Let be a Brownian motion valued in the complex projective space . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of and of , and express them through Jacobi polynomials in the simplices of and respectively. More generally, the distribution of may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group yet computations become tedious. We also revisit the approach initiated in [13] and based on a partial differential equation (hereafter pde) satisfied by the Laplace transform of the density. When , we invert the Laplace transform and retrieve the expression already derived using spherical harmonics. For general , integrations by parts performed on the pde lead to a heat equation in the simplex of .
@article{AMBP_2014__21_2_1_0, author = {Demni, Nizar}, title = {Distributions of truncations of the heat kernel on the complex projective space}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--20}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.339}, mrnumber = {3322612}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.339/} }
TY - JOUR AU - Demni, Nizar TI - Distributions of truncations of the heat kernel on the complex projective space JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 1 EP - 20 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.339/ DO - 10.5802/ambp.339 LA - en ID - AMBP_2014__21_2_1_0 ER -
%0 Journal Article %A Demni, Nizar %T Distributions of truncations of the heat kernel on the complex projective space %J Annales mathématiques Blaise Pascal %D 2014 %P 1-20 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.339/ %R 10.5802/ambp.339 %G en %F AMBP_2014__21_2_1_0
Demni, Nizar. Distributions of truncations of the heat kernel on the complex projective space. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 1-20. doi : 10.5802/ambp.339. http://www.numdam.org/articles/10.5802/ambp.339/
[1] Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Notice, Volume 13 (2013), pp. 3087-3131 | MR
[2] Special functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[3] Remarques sur les semi-groupes de Jacobi, Hommage à P. André Meyer et J. Neveu. Astérisque, Volume 236 (1996), pp. 23-39 | Numdam | MR | Zbl
[4] Noyau de diffusion sur les espaces homogènes compacts, Bull. Soc. Math. France, Volume 101 (1973), pp. 265-283 | Numdam | MR | Zbl
[5] Le spectre d’une variété Riemannienne, Lecture Notes in Mathematics, Springer-Verlag, 1971, pp. vii+251 pp | MR | Zbl
[6] Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[7] Banach algebras for Jacobi series and positivity of a kernel, Ann. Math., Volume 95 (1972), pp. 261-280 | DOI | MR | Zbl
[8] Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc., Volume 279 (1983), pp. 187-203 | DOI | MR | Zbl
[9] The Semicircle Law, Free Random Variables and Entropy, 77, A. M. S., 2000, pp. x+376 pp | MR | Zbl
[10] Classical diffusion processes and total positivity, J. Math. Anal. Appl., Volume 1 (1960), pp. 163-183 | DOI | MR | Zbl
[11] The addition formula for Jacobi polynomials II. The Laplace type integral and the product formula, Report TW 133/72. Mathematisch Centrum, Amsterdam (1972) | Zbl
[12] The addition formula for Jacobi polynomials III. Completion of the proof, Report TW 135/72. Mathematisch Centrum, Amsterdam (1972) | Zbl
[13] Random pure quantum states via unitary Brownian motion, Electron. Commun. Probab, Volume 18 (2013), pp. 1-13 | DOI | MR
[14] Fonctions spéciales et théorie de la représentation des groupes, 33, Monographies Universitaires de Mathématiques, Dunod, 1969 | Zbl
[15] A treatise on the theory of Bessel functions, Cambridge University Press, 1995 | MR | Zbl
Cité par Sources :