Necessary condition for measures which are (L q ,L p ) multipliers
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 339-353.

Soit G un groupe localement compact et ρ la mesure de Haar à gauche sur G. Etant donné une mesure de Radon positive μ, nous établissons une condition nécessaire sur les couples q,p pour lesquels μ est un multiplicateur de L q G,ρ dans L p G,ρ. Appliqué à n , notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].

Lorsque G est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.

Let G be a locally compact group and ρ the left Haar measure on G. Given a non-negative Radon measure μ, we establish a necessary condition on the pairs q,p for which μ is a multiplier from L q G,ρ to L p G,ρ. Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].

When G is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

DOI : 10.5802/ambp.271
Classification : 43A05, 43A15
Keywords: Cantor-Lebesgue measure, $L^{q}$-improving measure, non-negative Radon measure
Mots-clés : Mesure de Cantor-Lebesgue, mesure $L^{q}$-improving, mesure de Radon positive
Kpata, Bérenger Akon 1 ; Fofana, Ibrahim 1 ; Koua, Konin 1

1 UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22 Côte d’Ivoire
@article{AMBP_2009__16_2_339_0,
     author = {Kpata, B\'erenger Akon and Fofana, Ibrahim and Koua, Konin},
     title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {339--353},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {2},
     year = {2009},
     doi = {10.5802/ambp.271},
     zbl = {1178.43001},
     mrnumber = {2568870},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.271/}
}
TY  - JOUR
AU  - Kpata, Bérenger Akon
AU  - Fofana, Ibrahim
AU  - Koua, Konin
TI  - Necessary condition for measures which are $(L^{q},L^{p})$ multipliers
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 339
EP  - 353
VL  - 16
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.271/
DO  - 10.5802/ambp.271
LA  - en
ID  - AMBP_2009__16_2_339_0
ER  - 
%0 Journal Article
%A Kpata, Bérenger Akon
%A Fofana, Ibrahim
%A Koua, Konin
%T Necessary condition for measures which are $(L^{q},L^{p})$ multipliers
%J Annales mathématiques Blaise Pascal
%D 2009
%P 339-353
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.271/
%R 10.5802/ambp.271
%G en
%F AMBP_2009__16_2_339_0
Kpata, Bérenger Akon; Fofana, Ibrahim; Koua, Konin. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 339-353. doi : 10.5802/ambp.271. http://www.numdam.org/articles/10.5802/ambp.271/

[1] Beckner, William; Janson, Svante; Jerison, David Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (Wadsworth Math. Ser.), Wadsworth, Belmont, CA, 1983, pp. 32-43 | MR

[2] Bonami, A. Étude des coefficients de Fourier des fonctions de L p G, Ann. Inst. Fourier (Grenoble), Volume 20 (1970), pp. 335-402 | DOI | Numdam | MR | Zbl

[3] Christ, M. A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Volume vol. 1, n. ∘ 4 (1985), pp. 79-83 | MR | Zbl

[4] Falconer, K. J The geometry of fractal sets, Cambridge University Press, London/New York, 1985 | MR | Zbl

[5] Falconer, K. J Fractal geometry, Wiley, New York, 1990 | MR | Zbl

[6] Fofana, I. Continuité de l’intégrale fractionnaire et espaces L q ,l p α , C. R. A. S. Paris, Volume t. 308, série I (1989), pp. 525-527 | MR | Zbl

[7] Fofana, I. Transformation de Fourier dans L q ,l p α et M p,α , Afrika matematika, Volume série 3, vol. 5 (1995), pp. 53-76 | MR | Zbl

[8] Fofana, I. Espaces L q ,l p α et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika, Volume série 3, vol. 12 (2001), pp. 23-37 | MR | Zbl

[9] Graham, C. C.; Hare, K.; Ritter, D. The size of L p -improving measures, J. Funct. Anal., Volume 84 (1989), pp. 472-495 | DOI | MR | Zbl

[10] Larsen, R. An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York, 1971 | MR | Zbl

[11] Lau, K-S. Fractal Measures and Mean ρ-Variations, J. Funct. Anal., Volume 108 (1992), pp. 427-457 | DOI | MR | Zbl

[12] Oberlin, D. M. A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Volume 47 (1982), pp. 113-117 | MR | Zbl

[13] Oberlin, D. M. Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Volume 129 (2000), pp. 517-526 | DOI | MR | Zbl

[14] Oberlin, D. M. Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Volume 51 (2003), pp. 13-26 | DOI | MR | Zbl

[15] Oberlin, D. M. A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Volume 97 (2003) no. 1, pp. 23-28 | DOI | MR | Zbl

[16] Ritter, D. Most Riesz product measures are L p -improving, Proc. Amer. Math. Soc., Volume 97 (1986), pp. 291-295 | MR | Zbl

[17] Ritter, D. Some singular measures on the circle which improve L p spaces, Colloq. Math., Volume 52 (1987), pp. 133-144 | MR | Zbl

[18] Stein, E. M. Harmonic Analysis on n , 13, Studies in Harmonic Analysis, MAA Studies in Mathematics (1976), pp. 97-135 (Mathematical Association of America, Washington, D. C.) | MR | Zbl

[19] Zygmund, A. Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York, 1959 | MR | Zbl

Cité par Sources :