We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.
Mots-clés : Riemann-Liouville operator, Fourier transform, Paley-Wiener-Schwartz theorems
@article{AMBP_2009__16_2_355_0, author = {Rachdi, Lakhdar Tannech and Rouz, Ahlem}, title = {On the range of the {Fourier} transform connected with {Riemann-Liouville} operator}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {355--397}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.272}, zbl = {1179.42019}, mrnumber = {2568871}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.272/} }
TY - JOUR AU - Rachdi, Lakhdar Tannech AU - Rouz, Ahlem TI - On the range of the Fourier transform connected with Riemann-Liouville operator JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 355 EP - 397 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.272/ DO - 10.5802/ambp.272 LA - en ID - AMBP_2009__16_2_355_0 ER -
%0 Journal Article %A Rachdi, Lakhdar Tannech %A Rouz, Ahlem %T On the range of the Fourier transform connected with Riemann-Liouville operator %J Annales mathématiques Blaise Pascal %D 2009 %P 355-397 %V 16 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.272/ %R 10.5802/ambp.272 %G en %F AMBP_2009__16_2_355_0
Rachdi, Lakhdar Tannech; Rouz, Ahlem. On the range of the Fourier transform connected with Riemann-Liouville operator. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 355-397. doi : 10.5802/ambp.272. http://www.numdam.org/articles/10.5802/ambp.272/
[1] Vorlesungen Über Approximations Theorie, Akademieverlag, Berlin, 1953 | MR | Zbl
[2] On the determination of a function from spherical averages, SIAM. J. Math Anal, Volume 19 (1988), pp. 214-234 | DOI | MR | Zbl
[3] Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Internat. J. Math. Math. Sci. 2006, Article ID 86238 (2006), pp. 1-26 | MR | Zbl
[4] A property of infinitely differentiable functions, Proc. Amer. Math. Soc, Volume 108 (1990), pp. 73-76 | DOI | MR | Zbl
[5] Entire Functions, Academic Press, New-York, 1954 | MR | Zbl
[6] Higher Transcendental Functions, I, Mc Graw-Hill Book Compagny, New-York, 1953
[7] Tables of Integral Transforms, II, Mc Graw-Hill Book Compagny, New-York, 1954
[8] Inversion of N-dimensional spherical means, SIAM. J. Appl. Math., Volume 45 (1985), pp. 336-341 | DOI | MR | Zbl
[9] An inverse method for the processing of synthetic aperture radar data, Inv. Prob., Volume 3 (1987), pp. 111-124 | DOI | MR | Zbl
[10] A numerical Implementation of An Inverse Formula for CARABAS Raw Data, National Defense Research Institute, Internal Report D 30430-3.2, Linköping, Sweden, 1986
[11] On Inequalities Between Upper Bounds of the Successive Derivatives of an Arbitrary Function on an Infinite Interval, 4, Amer. Math. Soc. Translation, 1949 | MR | Zbl
[12] Special Functions and Their Applications, Dover publications, Inc., New-York, 1972 | MR | Zbl
[13] Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. Appl., Volume 196 (1995), pp. 861-884 | DOI | MR | Zbl
[14] Weyl transforms associated with the spherical mean operator, Anal. Appl., Volume 1 (2003), pp. 141-164 (No. 2) | DOI | MR | Zbl
[15] Theory of Distributions, I, Hermann, Paris, 1957
[16] Theorie des Distributions, Hermann, Paris, 1978 | MR | Zbl
[17] Functions of exponential type, Ann. of Math., Volume 65, No 2 (1957), pp. 582-592 | DOI | MR | Zbl
[18] Convergence of convolution operators, Studia.Math., Volume 42 (1972), pp. 249-257 | MR | Zbl
[19] Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur , J. Math. Pures Appl., Volume 60 (1981), pp. 51-98 | MR | Zbl
[20] Inversion of the Lions translation operator using generalized wavelets, Appl. Comput. Harmonic Anal., Volume 4 (1997), pp. 97-112 | DOI | MR | Zbl
[21] On the range of the Hankel and extended Hankel transforms, J. Math. Anal. Appl., Volume 209 (1997), pp. 460-478 | DOI | MR | Zbl
[22] A treatise on the Theory of Bessel functions, 2nd ed. Cambridge Univ. Press., London/New-York, 1966 | MR | Zbl
Cité par Sources :