@article{ASCFM_1976__60_13_129_0, author = {Rubin, Matatyahu}, title = {The theory of boolean algebras with a distinguished subalgebra is undecidable}, journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques}, pages = {129--134}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {60}, number = {13}, year = {1976}, mrnumber = {465835}, zbl = {0354.02036}, language = {en}, url = {http://www.numdam.org/item/ASCFM_1976__60_13_129_0/} }
TY - JOUR AU - Rubin, Matatyahu TI - The theory of boolean algebras with a distinguished subalgebra is undecidable JO - Annales scientifiques de l'Université de Clermont. Mathématiques PY - 1976 SP - 129 EP - 134 VL - 60 IS - 13 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFM_1976__60_13_129_0/ LA - en ID - ASCFM_1976__60_13_129_0 ER -
%0 Journal Article %A Rubin, Matatyahu %T The theory of boolean algebras with a distinguished subalgebra is undecidable %J Annales scientifiques de l'Université de Clermont. Mathématiques %D 1976 %P 129-134 %V 60 %N 13 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFM_1976__60_13_129_0/ %G en %F ASCFM_1976__60_13_129_0
Rubin, Matatyahu. The theory of boolean algebras with a distinguished subalgebra is undecidable. Annales scientifiques de l'Université de Clermont. Mathématiques, Actes du séminaire international d'été de logique (Clermont-Ferrand - du 15 au 26 juillet 1975), Tome 60 (1976) no. 13, pp. 129-134. http://www.numdam.org/item/ASCFM_1976__60_13_129_0/
[1] Decidability of relatively complemented distributive lattices and the theory of filters, Algebra i. Logika Sem. 3 (1964), p. 5-12.
,[2] Cylindric algebras and related structures, Proceedings of the Tarski Symposium, 1974, p. 105-121. | MR | Zbl
and ,[3] Cylindric Algebras, North-Holland, 1971. | MR | Zbl
, and ,[4] Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969) 1-35. | MR | Zbl
,[5] Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc. 55 (1949), p. 64.
,[6] Model theory, North-Holland, 1973. | Zbl
and ,