Quasimodular forms and quasimodular polynomials
[Formes quasimodulaires et polynômes quasimodulaires]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 431-453.

Ce texte a pour origine des cours donnés à l’École d’été sur les formes quasimodulaires qui s’est tenue en juin 2010 à Besse, France. Il contient une présentation de travaux récents sur les formes quasimodulaires.

This paper is based on lectures delivered at the Workshop on quasimodular forms held in June, 2010 in Besse, France, and it provides a survey of some recent work on quasimodular forms.

DOI : 10.5802/ambp.318
Lee, Min Ho 1

1 Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614 U.S.A
@article{AMBP_2012__19_2_431_0,
     author = {Lee, Min Ho},
     title = {Quasimodular forms and quasimodular polynomials},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {431--453},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {2},
     year = {2012},
     doi = {10.5802/ambp.318},
     zbl = {1283.11071},
     mrnumber = {3025140},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.318/}
}
TY  - JOUR
AU  - Lee, Min Ho
TI  - Quasimodular forms and quasimodular polynomials
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 431
EP  - 453
VL  - 19
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.318/
DO  - 10.5802/ambp.318
LA  - en
ID  - AMBP_2012__19_2_431_0
ER  - 
%0 Journal Article
%A Lee, Min Ho
%T Quasimodular forms and quasimodular polynomials
%J Annales mathématiques Blaise Pascal
%D 2012
%P 431-453
%V 19
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.318/
%R 10.5802/ambp.318
%G en
%F AMBP_2012__19_2_431_0
Lee, Min Ho. Quasimodular forms and quasimodular polynomials. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 431-453. doi : 10.5802/ambp.318. http://www.numdam.org/articles/10.5802/ambp.318/

[1] Choie, Y.; Lee, M. H. Quasimodular forms, Jacobi-like forms, and pseudodifferential operators (preprint)

[2] Cohen, Paula Beazley; Manin, Yuri; Zagier, Don Automorphic pseudodifferential operators, Algebraic aspects of integrable systems (Progr. Nonlinear Differential Equations Appl.), Volume 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17-47 | MR | Zbl

[3] Eichler, Martin; Zagier, Don The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston Inc., Boston, MA, 1985 | MR | Zbl

[4] Eskin, Alex; Okounkov, Andrei Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001) no. 1, pp. 59-103 | DOI | MR | Zbl

[5] Kaneko, Masanobu; Zagier, Don A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165-172 | MR | Zbl

[6] Lee, Min Ho Quasimodular forms and Poincaré series, Acta Arith., Volume 137 (2009) no. 2, pp. 155-169 | DOI | MR | Zbl

[7] Lee, Min Ho Quasimodular forms and vector bundles, Bull. Aust. Math. Soc., Volume 80 (2009) no. 3, pp. 402-412 | DOI | MR | Zbl

[8] Lee, Min Ho Radial heat operators on Jacobi-like forms, Math. J. Okayama Univ., Volume 51 (2009), pp. 27-46 | MR

[9] Lee, Min Ho Heat operators and quasimodular forms, Bull. Aust. Math. Soc., Volume 81 (2010) no. 3, pp. 514-522 | DOI | MR | Zbl

[10] Lee, Min Ho Modular polynomials and derivatives of quasimodular forms (2012) (To appear in Complex Variables and Elliptic Equations) | DOI

[11] Lee, Min Ho Quasimodular forms and cohomology, Bull. Aust. Math. Soc., Volume 86 (2012), pp. 150-163 | DOI

[12] Lelièvre, Samuel; Royer, Emmanuel Orbitwise countings in (2) and quasimodular forms, Int. Math. Res. Not. (2006), pp. Art. ID 42151, 30 | DOI | MR | Zbl

[13] Martin, François; Royer, Emmanuel Formes modulaires et périodes, Formes modulaires et transcendance (Sémin. Congr.), Volume 12, Soc. Math. France, Paris, 2005, pp. 1-117 | MR | Zbl

[14] Miyake, Toshitsune Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006 (Translated from the 1976 Japanese original by Yoshitaka Maeda) | MR | Zbl

[15] Movasati, Hossein On differential modular forms and some analytic relations between Eisenstein series, Ramanujan J., Volume 17 (2008) no. 1, pp. 53-76 | DOI | MR | Zbl

[16] Okounkov, A.; Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), Volume 163 (2006) no. 2, pp. 517-560 | DOI | MR | Zbl

[17] Ouled Azaiez, Najib The ring of quasimodular forms for a cocompact group, J. Number Theory, Volume 128 (2008) no. 7, pp. 1966-1988 | DOI | MR | Zbl

[18] Rhie, Y. H.; Whaples, G. Hecke operators in cohomology of groups, J. Math. Soc. Japan, Volume 22 (1970), pp. 431-442 | DOI | MR | Zbl

[19] Royer, Emmanuel Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory, Volume 3 (2007) no. 2, pp. 231-261 | DOI | MR | Zbl

[20] Zagier, Don Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci., Volume 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | DOI | MR | Zbl

Cité par Sources :