Nous généralisons la catégorification des groupes de tresses par complexes de bimodules de Soergel due à Rouquier aux groupes de tresses virtuelles.
We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.
Keywords: braid group, virtual braid, categorification
Mot clés : groupe de tresses, tresse virtuelle, catégorification
@article{AMBP_2011__18_2_231_0, author = {Thiel, Anne-Laure}, title = {Categorification of the virtual braid groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {231--243}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {18}, number = {2}, year = {2011}, doi = {10.5802/ambp.297}, zbl = {1260.20059}, mrnumber = {2896487}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.297/} }
TY - JOUR AU - Thiel, Anne-Laure TI - Categorification of the virtual braid groups JO - Annales mathématiques Blaise Pascal PY - 2011 SP - 231 EP - 243 VL - 18 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.297/ DO - 10.5802/ambp.297 LA - en ID - AMBP_2011__18_2_231_0 ER -
Thiel, Anne-Laure. Categorification of the virtual braid groups. Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 2, pp. 231-243. doi : 10.5802/ambp.297. http://www.numdam.org/articles/10.5802/ambp.297/
[1] The braid-permutation group, Topology, Volume 36 (1997) no. 1, pp. 123-135 | DOI | MR | Zbl
[2] Abstract link diagrams and virtual knots, J. Knot Theory Ramifications, Volume 9 (2000) no. 1, pp. 93-106 | DOI | MR | Zbl
[3] Braid presentation of virtual knots and welded knots, Osaka J. Math., Volume 44 (2007) no. 2, pp. 441-458 http://projecteuclid.org/getRecord?id=euclid.ojm/1183667989 | MR | Zbl
[4] Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008 | MR | Zbl
[5] Virtual knot theory, European J. Combin., Volume 20 (1999) no. 7, pp. 663-690 | DOI | MR | Zbl
[6] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math., Volume 18 (2007) no. 8, pp. 869-885 | DOI | MR | Zbl
[7] What is a virtual link?, Algebr. Geom. Topol., Volume 3 (2003), p. 587-591 (electronic) | DOI | MR | Zbl
[8] Knot theory, Chapman & Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[9] On functors associated to a simple root, J. Algebra, Volume 314 (2007) no. 1, pp. 97-128 | DOI | MR | Zbl
[10] Categorification of and braid groups, Trends in representation theory of algebras and related topics (Contemp. Math.), Volume 406, Amer. Math. Soc., Providence, RI, 2006, pp. 137-167 | MR | Zbl
[11] The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math., Volume 429 (1992), pp. 49-74 | DOI | MR | Zbl
[12] Gradings on representation categories, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 800-806 | MR | Zbl
[13] On homology of virtual braids and Burau representation, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 795-812 Knots in Hellas ’98, Vol. 3 (Delphi) | DOI | MR | Zbl
Cité par Sources :