Homogenization of nonconvex unbounded singular integrals
Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 135-193.

We study periodic homogenization by Γ-convergence of integral functionals with integrands W(x,ξ) having no polynomial growth and which are both not necessarily continuous with respect to the space variable and not necessarily convex with respect to the matrix variable. This allows to deal with homogenization of composite hyperelastic materials consisting of two or more periodic components whose the energy densities tend to infinity as the volume of matter tends to zero, i.e., W(x,ξ)= jJ 1 V j (x)H j (ξ) where {V j } jJ is a finite family of open disjoint subsets of N , with |V j |=0 for all jJ and | N jJ V j |=0, and, for each jJ, H j (ξ) as detξ0. In fact, our results apply to integrands of type W(x,ξ)=a(x)H(ξ) when H(ξ) as detξ0 and aL ( N ;[0,[) is 1-periodic and is either continuous almost everywhere or not continuous. When a is not continuous, we obtain a density homogenization formula which is a priori different from the classical one by Braides–Müller. Although applications to hyperelasticity are limited due to the fact that our framework is not consistent with the constraint of noninterpenetration of the matter, our results can be of technical interest to analysis of homogenization of integral functionals.

Publié le :
DOI : 10.5802/ambp.367
Mots-clés : Homogenization, $\Gamma $-convergence, Unbounded integrand, Singular growth, Determinant constraint type, hyperelasticity
Anza Hafsa, Omar 1, 2 ; Clozeau, Nicolas 3 ; Mandallena, Jean-Philippe 1

1 Université de Nîmes Laboratoire MIPA, Site des Carmes Place Gabriel Péri 30021 Nîmes, France
2 LMGC, UMR-CNRS 5508 Place Eugène Bataillon 34095 Montpellier, France
3 École Normale Supérieure de Cachan 61 avenue du président Wilson 94230 Cachan, France
@article{AMBP_2017__24_2_135_0,
     author = {Anza Hafsa, Omar and Clozeau, Nicolas and Mandallena, Jean-Philippe},
     title = {Homogenization of nonconvex unbounded singular integrals},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {135--193},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {2},
     year = {2017},
     doi = {10.5802/ambp.367},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.367/}
}
TY  - JOUR
AU  - Anza Hafsa, Omar
AU  - Clozeau, Nicolas
AU  - Mandallena, Jean-Philippe
TI  - Homogenization of nonconvex unbounded singular integrals
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
SP  - 135
EP  - 193
VL  - 24
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.367/
DO  - 10.5802/ambp.367
LA  - en
ID  - AMBP_2017__24_2_135_0
ER  - 
%0 Journal Article
%A Anza Hafsa, Omar
%A Clozeau, Nicolas
%A Mandallena, Jean-Philippe
%T Homogenization of nonconvex unbounded singular integrals
%J Annales mathématiques Blaise Pascal
%D 2017
%P 135-193
%V 24
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.367/
%R 10.5802/ambp.367
%G en
%F AMBP_2017__24_2_135_0
Anza Hafsa, Omar; Clozeau, Nicolas; Mandallena, Jean-Philippe. Homogenization of nonconvex unbounded singular integrals. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 135-193. doi : 10.5802/ambp.367. http://www.numdam.org/articles/10.5802/ambp.367/

[1] Acerbi, Emilio; Fusco, Nicola Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984) no. 2, pp. 125-145 | DOI | Zbl

[2] Anza Hafsa, Omar; Leghmizi, Mohamed Lamine; Mandallena, Jean-Philippe On a homogenization technique for singular integrals, Asymptotic Anal., Volume 74 (2011) no. 3-4, pp. 123-134 | Zbl

[3] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation of variational problems in two-dimensional nonlinear elasticity, Ann. Mat. Pura Appl., Volume 186 (2007) no. 1, pp. 185-196 | DOI | Zbl

[4] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation theorems in nonlinear elasticity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 1, pp. 135-148 | DOI | Zbl

[5] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation et passage 3D-2D avec contraintes de type déterminant (2009) (https://arxiv.org/abs/0901.3688)

[6] Anza Hafsa, Omar; Mandallena, Jean-Philippe Homogenization of nonconvex integrals with convex growth, J. Math. Pures Appl., Volume 96 (2011) no. 2, pp. 167-189 | DOI | Zbl

[7] Anza Hafsa, Omar; Mandallena, Jean-Philippe Homogenization of unbounded singular integrals in W 1, , Ric. Mat., Volume 61 (2012) no. 2, pp. 185-217 | DOI | Zbl

[8] Anza Hafsa, Omar; Mandallena, Jean-Philippe Γ-limits of functionals determined by their infima, J. Convex Anal., Volume 23 (2016) no. 1, pp. 103-137 | Zbl

[9] Anza Hafsa, Omar; Mandallena, Jean-Philippe Relaxation of nonconvex unbounded intergals with general growth conditions in Cheeger-Sobolev spaces (2016) (à paraître dans Bull. Sci. Math.)

[10] Anza Hafsa, Omar; Mandallena, Jean-Philippe; Zorgati, Hamdi Homogenization of unbounded integrals with quasiconvex growth, Ann. Mat. Pura Appl., Volume 194 (2015) no. 6, pp. 1619-1648 | DOI | Zbl

[11] Ben Belgacem, Hafedh Modélisation de structures minces en élasticité non linéaire, Université Pierre et Marie Curie (France) (1996) (Ph. D. Thesis)

[12] Bouchitté, Guy; Bellieud, Michel Regularization of a set function – application to integral representation, Ric. Mat., Volume 49 (suppl.) (2000), pp. 79-93 | Zbl

[13] Bouchitté, Guy; Fonseca, Irene; Mascarenhas, Luisa A global method for relaxation, Arch. Ration. Mech. Anal., Volume 145 (1998) no. 1, pp. 51-98 | DOI | Zbl

[14] Braides, Andrea Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. Detta XL, Mem. Mat., Volume 9 (1985) no. 1, pp. 313-322 | Zbl

[15] Braides, Andrea Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, 2002, xii+2118 pages | Zbl

[16] Braides, Andrea; Defranceschi, Anneliese Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications, 12, Clarendon Press, 1998, xiv+298 pages | Zbl

[17] Dacorogna, Bernard Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal., Volume 46 (1982), pp. 102-118 | DOI | Zbl

[18] Dacorogna, Bernard Direct methods in the calculus of variations, Applied Mathematical Sciences, 78, Springer, 2008, xii+619 pages | Zbl

[19] Dacorogna, Bernard; Ribeiro, Ana Margarida Existence of solutions for some implicit partial differential equations and applications to variational integrals involving quasi-affine functions, Proc. R. Soc. Edinb., Sect. A, Math., Volume 134 (2004) no. 5, pp. 907-921 | DOI | Zbl

[20] Dal Maso, Gianni An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuse, 1993, xiv+340 pages | Zbl

[21] Duerinckx, Mitia; Gloria, Antoine Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 3, pp. 1511-1584 | DOI | Zbl

[22] Fonseca, Irene The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl., Volume 67 (1988) no. 2, pp. 175-195 | Zbl

[23] Morrey, Charles B.jun. Quasi-convexity and the lower semicontinuity of multiple integrals, Pac. J. Math., Volume 2 (1952), pp. 25-53 | DOI | Zbl

[24] Müller, Stefan Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 3, pp. 189-212 | DOI | Zbl

Cité par Sources :