Étant donnée une 3-variété hyperbolique à volume fini, on compose un relevé dans de son holnomie avec la représentation irreductible et -dimensionnelle de dans . Dans cet article on donne des coordonnées locales autour du caractère de cette représentation. Comme corollaire, cette representation est isolée parmi toutes les représentations qui sont unipotentes aux bouts.
Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in with the -dimensional irreducible representation of in . In this paper we give local coordinates of the -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
Keywords: Infinitesimal Rigidity, Character Variety, Hyperbolic 3-Manifold, L2-Cohomology
Mot clés : rigidité infinitesimale, variété des caractères, 3-variété hyperbolique, cohomolgie L2
@article{AMBP_2012__19_1_107_0, author = {Menal-Ferrer, Pere and Porti, Joan}, title = {Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {107--122}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {1}, year = {2012}, doi = {10.5802/ambp.306}, zbl = {1252.53053}, mrnumber = {2978315}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.306/} }
TY - JOUR AU - Menal-Ferrer, Pere AU - Porti, Joan TI - Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 107 EP - 122 VL - 19 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.306/ DO - 10.5802/ambp.306 LA - en ID - AMBP_2012__19_1_107_0 ER -
%0 Journal Article %A Menal-Ferrer, Pere %A Porti, Joan %T Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds %J Annales mathématiques Blaise Pascal %D 2012 %P 107-122 %V 19 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.306/ %R 10.5802/ambp.306 %G en %F AMBP_2012__19_1_107_0
Menal-Ferrer, Pere; Porti, Joan. Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 107-122. doi : 10.5802/ambp.306. http://www.numdam.org/articles/10.5802/ambp.306/
[1] Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry (CRM Proc. Lecture Notes), Volume 40, Amer. Math. Soc., Providence, RI, 2006, pp. 1-26 | MR
[2] Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata, Volume 105 (2004), pp. 143-170 | DOI | MR
[3] Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR
[4] Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985) no. 336, pp. xi+117 | MR | Zbl
[5] On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2), Volume 78 (1963), pp. 365-416 | DOI | MR | Zbl
[6] Twisted cohomology for hyperbolic three manifolds, to appear in Osaka J. Math. (2012), arXiv:1001.2242
[7] On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math., Volume 87 (1965), pp. 103-139 | DOI | MR | Zbl
[8] Remarks on the cohomology of groups, Ann. of Math. (2), Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[9] Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Volume 71 (2005) no. 3, pp. 437-506 | MR
Cité par Sources :