Braids in Pau – An Introduction
[Tresses à Pau – une introduction]
Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 1, pp. 1-14.

Dans ce travail, nous décrivons les liaisons historiques entre l’étude de variétés de dimension 3 (notamment, la théorie de nœuds) et l’étude de la topologie des courbes planes complexes, dont l’accent est posé sur le rôle des groupes de tresses et des invariantes du type Alexander (torsions, différents incarnations des polynômes d’Alexander). Nous finissons en présentant un example avec des calculs détaillés.

In this work, we describe the historic links between the study of 3-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.

DOI : 10.5802/ambp.292
Classification : 14H50, 14D05, 57M25, 57C10, 20F36
Keywords: Knots, curves, braid groups, torsion, Alexander polynomial
Mot clés : Nœuds, courbes, torsion, polynômes d’Alexander
Artal Bartolo, Enrique 1 ; Florens, Vincent 2

1 Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain
2 Laboratoire de Mathématiques et de leurs Applications - PAU UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l’Adour Avenue de l’Université - BP 1155 64013 PAU CEDEX, France
@article{AMBP_2011__18_1_1_0,
     author = {Artal Bartolo, Enrique and Florens, Vincent},
     title = {Braids in {Pau} {\textendash} {An} {Introduction}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--14},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {18},
     number = {1},
     year = {2011},
     doi = {10.5802/ambp.292},
     zbl = {1214.14001},
     mrnumber = {2830087},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.292/}
}
TY  - JOUR
AU  - Artal Bartolo, Enrique
AU  - Florens, Vincent
TI  - Braids in Pau – An Introduction
JO  - Annales mathématiques Blaise Pascal
PY  - 2011
SP  - 1
EP  - 14
VL  - 18
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.292/
DO  - 10.5802/ambp.292
LA  - en
ID  - AMBP_2011__18_1_1_0
ER  - 
%0 Journal Article
%A Artal Bartolo, Enrique
%A Florens, Vincent
%T Braids in Pau – An Introduction
%J Annales mathématiques Blaise Pascal
%D 2011
%P 1-14
%V 18
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.292/
%R 10.5802/ambp.292
%G en
%F AMBP_2011__18_1_1_0
Artal Bartolo, Enrique; Florens, Vincent. Braids in Pau – An Introduction. Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 1, pp. 1-14. doi : 10.5802/ambp.292. http://www.numdam.org/articles/10.5802/ambp.292/

[1] Alexander, J. W. A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA, Volume 9 (1923), pp. 93-95 | DOI

[2] Alexander, J. W. Topological invariants of knots and links, Trans. Amer. Math. Soc., Volume 30 (1928), pp. 275-306 | DOI | MR

[3] Artin, E. Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, Volume 4 (1925), pp. 47-72 | DOI

[4] Carmona, J. Monodromía de trenzas de curvas algebraicas planas, Universidad de Zaragoza (2003) (Ph. D. Thesis)

[5] Catanese, Fabrizio; Wajnryb, Bronislaw The 3-cuspidal quartic and braid monodromy of degree 4 coverings, Projective varieties with unexpected properties, Walter de Gruyter GmbH & Co. KG, Berlin, 2005, pp. 113-129 | MR | Zbl

[6] Cayley, A. A theorem on groups, Math. Ann., Volume 13 (1878) no. 4, pp. 561-565 | DOI | MR

[7] Chisini, O. Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser., Volume 66 (1933), pp. 1141-1155 | Zbl

[8] Cogolludo, J. I. Braid monodromy of algebraic curve, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 141-209 | DOI

[9] Cogolludo Agustín, J. I.; Florens, V. Twisted Alexander polynomials of plane algebraic curves, J. Lond. Math. Soc. (2), Volume 76 (2007) no. 1, pp. 105-121 | DOI | MR | Zbl

[10] Degtyarev, A. I. A divisibility theorem for the Alexander polynomial of a plane algebraic curve, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 280 (2001) no. Geom. i Topol. 7, p. 146-156, 300 | DOI | MR | Zbl

[11] Dehn, M. Über die Topologie des dreidimensionalen Raumes, Math. Ann., Volume 69 (1910) no. 1, pp. 137-168 | DOI | MR

[12] Dehn, M. Die beiden Kleeblattschlingen, Math. Ann., Volume 75 (1914) no. 3, pp. 402-413 | DOI | MR

