR | Zbl
,[5] Amarts and set function processes Lecture Notes in Math. 1042, Springer-Verlag 1983. | MR | Zbl
and ,[6] On semiamarts, amarts and processes with finite value, Advances in Prob. 4 (1978), p. 197-266. | MR
and ,[7] On the class of all processes having a Riesz decomposition, Acta Math. Vietnam. T.6, n.1, (1981), p. 101-107. | MR | Zbl
,[8] Representation theorems for multivalued (regular) L1-amarts, Math. Scand. 58 (1986), p. 5-22. | MR | Zbl
,[9] Discrete parameter martingales, North-Holland Publ. Co. 1975. | MR | Zbl
,[10] Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), p. 226-250. | MR | Zbl
,[11] Geometry and probability in Banach spaces, Lecture Notes in Math. 852, Springer-Verlag 1981. | MR | Zbl
,[12] On the Lr-convergence, r > 0, for n-1/r Sn in Banach spaces, Bull. Acad. Polon. Sci. 25 (1977), p.1011-1013. | MR | Zbl
,[13] Some structure results for martingales in the limit and pramarts, Ann. Probability 13 (1985), p. 1192-1203. | MR | Zbl
,[14] Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Math. 672, Springer-Verlag 1978. | MR | Zbl
,[15] Some results on the convergence of weighted sums of random elements in Banach spaces, Studia Math., 86 (1987), p.131-153. | MR | Zbl
and ,[16] Asymptotic behaviour of martingales in Banach spaces, Lecture Notes in Math. 526 (1976), 273-284. | MR | Zbl
,[17] -----, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. and Math. Statistics 1 (1980), 117-131. | MR | Zbl
[18] -----, Asymptotic behaviour of martingales in Banach spaces II, Lecture Notes in Math. 939 (1982), 216-225. | MR | Zbl