Quantum isometries and group dual subgroups
[Isométries quantiques et duaux de groupes]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 1-27.

On étudie les groupes discrets Λ dont les duaux se plongent dans un groupe quantique compact donné, Λ ^G. Dans le cas matriciel GU n + la condition de plongement est équivalente à l’existence d’une application quotient Γ U Λ, où F={Γ U UU n } est une certaine famille de groupes associés à G. On dévéloppe ici un nombre de techniques pour le calcul de F, en partie inspirées pas la classification de Bichon des sous-groupes Λ ^S n + . Ces résultats sont motivés pas la notion de groupe quantique d’isométrie de Goswami, car une variété Riemannienne compacte et connexe ne peut pas avoir des isométries quantiques venant du dual d’un groupe non-abélien.

We study the discrete groups Λ whose duals embed into a given compact quantum group, Λ ^G. In the matrix case GU n + the embedding condition is equivalent to having a quotient map Γ U Λ, where F={Γ U UU n } is a certain family of groups associated to G. We develop here a number of techniques for computing F, partly inspired from Bichon’s classification of group dual subgroups Λ ^S n + . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.

DOI : 10.5802/ambp.303
Classification : 58J42
Mots clés : Quantum isometry, Diagonal subgroup
Banica, Teodor 1 ; Bhowmick, Jyotishman 2 ; De Commer, Kenny 1

1 Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE
2 Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY
@article{AMBP_2012__19_1_1_0,
     author = {Banica, Teodor and Bhowmick, Jyotishman and De Commer, Kenny},
     title = {Quantum isometries and group dual subgroups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--27},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.303},
     zbl = {1250.81057},
     mrnumber = {2978312},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.303/}
}
TY  - JOUR
AU  - Banica, Teodor
AU  - Bhowmick, Jyotishman
AU  - De Commer, Kenny
TI  - Quantum isometries and group dual subgroups
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 1
EP  - 27
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.303/
DO  - 10.5802/ambp.303
LA  - en
ID  - AMBP_2012__19_1_1_0
ER  - 
%0 Journal Article
%A Banica, Teodor
%A Bhowmick, Jyotishman
%A De Commer, Kenny
%T Quantum isometries and group dual subgroups
%J Annales mathématiques Blaise Pascal
%D 2012
%P 1-27
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.303/
%R 10.5802/ambp.303
%G en
%F AMBP_2012__19_1_1_0
Banica, Teodor; Bhowmick, Jyotishman; De Commer, Kenny. Quantum isometries and group dual subgroups. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 1-27. doi : 10.5802/ambp.303. http://www.numdam.org/articles/10.5802/ambp.303/

[1] Banica, T. Symmetries of a generic coaction, Math. Ann., Volume 314 (1999), pp. 763-780 | DOI | MR | Zbl

[2] Banica, T.; Bichon, J. Quantum automorphism groups of vertex-transitive graphs of order 11, J. Algebraic Combin., Volume 26 (2007), pp. 83-105 | DOI | MR

[3] Banica, T.; Goswami, D. Quantum isometries and noncommutative spheres, Comm. Math. Phys., Volume 298 (2010), pp. 343-356 | DOI | MR

[4] Banica, T.; Skalski, A. Quantum isometry groups of duals of free powers of cyclic groups (to appear)

[5] Banica, T.; Skalski, A. Quantum symmetry groups of C * -algebras equipped with orthogonal filtrations (to appear)

[6] Banica, T.; Speicher, R. Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009), pp. 1461-1501 | DOI | MR

[7] Banica, T.; Vergnioux, R. Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier, Volume 60 (2010), pp. 2137-2164 | DOI | Numdam | MR

[8] Bhowmick, J. Quantum isometry group of the n-tori, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 3155-3161 | DOI | MR

[9] Bhowmick, J.; Goswami, D. Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal., Volume 257 (2009), pp. 2530-2572 | DOI | MR

[10] Bhowmick, J.; Goswami, D. Quantum isometry groups: examples and computations, Comm. Math. Phys., Volume 285 (2009), pp. 421-444 | DOI | MR

[11] Bhowmick, J.; Goswami, D. Quantum isometry groups of the Podlés spheres, J. Funct. Anal., Volume 258 (2010), pp. 2937-2960 | DOI | MR

[12] Bhowmick, J.; Skalski, A. Quantum isometry groups of noncommutative manifolds associated to group C * -algebras, J. Geom. Phys., Volume 60 (2010), pp. 1474-1489 | DOI | MR

[13] Bichon, J. Free wreath product by the quantum permutation group, Alg. Rep. Theory, Volume 7 (2004), pp. 343-362 | DOI | MR

