Quasi-modular forms attached to elliptic curves, I
[Formes quasimodulaires attachées aux courbes elliptiques, I]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 307-377.

Dans ce texte, on donne une interprétation géométrique des formes quasimodulaires en utilisant les modules des courbes elliptiques avec un point marqué dans leurs cohomologies de de Rham. De cette façon, les équations différentielles des formes modulaires et quasimodulaires sont interprétées comme des champs de vecteurs de ces espaces de modules. Elles peuvent être établies grâce à la connection de Gauss-Manin de la famille universelle de courbes elliptiques correspondante. Pour le groupe modulaire, on calcule une telle équation différentielle qui apparaît être celle de Ramanujan qui relie entre elles les séries d’Eisenstein. On explique aussi la notion de périodes construites à partir des intégrales elliptiques. Elles apparaissent comme le pont entre la notion algébrique de forme quasimodulaire et la définition en terme de fonction holomorphe sur le demi-plan de Poincaré. De cette façon, nous obtenons aussi une autre interprétation, essentiellement due à Halphen, de l’équation différentielle de Ramanujan en termes de fonctions hypergéométriques. L’interprétation des formes quasimodulaires comme sections de fibrés des jets et des problèmes de combinatoire énumérative sont aussi présentés.

In the present text we give a geometric interpretation of quasi-modular forms using moduli of elliptic curves with marked elements in their de Rham cohomologies. In this way differential equations of modular and quasi-modular forms are interpreted as vector fields on such moduli spaces and they can be calculated from the Gauss-Manin connection of the corresponding universal family of elliptic curves. For the full modular group such a differential equation is calculated and it turns out to be the Ramanujan differential equation between Eisenstein series. We also explain the notion of period map constructed from elliptic integrals. This turns out to be the bridge between the algebraic notion of a quasi-modular form and the one as a holomorphic function on the upper half plane. In this way we also get another interpretation, essentially due to Halphen, of the Ramanujan differential equation in terms of hypergeometric functions. The interpretation of quasi-modular forms as sections of jet bundles and some related enumerative problems are also presented.

DOI : 10.5802/ambp.316
Movasati, Hossein 1

1 Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro, RJ Brazil
@article{AMBP_2012__19_2_307_0,
     author = {Movasati, Hossein},
     title = {Quasi-modular forms attached to elliptic curves, {I}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {307--377},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {2},
     year = {2012},
     doi = {10.5802/ambp.316},
     zbl = {1264.11031},
     mrnumber = {3025138},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.316/}
}
TY  - JOUR
AU  - Movasati, Hossein
TI  - Quasi-modular forms attached to elliptic curves, I
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 307
EP  - 377
VL  - 19
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.316/
DO  - 10.5802/ambp.316
LA  - en
ID  - AMBP_2012__19_2_307_0
ER  - 
%0 Journal Article
%A Movasati, Hossein
%T Quasi-modular forms attached to elliptic curves, I
%J Annales mathématiques Blaise Pascal
%D 2012
%P 307-377
%V 19
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.316/
%R 10.5802/ambp.316
%G en
%F AMBP_2012__19_2_307_0
Movasati, Hossein. Quasi-modular forms attached to elliptic curves, I. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 307-377. doi : 10.5802/ambp.316. http://www.numdam.org/articles/10.5802/ambp.316/

[1] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Monodromy and asymptotics of integrals Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston Inc., Boston, MA, 1988 | MR

[2] Cassels, J. W. S. Diophantine equations with special reference to elliptic curves, J. London Math. Soc., Volume 41 (1966), pp. 193-291 | DOI | MR | Zbl

[3] Darboux, G. Sur la théorie des coordonnées curvilignes et les systémes orthogonaux, Ann Ecole Normale Supérieure, Volume 7 (1878), pp. 101-150 | MR

[4] Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-yen Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin, 1982 (Philosophical Studies Series in Philosophy, 20) | MR | Zbl

[5] Diamond, Fred; Shurman, Jerry A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | MR | Zbl

[6] Dijkgraaf, Robbert Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 149-163 | MR | Zbl

[7] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | MR | Zbl

[8] Gannon, Terry Moonshine beyond the Monster, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006 (The bridge connecting algebra, modular forms and physics) | DOI | MR | Zbl

