Basic results on braid groups
[Resultats basiques dans les groupes de tresses.]
Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 1, pp. 15-59.

Cet article contient les notes d’un course donné par l’auteur à l’Ecole Franco-Espagnole Tresses in Pau, qui a eu lieu à Pau (France) en Octobre 2009. Il s’agit essentiellement d’une introduction aux différents points des vue et techniques qui peuvent être utilisées pour montrer des résultats dans les groupes de tresses. En utilisant ces techniques on montre quelques résultats bien connus dans les groupes de tresses, à savoir l’exactitude de la presentation d’Artin, le fait que les groupes de tresses sont sans torsion, ou que son centre est engendré par le full twist. On rappelle quelques solutions des problèmes du mot et de la conjugaison, et aussi que les racines d’une tresse sont toutes conjuguées. On décrit aussi le centralisateur d’une tresse donnée. La plupart des preuves sont classiques, en utilisant de la terminologie moderne. J’ai choisi celles qui je trouve plus simples ou plus jolies.

These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.

DOI : 10.5802/ambp.293
Classification : 20F36
Keywords: Braids, torsion-free, presentation, Garside, Nielsen-Thurston theory
Mot clés : Tresses, groupes d’Artin-Tits
González-Meneses, Juan 1

1 Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN
@article{AMBP_2011__18_1_15_0,
     author = {Gonz\'alez-Meneses, Juan},
     title = {Basic results on braid groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {15--59},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {18},
     number = {1},
     year = {2011},
     doi = {10.5802/ambp.293},
     mrnumber = {2830088},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.293/}
}
TY  - JOUR
AU  - González-Meneses, Juan
TI  - Basic results on braid groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2011
SP  - 15
EP  - 59
VL  - 18
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.293/
DO  - 10.5802/ambp.293
LA  - en
ID  - AMBP_2011__18_1_15_0
ER  - 
%0 Journal Article
%A González-Meneses, Juan
%T Basic results on braid groups
%J Annales mathématiques Blaise Pascal
%D 2011
%P 15-59
%V 18
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.293/
%R 10.5802/ambp.293
%G en
%F AMBP_2011__18_1_15_0
González-Meneses, Juan. Basic results on braid groups. Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 1, pp. 15-59. doi : 10.5802/ambp.293. http://www.numdam.org/articles/10.5802/ambp.293/

[1] Alexander, J. W. On the Deformation of an n-Cell, Proc. of the Nat. Acad. of Sci. of the USA., Volume 9 (12) (1923), pp. 406-407 | DOI | JFM

[2] Artin, E. Theorie der Zöpfe, Abh. Math. Sem. Hamburgischen Univ., Volume 4 (1925), pp. 47-72 | DOI | JFM

[3] Artin, E. The theory of braids, Annals of Math., Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl

[4] Bacardit, L.; Dicks, W. Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, Groups - Complexity - Criptology, Volume 1 (2009), pp. 77-129 | DOI | MR | Zbl

[5] Baumslag, G. Automorphisms groups of residually finite groups, J. London Math. Soc., Volume 38 (1963), pp. 117-118 | DOI | MR | Zbl

[6] Bessis, D. Garside categories, periodic loops and cyclic sets (2006) (arxiv.org/abs/math.GR/0610778)

[7] Bessis, D.; Digne, F.; Michel, J. Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math., Volume 205 (2) (2002), pp. 287-309 | DOI | MR | Zbl

[8] Bigelow, S. J. Braid groups are linear, J. Amer. Math. Soc., Volume 14 (2) (2001), pp. 471-486 | DOI | MR | Zbl

[9] Birman, J. S. braids, links and mapping class groups. Annals of Mathematics Studies, No. 82., Princeton University Press, Princeton, N.J., 1974 | MR | Zbl

[10] Birman, J. S.; Gebhardt, V.; González-Meneses, J. Conjugacy in Garside groups. I. Cyclings, powers and rigidity, Groups Geom. Dyn., Volume 1 (3) (2007), pp. 221-279 | DOI | MR | Zbl

[11] Birman, J. S.; Gebhardt, V.; González-Meneses, J. Conjugacy in Garside groups. III. Periodic braids, J. Algebra, Volume 316 (2) (2007), pp. 746-776 | DOI | MR | Zbl

[12] Birman, J. S.; Ko, K.-H.; Lee, S. J. A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (2) (1998), pp. 322-353 | DOI | MR | Zbl

[13] Birman, J. S.; Lubotzky, A.; McCarthy, J. Abelian and solvable subgroups of the mapping class groups, Duke Math. J., Volume 50 (4) (1983), pp. 1107-1120 | DOI | MR | Zbl

