Soit
Lorsque
Let
When
Keywords: Cantor-Lebesgue measure,
Mots-clés : Mesure de Cantor-Lebesgue, mesure
@article{AMBP_2009__16_2_339_0, author = {Kpata, B\'erenger Akon and Fofana, Ibrahim and Koua, Konin}, title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {339--353}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.271}, zbl = {1178.43001}, mrnumber = {2568870}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.271/} }
TY - JOUR AU - Kpata, Bérenger Akon AU - Fofana, Ibrahim AU - Koua, Konin TI - Necessary condition for measures which are $(L^{q},L^{p})$ multipliers JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 339 EP - 353 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.271/ DO - 10.5802/ambp.271 LA - en ID - AMBP_2009__16_2_339_0 ER -
%0 Journal Article %A Kpata, Bérenger Akon %A Fofana, Ibrahim %A Koua, Konin %T Necessary condition for measures which are $(L^{q},L^{p})$ multipliers %J Annales mathématiques Blaise Pascal %D 2009 %P 339-353 %V 16 %N 2 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.271/ %R 10.5802/ambp.271 %G en %F AMBP_2009__16_2_339_0
Kpata, Bérenger Akon; Fofana, Ibrahim; Koua, Konin. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 339-353. doi : 10.5802/ambp.271. https://www.numdam.org/articles/10.5802/ambp.271/
[1] Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (Wadsworth Math. Ser.), Wadsworth, Belmont, CA, 1983, pp. 32-43 | MR
[2] Étude des coefficients de Fourier des fonctions de
[3] A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Volume vol. 1, n. ∘ 4 (1985), pp. 79-83 | MR | Zbl
[4] The geometry of fractal sets, Cambridge University Press, London/New York, 1985 | MR | Zbl
[5] Fractal geometry, Wiley, New York, 1990 | MR | Zbl
[6] Continuité de l’intégrale fractionnaire et espaces
[7] Transformation de Fourier dans
[8] Espaces
[9] The size of
[10] An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York, 1971 | MR | Zbl
[11] Fractal Measures and Mean
[12] A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Volume 47 (1982), pp. 113-117 | MR | Zbl
[13] Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Volume 129 (2000), pp. 517-526 | DOI | MR | Zbl
[14] Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Volume 51 (2003), pp. 13-26 | DOI | MR | Zbl
[15] A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Volume 97 (2003) no. 1, pp. 23-28 | DOI | MR | Zbl
[16] Most Riesz product measures are
[17] Some singular measures on the circle which improve
[18] Harmonic Analysis on
[19] Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York, 1959 | MR | Zbl
Cité par Sources :