Some examples of harmonic maps for g-natural metrics
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 305-320.

On produit des nouveaux exemples d’applications harmoniques, ayant chacune comme espace de départ une variété (M,g) á courbure constante et comme espace d’arrivée son fibré tangent TM, muni d’une métrique g-naturelle Riemannienne appropriée. En particulier, on va déterminer une famille de métriques g-naturelles Riemanniennes G sur T𝕊2, par rapport auxquelles tous les champs de vecteurs gradients conformes définissent des applications harmoniques de 𝕊2 dans (T𝕊2,G).

We produce new examples of harmonic maps, having as source manifold a space (M,g) of constant curvature and as target manifold its tangent bundle TM, equipped with a suitable Riemannian g-natural metric. In particular, we determine a family of Riemannian g-natural metrics G on T𝕊2, with respect to which all conformal gradient vector fields define harmonic maps from 𝕊2 into (T𝕊2,G).

DOI : 10.5802/ambp.269
Classification : 58E20, 53C43
Mots-clés : harmonic map, tangent bundle, vector fields, g-natural metrics, spaces of constant curvature.
Abbassi, Mohamed Tahar Kadaoui 1 ; Calvaruso, Giovanni 2 ; Perrone, Domenico 2

1 Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco
2 Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.
@article{AMBP_2009__16_2_305_0,
     author = {Abbassi, Mohamed Tahar Kadaoui and Calvaruso, Giovanni and Perrone, Domenico},
     title = {Some examples of harmonic maps for $g$-natural metrics},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {305--320},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {2},
     year = {2009},
     doi = {10.5802/ambp.269},
     zbl = {1183.58008},
     mrnumber = {2568868},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ambp.269/}
}
TY  - JOUR
AU  - Abbassi, Mohamed Tahar Kadaoui
AU  - Calvaruso, Giovanni
AU  - Perrone, Domenico
TI  - Some examples of harmonic maps for $g$-natural metrics
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 305
EP  - 320
VL  - 16
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://www.numdam.org/articles/10.5802/ambp.269/
DO  - 10.5802/ambp.269
LA  - en
ID  - AMBP_2009__16_2_305_0
ER  - 
%0 Journal Article
%A Abbassi, Mohamed Tahar Kadaoui
%A Calvaruso, Giovanni
%A Perrone, Domenico
%T Some examples of harmonic maps for $g$-natural metrics
%J Annales mathématiques Blaise Pascal
%D 2009
%P 305-320
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.269/
%R 10.5802/ambp.269
%G en
%F AMBP_2009__16_2_305_0
Abbassi, Mohamed Tahar Kadaoui; Calvaruso, Giovanni; Perrone, Domenico. Some examples of harmonic maps for $g$-natural metrics. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 305-320. doi : 10.5802/ambp.269. https://www.numdam.org/articles/10.5802/ambp.269/

[1] Abbassi, M. T. K.; Calvaruso, G.; Perrone, D. Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics (2007) (Submitted, online version: arXiv:math/0710.3668) | MR | Zbl

[2] Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), Volume 41 (2005) no. 1, pp. 71-92 | EuDML | MR | Zbl

[3] Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl., Volume 22 (2005) no. 1, pp. 19-47 | DOI | MR | Zbl

[4] Baird, Paul; Wood, John C. Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press Oxford University Press, Oxford, 2003 | MR | Zbl

[5] Benyounes, M.; Loubeau, E.; Wood, C. M. Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., Volume 25 (2007) no. 3, pp. 322-334 | DOI | MR | Zbl

[6] Benyounes, M.; Loubeau, E.; Wood, C.M. Harmonic maps and sections on spheres (2008) (preprint)

[7] Eells, J.; Lemaire, L. A report on harmonic maps, Bull. London Math. Soc., Volume 10 (1978) no. 1, pp. 1-68 | DOI | MR | Zbl

[8] Eells, James Jr.; Sampson, J. H. Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl

[9] Ishihara, Tôru Harmonic sections of tangent bundles, J. Math. Tokushima Univ., Volume 13 (1979), pp. 23-27 | MR | Zbl

[10] Kolář, Ivan; Michor, Peter W.; Slovák, Jan Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] Nouhaud, Odette Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977) no. 14, p. A815-A818 | MR | Zbl

[12] Oniciuc, C. The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 43 (1997) no. 1, p. 151-172 (1998) | MR | Zbl

[13] Sampson, J. H. Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Volume 11 (1978) no. 2, pp. 211-228 | Numdam | MR | Zbl

[14] Sanini, Aristide Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7), Volume 3 (1983) no. 1, pp. 53-63 | MR | Zbl

[15] Urakawa, Hajime Calculus of variations and harmonic maps, Translations of Mathematical Monographs, 132, American Mathematical Society, Providence, RI, 1993 (Translated from the 1990 Japanese original by the author) | MR | Zbl

[16] Xin, Y. L. Some results on stable harmonic maps, Duke Math. J., Volume 47 (1980) no. 3, pp. 609-613 | DOI | MR | Zbl

  • References, Harmonic Vector Fields (2012), p. 491 | DOI:10.1016/b978-0-12-415826-9.00014-6
  • Benyounes, M.; Loubeau, E.; Todjihounde, L. Harmonic maps and Kaluza-Klein metrics on spheres, Rocky Mountain Journal of Mathematics, Volume 42 (2012) no. 3 | DOI:10.1216/rmj-2012-42-3-791
  • Calvaruso, Giovanni; Perrone, Domenico Harmonic morphisms and Riemannian geometry of tangent bundles, Annals of Global Analysis and Geometry, Volume 39 (2011) no. 2, p. 187 | DOI:10.1007/s10455-010-9230-4
  • Calvaruso, G. Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, Journal of Geometry and Physics, Volume 61 (2011) no. 2, p. 498 | DOI:10.1016/j.geomphys.2010.11.001
  • Perrone, Domenico Instability of the geodesic flow for the energy functional, Pacific Journal of Mathematics, Volume 249 (2011) no. 2, p. 431 | DOI:10.2140/pjm.2011.249.431

Cité par 5 documents. Sources : Crossref