[9] van der Geer, Gerard Siegel modular forms and their applications, The 1-2-3 of modular forms (Universitext), Springer, Berlin, 2008, pp. 181-245 | DOI | MR

[10] Gross, Benedict H. On an identity of Chowla and Selberg, J. Number Theory, Volume 11 (1979) no. 3 S. Chowla Anniversary Issue, pp. 344-348 | DOI | MR | Zbl

[11] Grothendieck, Alexander On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | Numdam | MR | Zbl

[12] Halphen, G. H. Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris, Volume 92 (1881), pp. 1101-1103

[13] Halphen, G. H. Traité des fonctions elliptiques et de leurs applications, 1, Gauthier-Villars, Paris, 1886

[14] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl

[15] Hida, Haruzo Geometric modular forms and elliptic curves, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012 | MR

[16] Hoffman, Jerome W. Topics in elliptic curves and modular forms (2010) https://www.math.lsu.edu/~hoffman/ (Preprint available in the author’s homepage)

[17] Kaneko, Masanobu; Zagier, Don A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165-172 | MR | Zbl

[18] Katz, Nicholas M. p-adic interpolation of real analytic Eisenstein series, Ann. of Math. (2), Volume 104 (1976) no. 3, pp. 459-571 | DOI | MR | Zbl

[19] Kedlaya, Kiran S. p-adic cohomology: from theory to practice, p -adic geometry (Univ. Lecture Ser.), Volume 45, Amer. Math. Soc., Providence, RI, 2008, pp. 175-203 | MR | Zbl

[20] Lamotke, Klaus The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981) no. 1, pp. 15-51 | DOI | MR | Zbl

[21] Lee, Min Ho Quasimodular forms and vector bundles, Bull. Aust. Math. Soc., Volume 80 (2009) no. 3, pp. 402-412 | DOI | MR | Zbl

[22] Martin, François; Royer, Emmanuel Formes modulaires et périodes, Formes modulaires et transcendance (Sémin. Congr.), Volume 12, Soc. Math. France, Paris, 2005, pp. 1-117 | MR | Zbl

[23] Movasati, Hossein On differential modular forms and some analytic relations between Eisenstein series, Ramanujan J., Volume 17 (2008) no. 1, pp. 53-76 | DOI | MR | Zbl

[24] Movasati, Hossein Eisenstein type series for Calabi-Yau varieties, Nuclear Phys. B, Volume 847 (2011) no. 2, pp. 460-484 | DOI | MR | Zbl

[25] Movasati, Hossein Multiple integrals and modular differential equations, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011 (28o Colóquio Brasileiro de Matemática. [28th Brazilian Mathematics Colloquium]) | MR

[26] Nesterenko, Y.V.; Philippon, P. Introduction to algebraic independence theory, Lecture Notes in Mathematics, 1752, Springer-Verlag, Berlin, 2001 (With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yuri V. Nesterenko, K. Nishioka, Patrice Philippon, G. Rémond, D. Roy and M. Waldschmidt,) | MR

[27] Ohyama, Yousuke Differential relations of theta functions, Osaka J. Math., Volume 32 (1995) no. 2, pp. 431-450 http://projecteuclid.org/getRecord?id=euclid.ojm/1200786061 | MR | Zbl

[28] Ohyama, Yousuke Differential equations for modular forms of level three, Funkcial. Ekvac., Volume 44 (2001) no. 3, pp. 377-389 | MR | Zbl

[29] Saito, Kyoji Primitive automorphic forms, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 1003-1018 | MR | Zbl

[30] Sasai, Takao Monodromy representations of homology of certain elliptic surfaces, J. Math. Soc. Japan, Volume 26 (1974), pp. 296-305 | DOI | MR | Zbl

[31] Selmer, Ernst S. The Diophantine equation ax 3 +by 3 +cz 3 =0, Acta Math., Volume 85 (1951), p. 203-362 (1 plate) | DOI | MR | Zbl

[32] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009 | MR | Zbl

[33] Tate, John Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 149-159 | Numdam | MR | Zbl

[34] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002 (Translated from the French original by Leila Schneps) | MR | Zbl

[35] Zudilin, W. The hypergeometric equation and Ramanujan functions, Ramanujan J., Volume 7 (2003) no. 4, pp. 435-447 | DOI | MR | Zbl

Cité par Sources :