[14] Bohnenblust, F. The algebraical braid group, Ann. of Math. (2), Volume 48 (1947), pp. 127-136 | DOI | MR | Zbl

[15] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl

[16] Brieskorn, E.; Saito, K. Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl

[17] Cha, J. C.; Livingstone, C.; Durbin, M. Braid group calculator

[18] Charney, R. Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (4) (1992), pp. 671-683 | DOI | MR | Zbl

[19] Chow, W.-L. On the algebraical braid group, Ann. of Math. (2), Volume 49 (1948), pp. 654-658 | DOI | MR | Zbl

[20] Cohen, A. M.; Wales, D. B. Linearity of Artin groups of finite type, Israel J. Math., Volume 131 (2002), pp. 101-123 | DOI | MR | Zbl

[21] Constantin, A.; Kolev, B. The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, L’Enseign. Math., Volume 40 (1994), pp. 193-204 | MR | Zbl

[22] Dehornoy, P. Braid groups and left distributive operations, Trans. Amer. Math. Soc., Volume 345 (1) (1994), pp. 115-150 | DOI | MR | Zbl

[23] Dehornoy, P. Left-Garside categories, self-distributivity, and braids, Ann. Math. Blaise Pascal, Volume 16 (2009), pp. 189-244 | DOI | Numdam | MR | Zbl

[24] Dehornoy, P.; Dynnikov, I.; Rolfsen, D.; Wiest, B. Why are braids orderable?, Panoramas et Synthèses 14. Société Mathématique de France, Paris, 2002 | MR | Zbl

[25] Dehornoy, P.; Dynnikov, I.; Rolfsen, D.; Wiest, B. Ordering braids, Mathematical Surveys and Monographs, 148. American Mathematical Society, Providence, RI, 2008 | MR | Zbl

[26] Dehornoy, P.; Paris, L. Gaussian groups and Garside groups, two generalisations of Artin groups., Proc. London Math. Soc. (3), Volume 79 (3) (1999), pp. 569-604 | DOI | MR | Zbl

[27] Digne, F. On the linearity of Artin braid groups, J. Algebra, Volume 268 (1) (2003), pp. 39-57 | DOI | MR | Zbl

[28] Digne, F.; Michel, J. Garside and locally Garside categories (2006) (arxiv.org/abs/math/0612652)

[29] Eilenberg, S. Sur les transformations périodiques de la surface de la sphère, Fund. Math., Volume 22 (1934), pp. 28-44 | Zbl

[30] El-Rifai, E. A.; Morton, H. R. Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2), Volume 45 (180) (1994), pp. 479-497 | DOI | MR | Zbl

[31] Epstein, D. B. A.; Cannon, J. W.; Holt, D. F.; Levy, S. V. F.; Paterson, M. S.; Thurston, W. P. Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl

[32] Fadell, E.; Neuwirth, L. Configuration spaces, Math. Scand., Volume 10 (1962), pp. 111-118 | MR | Zbl

[33] Fadell, E.; Van Buskirk, J. The braid groups of E 2 and S 2 , Duke Math. J., Volume 29 (1962), pp. 243-257 | DOI | MR | Zbl

[34] Fenn, R.; Greene, M. T.; Rolfsen, D.; Rourke, C.; Wiest, B. Ordering the braid groups, Pacific J. of Math., Volume 191 (1) (1999), pp. 49-74 | DOI | MR | Zbl

[35] Fox, R.; Neuwirth, L. The braid groups, Math. Scand., Volume 10 (1962), pp. 119-126 | MR | Zbl

[36] Franco, N.; González-Meneses, J. Conjugacy problem for braid groups and Garside groups, J. Algebra, Volume 266 (1) (2003), pp. 112-132 | DOI | MR | Zbl

[37] Garside, F. A. The braid group and other groups, Quart. J. Math. Oxford Ser. (2), Volume 20 (1969), pp. 235-254 | DOI | MR | Zbl

[38] Gebhardt, V. A new approach to the conjugacy problem in Garside groups, J. Algebra, Volume 292 (1) (2005), pp. 282-302 | DOI | MR | Zbl

[39] Gebhardt, Volker; González-Meneses, Juan The cyclic sliding operation in Garside groups, Math. Z., Volume 265 (2010) no. 1, pp. 85-114 | DOI | MR

[40] Gebhardt, Volker; González-Meneses, Juan Solving the conjugacy problem in Garside groups by cyclic sliding, Journal of Symbolic Computation, Volume 45 (2010) no. 6, pp. 629 -656 http://www.sciencedirect.com/science/article/B6WM7-4Y9CF87-1/2/5586e319f008d37a633c1f164a76aede | DOI | MR

