Successive Approximation of Neutral Functional Stochastic Differential Equations in Hilbert Spaces
[Approximations successives pour les équations fonctionelles stochastiques de type neutre dans un espace de Hilbert.]
Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 183-197.

En utilisant la méthode des approximations successives, nous allons montrer un résultat d’existence et d’unicité, sous des conditions non Lipschitziennes, pour une classe d’équations fonctionelles stochastiques de type neutre dans un espace de Hilbert.

By using successive approximation, we prove existence and uniqueness result for a class of neutral functional stochastic differential equations in Hilbert spaces with non-Lipschitzian coefficients

DOI : 10.5802/ambp.282
Classification : 60H20, 34F05, 34G20
Keywords: Semigroup of bounded linear operator, Fractional powers of closed operators, Successive approximation, Mild solution, Cylindrical $Q$-Wiener process.
Mot clés : Semigroupe des operteurs lineaires bornés, Puissance fractionnaire d’un opérateur borné, Approximation succéssive, Processus de Wiener.
Boufoussi, Brahim 1 ; Hajji, Salah 1

1 Department of Mathematics Cadi Ayyad University Semlalia Faculty of Sciences 2390 Marrakesh Morocco
@article{AMBP_2010__17_1_183_0,
     author = {Boufoussi, Brahim and Hajji, Salah},
     title = {Successive {Approximation} of {Neutral} {Functional} {Stochastic} {Differential} {Equations} in {Hilbert} {Spaces}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {183--197},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {1},
     year = {2010},
     doi = {10.5802/ambp.282},
     zbl = {1197.34162},
     mrnumber = {2674658},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.282/}
}
TY  - JOUR
AU  - Boufoussi, Brahim
AU  - Hajji, Salah
TI  - Successive Approximation of Neutral Functional Stochastic Differential Equations in Hilbert Spaces
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
SP  - 183
EP  - 197
VL  - 17
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.282/
DO  - 10.5802/ambp.282
LA  - en
ID  - AMBP_2010__17_1_183_0
ER  - 
%0 Journal Article
%A Boufoussi, Brahim
%A Hajji, Salah
%T Successive Approximation of Neutral Functional Stochastic Differential Equations in Hilbert Spaces
%J Annales mathématiques Blaise Pascal
%D 2010
%P 183-197
%V 17
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.282/
%R 10.5802/ambp.282
%G en
%F AMBP_2010__17_1_183_0
Boufoussi, Brahim; Hajji, Salah. Successive Approximation of Neutral Functional Stochastic Differential Equations in Hilbert Spaces. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 183-197. doi : 10.5802/ambp.282. http://www.numdam.org/articles/10.5802/ambp.282/

[1] Bihari, I. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta. Math., Acad. Sci. Hungar, Volume 7 (1956), pp. 71-94 | DOI | MR | Zbl

[2] Caraballo, T.; Real, J.; Taniguchi, T. The exponential stability of neutral stochastic delay partial differential equations, Discrete Contin. Dyn. Syst., Volume 18 (2007) no. 2-3, pp. 295-313 | MR | Zbl

[3] DaPrato, J. G. Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[4] Datko, R. Linear autonomous neutral differential equations in Banach spaces, J. Diff. Eqns, Volume 25 (1977), pp. 258-274 | DOI | MR | Zbl

[5] Goldstein, Jerome A. Semigroups of linear operators and applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985 | MR | Zbl

[6] Govindan, T.E. Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics: An International Journal of Probability and Stochastic Processes, Volume 77 (2005), pp. 139-154 | DOI | MR | Zbl

[7] Kolmanovskii, V.; Koroleva, N.; Maizenberg, T.; Mao, X.; Matasov, A. Neutral stochastic differential delay equations with Markovian switching, Stochastic Anal. Appl, Volume 21(4) (2003), pp. 819-847 | DOI | MR | Zbl

[8] Kolmanovskii, V.B.; Nosov, V.R. Stability of functional differential equations, Academic Press, 1986 | MR | Zbl

[9] Liu, K. Uniform stability of autonomous linear stochastic fuctional differential equations in infinite dimensions, Stochastic Process. Appl, Volume 115 (2005), pp. 1131-1165 | DOI | MR | Zbl

[10] Liu, K.; Xia, X. On the exponential stability in mean square of neutral stochastic functional differential equations, Systems Control Lett, Volume 37(4) (1999), pp. 207-215 | DOI | MR | Zbl

[11] Mahmudov, N.I. Existence and uniqueness results for neutral SDEs in Hilbert spaces, Stochastic Analysis and Applications, Volume 24 (2006), pp. 79-95 | DOI | MR | Zbl

[12] Mao, X. Exponential stability in mean square of neutral stochastic differential functional equations, Systems and Control Letters, Volume 26 (1995), pp. 245-251 | DOI | MR | Zbl

[13] Mao, X. Razumikhin-type theorems on exponential stability of neutral stochastic functional-differential equations, SIAM J. Math. Anal, Volume 28(2) (1997), pp. 389-401 | DOI | MR | Zbl

[14] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983 | MR | Zbl

[15] Wu, J. Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences Volume 119, Springer-Verlag, New York, 1996 | MR | Zbl

Cité par Sources :