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On some connections between Boolean algebras
and Heyting algebras.

par

Dimitrii. E. Pal'chunov and Alain Touraille

Abstract.

We present a finitely axiomatizable class of Heyting algebras (with
identity (-x) + (~-x) = 1) such that this class and the class of Boolean algebras with n
distinguished ideals are mutually first order definable.

As a corollary some results on countably categoricity, finitely axiomatizibility,

decidability, prime and countably saturated models for Heyting algebras are obtained.

I-  Constructions of Boolean algebras with particular subsets from Heyting

algebras, and converse problems of representation.

For each element x of an Heyting algebra H = (H, +,.,—,0,1) , the element
x— 0 isdenoted by -x ; x iscalleddense if —x = 0,and regularif - -x = x.

It is well - known (see for example [14]) that one obtains a Boolean algebra A (H)
by endowing the set of all regular elements of H with the constants 0 and 1, and with the
operations +* , ., -, where +* is definedby x +* y = —-(x + y). Similarly the set

V(H) of all dense elements of H is an implicative lattice and a filter in H.

Notation.
Let H be an Heyting algebra. Forany a€ A(H) and b€ V(H)put :
Va = {c€ V(H): a<e¢} and
Py, = {c € ACH) : ¢ =< b}.
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Itis shownin [ 7] that each V, is a filter in H, that each P}, is decreasing (i.e.
x<yandy € P, imply x € Py), and that H satisfies the identity (-x) + (--x) =1
if an only if Py, is anidealof A (H)for each b € V(H) (it is well - known that this
identity is equivalent to the identity (-x) + (-y) = == ((-x) + (-y))).

Now let A be a Boolean algebraand {V,}, . , be a setof filters in an implicative
lattice V. Put L = ({(a,b): a € A, b €V}/ ~; </ ~) where (a;,b;) = (ag,bg)
if a,<a, and b, > b, € Va, ; (ay,by) ~ (ag,b2) if (a;,b;) < (az,by) and
(ag,bg ) = (a1,by).

Itisprovedin [ 7] that L isa lower semilattice.
The following question may then be interesting : when L isan Heyting algebra ?

A necessary condition for A and {V, }, ¢ A togenerate an Heyting algebra L was

presented in the theorem 1 of [7].

However, S.I. Mardaev have given an example showing that this condition is not

sufficient.

So, the theorem 1 of [ 7} saying that the presented condition is necessury and

sufficient, an its corollary 2, turned out to be wrong.

Call P-algebra each Boolean algebra with distinguished decreasing subsets. As a
consequence of the previous situation the following lemma, based on this corollary 2, has

lost a proof :

Lemma [7].
Let us consider a finite implicative lattice V = ({by,..., by}, =) anda P-algebra
(A, Py, ..., Py, ). There exists an Heyting algebra H such that V =V (H) and
(A, Py, ... ,Pp) = (ACH), Py, ..., Py ) ifandonlyif :
*) P.NPy=P.qg and 1€P, ®e =1 forany c,d,e € V.
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It is obvious that the condition (*) is necessary for existing such an Heyting algebra

H. Soitis natural to consider the following problems :

Problem 1. Do every implicative lattice V and P-algebra (A, Py)yp ¢ v verifying
(*) canbe representedas V = V(H) and (A,Py)p ¢ v = (A(H),Py)p ¢ v for some
Heyting algebra H ?

A P-algebra (A,P;);j ¢ g will be called I-algebra ifevery P; isan ideal.‘

Problem 1; isthe problem 1 for I-algebra (A, Py)y ¢ v ; problem 1¢ is the problem 1
for P -algebra (A,Py ) ¢ v withfinite V,and problem 1 ¢ isthe problem 1 for I-
algebra (A ,Py)p ¢ v withfinite V.

Problem 2. Does every l-algebra (A,I; ..., I,) can be representedby A = A (1)
andlj = Pyj for some Heyting algebra H with finiteset V(H) and by, ...,b, € V(H) ?

Problem 3. Does every l-algebra (A,1lj,...1,) can be representedas A = A(H)
and I = P,, for some Heytingalgebra H and by, ...,b, € V(H)?

Problem 4. Does every 1-algebra (A, l;,...,1,) canbe representedas A = A(H)
and Ij = Py for some Heyting algebra H and some definable by,..,b, € V(H) (it
means that there exist formulas ¢y (x), ..., ¢y ( x) of the Heyting algebra first order
languagesuchthat {c € H: H E ¢i(e)} = {b;})?

Problems 2',3' and 4' are problems 2,3 and 4 for Heyting algebra H
satisfying the identity (-x) + (--x) = 1.

Interest to these problems is connected with the following result :

Theorem [ 7].
Let H and H' be Heyting algebras.
Then H = H"' ifand only if there exists an isomorphism ¢ :V (H) — V(H"') such
that (A(H),Pp)p e vinr = (ACH"), Py e vin
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A special interest to problems 1,1 and 2 is connected with the following facts :

Theorem [7] .
Let H and H' be Heyting algebras and V (H ) be finite. Then H = H' ifand only
if there exists an isomorphism
¢:V(H) - V(H")
suchthat  (A(H),Pp)p e viny = (ACH"),Pyby)u e van.

Corollary [7].
Let H be an Heyting algebra with V (H) finite.
The theory of H is countably categorical (finitely axiomatizable, decidable) if and
only if the theoryof (A(H),Pp)p e viH) isthesame.

Interest to problems 1i,1fi , 2', 3' and 4' is also connected with results on
different model theoretical properties of Boolean algebras with distinguished ideals (see

all bibliographic references except | 14 |.

IT - Some negative answers

Proposition 1.
Let V be an implicative semilattice, (A, Py ) ¢ v be a P-algebra verifying the
condition (*) and such that there exist bgwith Py, maximal for inclusion
in{Pp}p=1,and a € A with a,-a¢€Pyg. Then there does not exist an Heyting
algebra H with V=V(H) and (A,Py)pev = (A(H),PyH))bev.

Proof . Suppose that such an H exists.
Then a — bg = bg € V(H) gives Py, C Pypy and a € Py,
gives Py py =Py ; as moreover -a = a —> 0 < a = by implies

-a € P, ,, py , weobtain a contradiction with the maximality of Py, .
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Corollary 1 .

Problems 1,1i,1f and 1if havea negative solution.

For each element a of a Boolean algebra, let (a) be the principal ideal generated by a.

Proposition 2.
Let H bean Heyting algebra with A (H) atomless. If thereexists d € A(H) with
d =0 and (d) N Pg=(0) forsome f € V(H), then V(H) isinfinite.

Proof . We can take an infinite sequence of regular elements dy < dy < .. <d.
Suppose f+d; = + dj4+3 forone i: then
di+g . (<dj) = (f+d;).(-dj) =f gives dijt+i.(-d;) € (d) N
Pr = (0),sothat dj4+; < ~-dj = d; which iscontradictory.

Thus the f + d;'s form a strictly increasing sequence of elements of V(H).

Corollary 2 .

Problems 2 and 2' have a negative solution.

III - A finitely axiomatizable class of Heyting algebras.

If an Heyting algebra H contains a least dense element a;, V(H) is an Heyting
algebra for the operations +,.,—>, and the constants a; and 1. We then put V1 (H)
= V(H), VZ(H) = V(V1(H)), and continue the process by putting Vi+1(H) =
V (Vi(H)) aslongas Vi(H) contains a least dense element q; + 1 .

Notice that a, + 1 = 1 for a number n ifand only if Vn (H) is a Boolean algebra.

Definition .
For a number n different from 0, let C, be the class of all Heyting algebras
verifying :
1) (-x)+(-=-x) =1,
2) Vi(H) hasaleastelement a; for each i € {1,..,n},and V"(H) isa

Boolean algebra ,
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3) Foreach x € [a;,a;4+1] thereexists y € A(H) satisfying x = y.aj4+; + qj
(with i € {0,...,n}, putting ag=0 and ap4+; = 1).

Notice that if a; exists in an Heyting algebra, the condition 3) is satisfiedfor i =0

by taking y = —-x. Itiseasy tosee that :

Remark .

C,, is finitely axiomatizable.

Definition .
Let A = (A,1;,...,1,) beaBoolean algebra A with distinguished ideals I; C lg
c..cl,.
We put (identifying (A /1y) / (Liy1 /L) with A/l )
H(A) = {(ag,a1,...,an) € A X (A/I;) X ... X (A/l,) : ag/l; = a; and
ai/(Li+1/1;) = aj4; V; € {1,...,n-1}},
and we endow this set with the pointwise order (i.e. (ag,...,an) < (bg,...,bn) if

aj=<b; for i€{0,..,n}).

Proposition 3.

H (A) is an Heyting algebra of the class C,,, with

A(H(A) = {(ag,...,an) € H(A) : a; = ap/l; Vi € {1,..,n}},

andfor i € {1,...,n}:

VIH(A) = {(ag,..,an) € H(A) a9 =1, ay = Uy, ...,y = 1/1i_1}

(sothat a; = (1,1/1,...,1/1;_y,0/1;, ... 0/1,)).
Proof. Obviously H (A) isabounded lattice with + and . computed pointwise, such
that for each elements (ag,...a,) and (bg,...,b,) thereexists (¢cy,...cn) = (ag,...,
ap) = (bp,...b, ), defined by

cog= bp+ (-ag) and

¢i = ((bg+ (~ap))/1;) ouaumoins ((by + (~ay)) / (I;/1}))...

(bi_q + (aj  N/(Li/IiZ1)). (b + (-a;)) .
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So H(A) isan Heyting algebra, and for each (ag,...,a,) € H(A) wehave

(ao,...,an) = (_ao"ao“v- ao”z”"’ —aolln), which showsthat H(A)

verifies the identity (-x) + (--x) = 1 and gives the expected description of
A(H(A)and V! (H(A)).

Supposing now tf:at a; exists for i = 1 and takes the value given in the
proposition, we have

(ag,...,an) > a; = (1,1/1y,...,1/1i_1, -aj,-aj/(Lis/03), o, =ai/ Ch, /L,
which gives the existence and valueof a;4+y if i<n, and shows that

V" (H(A)) is a Boolean algebra isomorphicto A/I, if i = n.