[41] Geck, M.; Hiß, G.; Lübeck, F.; Malle, G.; Michel, J.; Pfeiffer, G. CHEVIE: computer algebra package for GAP3. (http://people.math.jussieu.fr/~jmichel/chevie/chevie.html)

[42] González-Meneses, J. Personal web page, http://personal.us.es/meneses

[43] González-Meneses, J. The n-th root of a braid is unique up to conjugacy, Alg. and Geom. Topology, Volume 3 (2003), pp. 1103-1118 | DOI | MR | Zbl

[44] González-Meneses, J. On reduction curves and Garside properties of braids, Contemporary Mathematics, Volume 538 (2011), pp. 227-244

[45] González-Meneses, J.; Wiest, B. On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. (4), Volume 37 (5) (2004), pp. 729-757 | Numdam | MR | Zbl

[46] Hall, M. Subgroups of finite index in free groups, Canadian J. of Math., Volume 1 (1949), pp. 187-190 | DOI | MR | Zbl

[47] Hée, Jean-Yves Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris, J. Algebra, Volume 321 (2009) no. 3, pp. 1039-1048 | DOI | MR | Zbl

[48] Hurwitz, A. Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1) (1891), pp. 1-60 | DOI | MR

[49] Ivanov, N. V. Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115. American Mathematical Society, Providence, RI, 1992 | MR | Zbl

[50] Kassel, C; Turaev, V. Braid groups, Graduate Texts in Mathematics, 247. Springer, New York, 2008 | MR

[51] Kerékjártó, B. von Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., Volume 80 (1919-1920), pp. 36-38 | DOI | MR

[52] Krammer, D. The braid group B 4 is linear, Invent. Math., Volume 142 (3) (2000), pp. 451-486 | DOI | MR | Zbl

[53] Krammer, D. Braid groups are linear, Ann. of Math. (2), Volume 155 (1) (2002), pp. 131-156 | DOI | MR | Zbl

[54] Krammer, D. A class of Garside groupoid structures on the pure braid group (2005) (arxiv.org/abs/math/0509165) | Zbl

[55] Lee, E.-K.; Lee, S. J. A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra, Volume 320 (2) (2008), pp. 783-820 | DOI | MR | Zbl

[56] Levi, F. Über die Untergruppen der freien gruppen II, Math. Z., Volume 37 (1933), pp. 90-97 | DOI | MR

[57] Magnus, W. Über Automorphismen von Fundamentalgruppen berandeter Flächen., Math. Ann., Volume 109 (1934), pp. 617-646 | DOI | MR

[58] Magnus, W. Residually finite groups, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 305-316 | DOI | MR | Zbl

[59] Magnus, W.; Karrass, A.; Solitar, D. Combinatorial group theory, Interscience Publishers (John Wiley & Sons, Inc.), New York-London-Sydney, 1966 | MR | Zbl

[60] Mal’cev, A. I. On isomorphic matrix representations of infinite groups, Mat. Sb., Volume 182 (1940), pp. 142-149

[61] Marin, I. On the residual nilpotence of pure Artin groups, J. Group Theory, Volume 9 (4) (2006), pp. 483-485 | DOI | MR | Zbl

[62] Markoff, A. Foundations of the algebraic theory of tresses. (Russian), Trav. Inst. Math. Stekloff, Volume 16 (1945), pp. 53 pp. | MR | Zbl

[63] McCarthy, J. D. Normalizers and Centralizers of pseudo-Anosov mapping classes (1982) (Preprint)

[64] Nielsen, J. Abbildungsklassen endlicher Ordnung, Acta Math., Volume 75 (1943), pp. 23-115 | DOI | MR | Zbl

[65] Ore, O. Linear equations in non-commutative fields, Ann. of Math. (2), Volume 32 (3) (1931), pp. 463-477 | DOI | MR

[66] Orlik, P.; Terao, H. Arrangements of hyperplanes., Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992 | MR | Zbl

[67] Paris, L. Artin monoids inject in their groups, Commen. Math. Helv., Volume 77 (3) (2002), pp. 609-637 | DOI | MR | Zbl

[68] Paris, L.; Papadopoulos., A. Braid groups and Artin groups, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., 13. Eur. Math. Soc., 2009, pp. 389-451 | MR

[69] Thurston, W. P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., Volume 19 (2) (1988), pp. 417-431 | DOI | MR | Zbl

[70] Zariski, O. On the Poincaré group of rational plane curves, Amer. J. of Math., Volume 58 (3) (1936), pp. 607-619 | DOI | MR

Cité par Sources :