@article{ASCFM_1976__61_14_145_0, author = {Nummelin, E. and Tweedie, R. L.}, title = {Geometric ergodicity for a class of {Markov} chains}, journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques}, pages = {145--154}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {61}, number = {14}, year = {1976}, mrnumber = {467923}, zbl = {0356.60009}, language = {en}, url = {http://www.numdam.org/item/ASCFM_1976__61_14_145_0/} }
TY - JOUR AU - Nummelin, E. AU - Tweedie, R. L. TI - Geometric ergodicity for a class of Markov chains JO - Annales scientifiques de l'Université de Clermont. Mathématiques PY - 1976 SP - 145 EP - 154 VL - 61 IS - 14 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFM_1976__61_14_145_0/ LA - en ID - ASCFM_1976__61_14_145_0 ER -
%0 Journal Article %A Nummelin, E. %A Tweedie, R. L. %T Geometric ergodicity for a class of Markov chains %J Annales scientifiques de l'Université de Clermont. Mathématiques %D 1976 %P 145-154 %V 61 %N 14 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFM_1976__61_14_145_0/ %G en %F ASCFM_1976__61_14_145_0
Nummelin, E.; Tweedie, R. L. Geometric ergodicity for a class of Markov chains. Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 61 (1976) no. 14, pp. 145-154. http://www.numdam.org/item/ASCFM_1976__61_14_145_0/
[1] Markov Chains with Stationary Transition Probabilities. (2nd Ed.) Springer-Verlag, Berlin, 1967. | MR | Zbl
:[2] Unitary dilations of Markov transition operators and the corresponding integral representations for transition-probability matrices, pp. 139-161 in U. Grenander (Ed.), Probability and statistics. Stockholm: Almqvist and Wiksell, 1959. | MR | Zbl
:[3] Geometric ergodicity in a class of denumerable Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1965), 354-373. | MR | Zbl
:[4] A splitting technique for P-recurrent Markov chains, (submitted).
:[5] Geometric ergodicity and R-positivity for general Markov chains. (submitted). | Zbl
and :[6] R-theory for Markov chains on a topological state space II. Z. Wahrscheinlichkeitstheorie verw. Geb. 34 (1976), 269-278. | MR | Zbl
and :[7] Markov Chains. North-Holland, Amsterdam, 1975. | MR | Zbl
:[8] An example of geometric ergodicity in a finite Markov chain. J. Appl. Prob. 9 (1972), 466-469. | MR | Zbl
:[9] R-theory for Markov chains on a general state space I: solidarity properties and R-recurrent chains. Ann. Probability 2 (1974), 840-864. | MR | Zbl
:[10] Criteria for classifying general Markov chains. Adv. Appl. Prob. 8 (1976) (to appear). | MR | Zbl
:[11] Geometric ergodicity in denumerable Markov chains. Quart . J. Math. (Oxford 2nd series) 13 (1962), 7-28. | MR | Zbl
: