@article{ASCFM_1976__61_14_11_0, author = {Dettweiler, E.}, title = {Infinitely divisible measures on the cone of an ordered locally convex vector spaces}, journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques}, pages = {11--17}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {61}, number = {14}, year = {1976}, mrnumber = {461603}, zbl = {0353.60010}, language = {en}, url = {http://www.numdam.org/item/ASCFM_1976__61_14_11_0/} }
TY - JOUR AU - Dettweiler, E. TI - Infinitely divisible measures on the cone of an ordered locally convex vector spaces JO - Annales scientifiques de l'Université de Clermont. Mathématiques PY - 1976 SP - 11 EP - 17 VL - 61 IS - 14 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFM_1976__61_14_11_0/ LA - en ID - ASCFM_1976__61_14_11_0 ER -
%0 Journal Article %A Dettweiler, E. %T Infinitely divisible measures on the cone of an ordered locally convex vector spaces %J Annales scientifiques de l'Université de Clermont. Mathématiques %D 1976 %P 11-17 %V 61 %N 14 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFM_1976__61_14_11_0/ %G en %F ASCFM_1976__61_14_11_0
Dettweiler, E. Infinitely divisible measures on the cone of an ordered locally convex vector spaces. Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 61 (1976) no. 14, pp. 11-17. http://www.numdam.org/item/ASCFM_1976__61_14_11_0/
[1] Grenzwertsätze für Wahrscheinlichkeitsmasze auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 285-311 (1976) | MR | Zbl
:[2] Stabile Masze auf Badrikianschen Räumen. Math. Z. 146, 149-166 (1976) | MR | Zbl
:[3] Lectures on random measures. University of North Carolina at Chapel Hill, Institute of Statistics Mineo Series n° 963 (1974)
:[4] Processus ponctuels. Lectures. Ecole d'été de Saint-Flour (1976) | MR | Zbl
:[5] Topological Vector Spaces. New-York London Macmillan (1966) | MR | Zbl
:[6] Banach Lattices and Positive Operators. Berlin-Heidelberg-New-York, Springer (1974). | MR | Zbl
: