Dans cet article, nous étudions la bornitude des transformées de Riesz associées à la transformée de Dunkl sur les espaces , .
In this paper we obtain the -boundedness of Riesz transforms for the Dunkl transform for all .
Mots-clés : Dunkl transforms, Riesz Transforms, Singular integrals
@article{AMBP_2012__19_1_247_0, author = {Amri, Bechir and Sifi, Mohamed}, title = {Riesz transforms for {Dunkl} transform}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {247--262}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {1}, year = {2012}, doi = {10.5802/ambp.312}, mrnumber = {2978321}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.312/} }
TY - JOUR AU - Amri, Bechir AU - Sifi, Mohamed TI - Riesz transforms for Dunkl transform JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 247 EP - 262 VL - 19 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.312/ DO - 10.5802/ambp.312 LA - en ID - AMBP_2012__19_1_247_0 ER -
%0 Journal Article %A Amri, Bechir %A Sifi, Mohamed %T Riesz transforms for Dunkl transform %J Annales mathématiques Blaise Pascal %D 2012 %P 247-262 %V 19 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.312/ %R 10.5802/ambp.312 %G en %F AMBP_2012__19_1_247_0
Amri, Bechir; Sifi, Mohamed. Riesz transforms for Dunkl transform. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 247-262. doi : 10.5802/ambp.312. http://www.numdam.org/articles/10.5802/ambp.312/
[1] Linear and bilinear multiplier operators for the Dunkl transform, Mediterranean Journal of Mathematics, Volume 7 (2010), pp. 503-521 | DOI | MR | Zbl
[2] A transference theorem for the Dunkl transform and its applications, Journal of Functional Analysis, Volume 258 (2010), pp. 4052-4074 | DOI | MR | Zbl
[3] Differential–Difference operators associated to reflection groups, Trans. Amer. Math., Volume 311 (1989), pp. 167-183 | DOI | MR | Zbl
[4] Riesz potentials and fractional maximal function for the Dunkl transform, J. Lie Theory, Volume 19 (2009, no. 4), pp. 725-734 | MR | Zbl
[5] The Dunkl transform, Invent. Math., Volume 113 (1993), pp. 147-162 | DOI | EuDML | MR | Zbl
[6] Dunkl operators: theory and applications, in Orthogonal polynomials and special functions (Leuven, 2002), , Lect. Notes Math., Volume 1817 (2003), pp. 93-135 | MR | Zbl
[7] A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2413-2438 | DOI | MR | Zbl
[8] Harmonic Analysis: Reals-Variable Methods, Orthogonality and Oscillatory Integrals, PrincetonS, New Jersey, 1993 | MR | Zbl
[9] Convolution operator and maximal function for Dunkl transform, J. Anal. Math., Volume 97 (2005), pp. 25-55 | DOI | MR | Zbl
[10] Riesz transforms and Riesz potentials for the Dunkl transform, J. Comp. and Appl. Math., Volume 199 (2007), pp. 181-195 | DOI | MR
Cité par Sources :