Finally eachelement x of [q;,a;4+;] hastheform x=(1,1/1y,...,1/1i_1, ai,
0/1i4+1,...,0/1y) ; taking ap € A with a; = ag/I; and putting

y = (ag,ag/ly,...,a0/1,) weobtain y € A(H(A) with x =y . aj4+1 + aj.

Definition .

For each Heyting algebra H oftheclass C,, put 1;(H) = A(H) N (aj] for
i€{1,.,n) (where(aj] ={x€H:x < q;}), and put A(H) =(A(H),
Iy(H),..,I,(H)).

’l‘heorem 1.

Proof .

a) Let A = (A,l,..,]1,) beaBoolean algebra A with distinguished ideals
L CcloC..Cl,.Then A = A(H(A)).
b) Let H bean Heyting algebraoftheclass C,, . Then H = H(A(H)).

a) From proposition 3 we see that we define an isomorphism
f: A— A(H(A))byputting f(a) = (a,al/l},...,a/l,) foreach a € A.
Moreover foreach i € {1,...,n}:
f(a) € L(H(A)) & f(a) = (1,1/1,...,1/i_y, 0/1;,..,0/1,)

& ac€l; |

b) If a. € H then for each i € {0,...,n} there exists b; € A(H) with
a.aj+) +a; = b; . aj+1 + q; . Notice that if b'; is suitable too, then
bi/L;(H) = b'ij/I;(H) (donotwrite I;(H) when i = 0) : indeed

11
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bi.aj+1 = b'i. aj+1 + aj gives bj.(-b'j).aj+1 = a;j, so that

b; . (=b'i) < aj+1 = a; = a; andthus b;.(-b';) € L;(H) ; as

1 =Db'i+ (-b';) we seethat b;/ I; (H) = (b;.b';)/ I;(H), and obtain
b';i/Ii(H) = (bj.b';) / ;(H) by a similar argument. This allows us to define
&:H - H(A(H)) byputting ¢p(a) = (bg,by / I1(H),...,by/ I, (H)).

Conversely we define ¢y : H(A(H)) - H by putting y(x) = x¢.(x3 + ap)...
(xpn + a,) foreach element x = (xg,x,/[;(H),...,xq/I,(H)) of H(A(H)).

Then by some simple verifications we see that ¢ and y preserve the orders and

that each of them is inverse of the other, which gives the result.

IV. Positive answers

First notice that from any ideals I, , ..., I, of a Boolean algebra, an increasing
sequence (for inclusion) of 2" - 1 ideals can be computed by using Heyting algscbras
operations, such that 1, , ..., 1, are computable from them in a similar wiay. We can thus

apply the results of the previous section to any Boolean algebra with distinguished idcals

ll,...,ln:

Corollary 3.

Problems 3,3',4 and 4' have a positive solution.

Corollary 4.
For any Heyting algebras H ,H' of the class C , :

a) H = H' ifandonlyif A(H)=A(H"Y,

b) H=H"' ifandonlyif A(H)= AH",

c) The theory of H is countubly categorical (finitely axiomatizable, decidable) if and
only if the theoryof A (H) isthesame ,

d) The theory of H has a prime (countably saturatel) model if and only if the theory of

A (H) hasasame model ,
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e) H isprime ( countably saturated) ifandonlyif A (H) isthe same.

The decidability of the theory of Boolean algebras with a sequence of distinguished
ideals is due to Rabin [ 13] ; a description of countably categorical Boolean algebras
with a finite number of distinguished ideals is due to Macintyre and Rosenstein [ 2 ] (see
also [6] and [17]) ; descriptions of finitely axiomatizable such algebras are given in [
81 and [17] ; numbers of theoriesof (A,I)'s according to fixed A's, or decidubility
or undecidability of theories of all (A,1)'s for fixed A's, aregivenin | 1| and [ 1],
descriptions of elementary equivalence of Boolean algebras with dintinguished idcal: are
presentedin [3],[6],[8],[15] and [ 16 ] ; a complete description of decidability of
elementary theories of Boolean algebras with distinguished ideals is obtainedin [ 8] ; a
classification of complete theories using an axiomatization of structures of definable
ideals is given in [ 17 ] ; prime models were studiedin | 5] , [9],[12 |and [ 17 ],
countably saturatedin [5] and [12].

In particular these results imply :

Corollary 5.

1) The theory of the class Cy, is deciduble.

2) For any non-superatomic Boolean algebra A there exists a continuum of Heyting
algebras H with A = A(H), satisfying (-x) + (-=-x) = 1, and having
different theories which :

a) have note a prime model ,
b) have a prime model but no countably saturated model ,

c) have a countably saturated model .

The results of this paper were obtained in a collaboration of the authors during july
1991, when the first author was invited by the University Blaise Pascal of Clermont-
Ferrand. Grateful acknowledgements are due to Professors Guillaume, Maksimova,

Mardoev and Tomasik for interesting discussions.
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