@article{ASCFPA_1988__92_7_83_0, author = {Withers, C. S.}, title = {Asymptotic covariances of empirical processes}, journal = {Annales scientifiques de l'Universit\'e de Clermont-Ferrand 2. S\'erie Probabilit\'es et applications}, pages = {83--98}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {92}, number = {7}, year = {1988}, mrnumber = {974876}, zbl = {0662.62022}, language = {en}, url = {http://www.numdam.org/item/ASCFPA_1988__92_7_83_0/} }
TY - JOUR AU - Withers, C. S. TI - Asymptotic covariances of empirical processes JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications PY - 1988 SP - 83 EP - 98 VL - 92 IS - 7 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFPA_1988__92_7_83_0/ LA - en ID - ASCFPA_1988__92_7_83_0 ER -
%0 Journal Article %A Withers, C. S. %T Asymptotic covariances of empirical processes %J Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications %D 1988 %P 83-98 %V 92 %N 7 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFPA_1988__92_7_83_0/ %G en %F ASCFPA_1988__92_7_83_0
Withers, C. S. Asymptotic covariances of empirical processes. Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications, Tome 92 (1988) no. 7, pp. 83-98. http://www.numdam.org/item/ASCFPA_1988__92_7_83_0/
[1] Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).[2] Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen. | MR | Zbl
and (1971).[3] Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3, 1101-1108. | MR | Zbl
(1975).[4] - (1976). On the convergence of empirical processes of mixing variables. 18, No. 1. Austral. Jnl. Statist. | MR | Zbl
[5] -. Convergence of rank processes of mixing random variables on R. Submitted to Austral. Jnl. Statist.
[6] -. Convergence of linear rank statistics of mixing variables. Submitted.