Properties of subgroups not containing their centralizers
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 267-275.

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H. We also apply the main Theorem to the p-groups with center of index p 2 , for some prime p. For these groups we compute N c (G) the number of conjugacy classes and N a the number of abelian maximal subgroups and N na the number of nonabelian maximal subgroups.

DOI : 10.5802/ambp.266
Classification : 14L05, 20D25, 20K27, 20E28
Mots-clés : Maximal subgroup, divisible groups, p-groups, center, conjugacy classes
Noui, Lemnouar 1

1 Department of Mathematics Faculty of Science University of Batna, Algeria
@article{AMBP_2009__16_2_267_0,
     author = {Noui, Lemnouar},
     title = {Properties of subgroups not containing their centralizers},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {267--275},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {2},
     year = {2009},
     doi = {10.5802/ambp.266},
     zbl = {1196.20034},
     mrnumber = {2568865},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.266/}
}
TY  - JOUR
AU  - Noui, Lemnouar
TI  - Properties of subgroups not containing their centralizers
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 267
EP  - 275
VL  - 16
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.266/
DO  - 10.5802/ambp.266
LA  - en
ID  - AMBP_2009__16_2_267_0
ER  - 
%0 Journal Article
%A Noui, Lemnouar
%T Properties of subgroups not containing their centralizers
%J Annales mathématiques Blaise Pascal
%D 2009
%P 267-275
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.266/
%R 10.5802/ambp.266
%G en
%F AMBP_2009__16_2_267_0
Noui, Lemnouar. Properties of subgroups not containing their centralizers. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 267-275. doi : 10.5802/ambp.266. http://www.numdam.org/articles/10.5802/ambp.266/

[1] Reid, Michael The number of conjugacy classes, Amer. Math. Monthly, Volume 105 (1998) no. 4, pp. 359-361 | DOI | MR | Zbl

[2] Robinson, Derek J. S. Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York, 1972 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62) | MR | Zbl

[3] Robinson, Derek J. S. A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996 | MR | Zbl

[4] Sherman, Gary A lower bound for the number of conjugacy classes in a finite nilpotent group, Pacific J. Math., Volume 80 (1979) no. 1, pp. 253-254 | MR | Zbl

[5] Watson, N. Subgroups of finite abelian groups, 1995 (Summer research paper, Haverford College)

Cité par Sources :