[13] Dyck, Walther Gruppentheoretische Studien, Math. Ann., Volume 20 (1882) no. 1, pp. 1-44 | DOI | MR

[14] Fox, R.; Neuwirth, L. The braid groups, Math. Scand., Volume 10 (1962), pp. 119-126 | MR | Zbl

[15] Fox, R. H. On the complementary domains of a certain pair of inequivalent knots, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math., Volume 14 (1952), pp. 37-40 | MR | Zbl

[16] Franz, Wolfgang Über die Torsion einer Überdeckung., J. Reine Angew. Math., Volume 173 (1935), pp. 245-254 | DOI | Zbl

[17] Friedl, Stefan; Vidussi, Stefano Twisted Alexander polynomials and symplectic structures, Amer. J. Math., Volume 130 (2008) no. 2, pp. 455-484 | DOI | MR | Zbl

[18] González-Meneses, Juan Basic results on braid groups, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 15-59 | DOI

[19] Hurwitz, A. Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891) no. 1, pp. 1-60 | DOI | MR

[20] Kampen, Egbert R. Van On the Fundamental Group of an Algebraic Curve, Amer. J. Math., Volume 55 (1933) no. 1-4, pp. 255-267 | DOI | MR | Zbl

[21] Kirk, Paul; Livingston, Charles Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, Volume 38 (1999) no. 3, pp. 635-661 | DOI | MR | Zbl

[22] Kirk, Paul; Livingston, Charles Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl

[23] Kitano, Teruaki Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., Volume 174 (1996) no. 2, pp. 431-442 http://projecteuclid.org/getRecord?id=euclid.pjm/1102365178 | MR | Zbl

[24] Kulikov, Vik. S.; Taĭkher, M. Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat., Volume 64 (2000) no. 2, pp. 89-120 | DOI | MR | Zbl

[25] Libgober, A. Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J., Volume 49 (1982) no. 4, pp. 833-851 http://projecteuclid.org/getRecord?id=euclid.dmj/1077315533 | DOI | MR | Zbl

[26] Libgober, A. On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math., Volume 367 (1986), pp. 103-114 | DOI | MR | Zbl

[27] Libgober, A. Invariants of plane algebraic curves via representations of the braid groups, Invent. Math., Volume 95 (1989) no. 1, pp. 25-30 | DOI | MR | Zbl

[28] Libgober, A. Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) (NATO Sci. Ser. II Math. Phys. Chem.), Volume 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 215-254 | MR | Zbl

[29] Lin, Xiao Song Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.), Volume 17 (2001) no. 3, pp. 361-380 | DOI | MR | Zbl

[30] Magnus, Wilhelm Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann., Volume 109 (1934) no. 1, pp. 617-646 | DOI | MR | Zbl

[31] Massuyeau, G. An introduction to the abelian Reidemeister torsion of three-dimensional manifolds, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 61-140 | DOI

[32] Milnor, J. Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl

[33] Milnor, John A duality theorem for Reidemeister torsion, Ann. of Math. (2), Volume 76 (1962), pp. 137-147 | DOI | MR | Zbl

[34] Moishezon, B. Algebraic surfaces and the arithmetic of braids. I, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser Boston, Boston, MA, 1983, pp. 199-269 | MR | Zbl

[35] Papakyriakopoulos, C. D. On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2), Volume 66 (1957), pp. 1-26 | DOI | MR | Zbl

[36] Papakyriakopoulos, C. D. On Dehn’s lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A., Volume 43 (1957), pp. 169-172 | DOI | MR | Zbl

[37] Turaev, V. G. Reidemeister torsion in knot theory, Uspekhi Mat. Nauk, Volume 41 (1986) no. 1(247), p. 97-147, 240 | MR | Zbl

[38] Turaev, Vladimir Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 (Notes taken by Felix Schlenk) | MR | Zbl

[39] Wada, Masaaki Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994) no. 2, pp. 241-256 | DOI | MR | Zbl

[40] Waldhausen, Friedhelm On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88 | DOI | MR | Zbl

[41] Wirtinger, W. Über die Verzweigungen bei Funktionen von zwei Veränderlichen, Jahresberichte D. M. V., Volume 14 (1905), pp. 517

[42] Wirtinger, W. Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Math. Ann., Volume 97 (1927) no. 1, pp. 357-375 | DOI | MR

[43] Zariski, Oscar On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math., Volume 51 (1929) no. 2, pp. 305-328 | DOI | MR

Cité par Sources :