[14] Bichon, J. Algebraic quantum permutation groups, Asian-Eur. J. Math., Volume 1 (2008), pp. 1-13 | DOI | MR

[15] Boca, F. Ergodic actions of compact matrix pseudogroups on C * -algebras, Astérisque, Volume 232 (1995), pp. 93-109 | Numdam | MR | Zbl

[16] Collins, B.; Śniady, P. Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups, Comm. Math. Phys., Volume 264 (2006), pp. 773-795 | DOI | MR

[17] Commer, K. De On projective representations for compact quantum groups, J. Funct. Anal., Volume 260 (2011), pp. 3596-3644 | DOI | MR

[18] Connes, Alain Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[19] Connes, Alain; Marcolli, Matilde Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI, 2008 | MR

[20] Drinfeld, V. Quantum groups, Proc. ICM Berkeley (1986), pp. 798-820 | MR | Zbl

[21] Franz, U.; Skalski, A. On idempotent states on quantum groups, J. Algebra, Volume 322 (2009), pp. 1774-1802 | DOI | MR

[22] Goswami, D. Quantum symmetries and quantum isometries of compact metric spaces (arxiv:0811.0095)

[23] Goswami, D. Rigidity of action of compact quantum groups (arxiv:1106.5107)

[24] Goswami, D. Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys., Volume 285 (2009), pp. 141-160 | DOI | MR

[25] Hajac, P.; Masuda, T. Quantum double-torus, C. R. Acad. Sci. Paris Ser. I Math, Volume 327 (1998), pp. 553-558 | DOI | MR | Zbl

[26] Huang, H. Faithful compact quantum group actions on connected compact metrizable spaces (arxiv:1202.1175)

[27] J. Bhowmick, B. Das F. D’Andrea; Dabrowski, L. Quantum gauge symmetries in noncommutative geometry (arxiv:1112.3622)

[28] J. Bhowmick, D. Goswami; Skalski, A. Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 901-921 | DOI | MR

[29] J. Bhowmick, F. D’Andrea; Dabrowski, L. Quantum isometries of the finite noncommutative geometry of the standard model, Comm. Math. Phys., Volume 307 (2011), pp. 101-131 | DOI | MR

[30] Jimbo, M. A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., Volume 10 (1985), pp. 63-69 | DOI | MR | Zbl

[31] Jones, V.F.R. Planar algebras I (arxiv:math/9909027)

[32] Kac, G.I.; Paljutkin, V.G. Finite ring groups, Trans. Moscow Math. Soc., Volume 1 (1966), pp. 251-294 | MR | Zbl

[33] Kawada, Y.; Itô, K. On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan, Volume 22 (1940), pp. 977-998 | MR

[34] Liszka-Dalecki, J.; tan, P.M. Soł Quantum isometry groups of symmetric groups (to appear)

[35] Pal, A.K. A counterexample on idempotent states on compact quantum groups, Lett. Math. Phys., Volume 37 (1996), pp. 75-77 | DOI | MR | Zbl

[36] Quaegebeur, J.; Sabbe, M. Isometric coactions of compact quantum groups on compact quantum metric spaces (arxiv:1007.0363)

[37] Raum, S. Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications (to appear)

[38] Sekine, Y. An example of finite-dimensional Kac algebras of Kac-Paljutkin type, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1139-1147 | DOI | MR | Zbl

[39] Speicher, R. Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann., Volume 298 (1994), pp. 611-628 | DOI | MR | Zbl

[40] T. Banica, A. Skalski; tan, P.M. Soł Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys., Volume 62 (2012), pp. 1451-1466 | DOI

[41] T. Banica, S. Curran; Speicher, R. Classification results for easy quantum groups, Pacific J. Math., Volume 247 (2010), pp. 1-26 | DOI | MR

[42] Voiculescu, D. V.; Dykema, K. J.; Nica, A. Free random variables, CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992 (A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups) | MR | Zbl

[43] Wang, S. Free products of compact quantum groups, Comm. Math. Phys., Volume 167 (1995), pp. 671-692 | DOI | MR | Zbl

[44] Wang, S. Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998), pp. 195-211 | DOI | MR | Zbl

[45] Wang, S. Simple compact quantum groups, I, J. Funct. Anal., Volume 256 (2009), pp. 3313-3341 | DOI | MR

[46] Woronowicz, S.L. Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | MR | Zbl

[47] Woronowicz, S.L. Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988), pp. 35-76 | DOI | MR | Zbl

[48] Woronowicz, S.L. Compact quantum groups, “Symétries quantiques”, North-Holland (1998), pp. 845-884 | MR | Zbl

[49] Yau, S.-T. Open problems in geometry, Proc. Symp. Pure Math., Volume 54 (1993), pp. 1-28 | DOI | MR | Zbl

Cité par Sources :