Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators
Annales mathématiques Blaise Pascal, Tome 22 (2015) no. 1, pp. 89-120.

In this paper we study weighted mixed norm estimates for Riesz transforms associated to Dunkl harmonic oscillators. The idea is to show that the required inequalities are equivalent to certain vector valued inequalities for operator defined in terms of Laguerre expansions. In certain cases the main result can be deduced from the corresponding result for Hermite Riesz transforms.

DOI : 10.5802/ambp.347
Classification : 42C10, 47G40, 26A33, 43A90, 42B20, 42B35, 33C44
Mots-clés : Reflection groups, Dunkl operators, Hermite and generalised Hermite functions, Riesz transforms, singular integrals, weighted inequalities.
Pradeep, Boggarapu 1 ; Thangavelu, Sundaram 1

1 Department of Mathematics Indian Institute of Science Bangalore-560012 (India)
@article{AMBP_2015__22_1_89_0,
     author = {Pradeep, Boggarapu and Thangavelu, Sundaram},
     title = {Mixed norm estimates for the {Riesz} transforms associated to {Dunkl} harmonic oscillators},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {89--120},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {22},
     number = {1},
     year = {2015},
     doi = {10.5802/ambp.347},
     zbl = {1327.42031},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.347/}
}
TY  - JOUR
AU  - Pradeep, Boggarapu
AU  - Thangavelu, Sundaram
TI  - Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators
JO  - Annales mathématiques Blaise Pascal
PY  - 2015
SP  - 89
EP  - 120
VL  - 22
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.347/
DO  - 10.5802/ambp.347
LA  - en
ID  - AMBP_2015__22_1_89_0
ER  - 
%0 Journal Article
%A Pradeep, Boggarapu
%A Thangavelu, Sundaram
%T Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators
%J Annales mathématiques Blaise Pascal
%D 2015
%P 89-120
%V 22
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.347/
%R 10.5802/ambp.347
%G en
%F AMBP_2015__22_1_89_0
Pradeep, Boggarapu; Thangavelu, Sundaram. Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators. Annales mathématiques Blaise Pascal, Tome 22 (2015) no. 1, pp. 89-120. doi : 10.5802/ambp.347. http://www.numdam.org/articles/10.5802/ambp.347/

[1] Amri, Béchir Riesz transforms for Dunkl Hermite expansions, J. Math. Anal. Appl., Volume 423 (2015) no. 1, pp. 646-659 | DOI | MR

[2] Amri, Béchir; Sifi, Mohamed Singular integral operators in Dunkl setting, J. Lie Theory, Volume 22 (2012) no. 3, pp. 723-739 | MR | Zbl

[3] Andrews, George E.; Askey, Richard; Roy, Ranjan Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999, pp. xvi+664 | DOI | MR | Zbl

[4] Cengiz, Bahattin On the duals of Lebesgue-Bochner L p spaces, Proc. Amer. Math. Soc., Volume 114 (1992) no. 4, pp. 923-926 | DOI | MR | Zbl

[5] Ciaurri, Óscar; Roncal, Luz The Riesz transform for the harmonic oscillator in spherical coordinates, Constr. Approx., Volume 40 (2014) no. 3, pp. 447-472 | DOI | MR | Zbl

[6] Dunkl, Charles F. Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl

[7] Dunkl, Charles F.; Xu, Yuan Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001, pp. xvi+390 | DOI | MR | Zbl

[8] Duoandikoetxea, Javier Fourier analysis, Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001, pp. xviii+222 (Translated and revised from the 1995 Spanish original by David Cruz-Uribe) | MR | Zbl

[9] Duoandikoetxea, Javier; Moyua, Adela; Oruetxebarria, Osane; Seijo, Edurne Radial A p weights with applications to the disc multiplier and the Bochner-Riesz operators, Indiana Univ. Math. J., Volume 57 (2008) no. 3, pp. 1261-1281 | DOI | MR | Zbl

[10] Geller, Daryl Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math., Volume 36 (1984) no. 4, pp. 615-684 | DOI | MR | Zbl

[11] Herz, Carl; Rivière, Nestor Estimates for translation-invariant operators on spaces with mixed norms, Studia Math., Volume 44 (1972), pp. 511-515 (Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, V) | MR | Zbl

[12] Nowak, Adam Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted L p spaces, Studia Math., Volume 158 (2003) no. 3, pp. 239-268 | DOI | MR | Zbl

[13] Nowak, Adam; Stempak, Krzysztof Riesz transforms for multi-dimensional Laguerre function expansions, Adv. Math., Volume 215 (2007) no. 2, pp. 642-678 | DOI | MR | Zbl

[14] Nowak, Adam; Stempak, Krzysztof Riesz transforms for the Dunkl harmonic oscillator, Math. Z., Volume 262 (2009) no. 3, pp. 539-556 | DOI | MR | Zbl

[15] Pérez, Teresa E.; Piñar, Miguel A.; Xu, Yuan Weighted Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory, Volume 171 (2013), pp. 84-104 | DOI | MR | Zbl

[16] Rösler, Margit Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., Volume 192 (1998) no. 3, pp. 519-542 | DOI | MR | Zbl

[17] Rubio de Francia, José Luis Transference principles for radial multipliers, Duke Math. J., Volume 58 (1989) no. 1, pp. 1-19 | DOI | MR | Zbl

[18] Sanjay, P. K.; Thangavelu, Sundaram Revisiting Riesz transforms on Heisenberg groups, Rev. Mat. Iberoam., Volume 28 (2012) no. 4, pp. 1091-1108 | DOI | MR | Zbl

[19] Stempak, Krzysztof; Torrea, José Luis Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal., Volume 202 (2003) no. 2, pp. 443-472 | DOI | MR | Zbl

[20] Thangavelu, Sundaram Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993, pp. xviii+195 (With a preface by Robert S. Strichartz) | MR | Zbl

[21] Thangavelu, Sundaram; Xu, Yuan Convolution operator and maximal function for the Dunkl transform, J. Anal. Math., Volume 97 (2005), pp. 25-55 | DOI | MR | Zbl

Cité par Sources :