On généralise quelques résultats par Goldshtein, Kuzminov et Shvedov sur la cohomologie des cylindres tordus à cohomologie pour . Comme application, on établit des conditions suffisantes pour la non-nullité de la torsion d’une surface de révolution.
We extend some results by Goldshtein, Kuzminov, and Shvedov about the -cohomology of warped cylinders to -cohomology for . As an application, we establish some sufficient conditions for the nontriviality of the -torsion of a surface of revolution.
Keywords: Differential form, $L_{p,q}$-cohomology, $L_{p,q}$-torsion, warped cylinder
Mot clés : Forme différentielle, cohomologie $L_{p,q}$, torsion $L_{p,q}$, cylindre tordu
@article{AMBP_2009__16_2_321_0, author = {Kopylov, Yaroslav}, title = {$L_{p,q}$-cohomology of warped cylinders}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {321--338}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.270}, zbl = {1196.53025}, mrnumber = {2568869}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.270/} }
TY - JOUR AU - Kopylov, Yaroslav TI - $L_{p,q}$-cohomology of warped cylinders JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 321 EP - 338 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.270/ DO - 10.5802/ambp.270 LA - en ID - AMBP_2009__16_2_321_0 ER -
Kopylov, Yaroslav. $L_{p,q}$-cohomology of warped cylinders. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 321-338. doi : 10.5802/ambp.270. http://www.numdam.org/articles/10.5802/ambp.270/
[1] Weighted inequalities of Hardy type, Siberian Math. J., Volume 30 (1989) no. 1, pp. 8-16 | DOI | MR | Zbl
[2] On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace Operator (Proc. Sympos. Pure Math.), Volume 36, Amer. Math. Soc., Providence, 1980, pp. 91-146 | MR | Zbl
[3] Differential forms on Lipschitz manifolds, Siberian Math. J., Volume 23 (1982) no. 2, pp. 151-161 | DOI | Zbl
[4] Integration of differential forms of the classes , Siberian Math. J., Volume 23 (1982) no. 5, pp. 640-653 | DOI | Zbl
[5] Wolfe’s theorem for differential forms of classes , Siberian Math. J., Volume 24 (1983) no. 5, pp. 672-681 | DOI | Zbl
[6] A property of the de Rham regularization operator, Siberian Math. J., Volume 25 (1984) no. 2, pp. 251-257 | DOI | Zbl
[7] The integral representation of the integral of a differential form, Functional Analysis and Mathematical Physics, Collect. Sci. Works, Inst. Mat. Sib. Otd. Akad Nauk SSSR, Novosibirsk, 1985, pp. 53-87 | Zbl
[8] Normal and compact solvability of linear operators, Siberian Math. J., Volume 30 (1989) no. 5, pp. 704-712 | DOI | MR | Zbl
[9] -cohomology of warped cylinders, Siberian Math. J., Volume 31 (1990) no. 6, pp. 919-925 | DOI | MR | Zbl
[10] Reduced -cohomology of warped cylinders, Siberian Math. J., Volume 31 (1990) no. 5, pp. 716-727 | DOI | MR | Zbl
[11] The -cohomology of SOL, Ann. Fac. Sci. Toulouse Math. (6), Volume 7 (1998) no. 4, pp. 687-698 | Numdam | MR | Zbl
[12] Sobolev inequalities for differential forms and -cohomology, J. Geom. Anal., Volume 16 (2006) no. 4, pp. 597-632 | MR | Zbl
[13] A conformal de Rham complex (2007) (Preprint arXiv:0711.1286v2. [math.CV])
[14] Distortion of mappings and -cohomology, Math. Z. (2009), pp. 264-279 | DOI
[15] -cohomology of Riemannian manifolds with negative curvature, Sobolev spaces in mathematics. II (Int. Math. Ser. (N. Y.)), Volume 9, Springer, New York, 2009, pp. 199-208 | MR
[16] Some properties of the operator of exterior derivation on surfaces of revolution and -cohomology, Complex Geometry of Groups (Contemp. Math.), Volume 240, Amer. Math. Soc., Providence, RI, 1999, pp. 247-257 | MR | Zbl
[17] -cohomology and normal solvability, Arch. Math., Volume 89 (2007) no. 1, pp. 87-96 | DOI | MR | Zbl
[18] Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category, Siberian Adv. Math., Volume 13 (2003) no. 3, pp. 72-80 | MR | Zbl
[19] On normal solvability of the operator of exterior derivation on warped products, Siberian Math. J., Volume 37 (1996) no. 2, pp. 276-287 | DOI | MR | Zbl
[20] Homological aspects of the theory of Banach complexes, Siberian Math. J., Volume 40 (1999) no. 4, pp. 754-763 | DOI | MR | Zbl
[21] Sobolev Spaces, Springer-Verlag, New York, 1985 | MR | Zbl
[22] On the Hodge decomposition in (2007) (Preprint arXiv:0710.5414v1 [math.FA])
Cité par Sources :