Generalized Kummer theory and its applications
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 1, pp. 127-138.

In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that ζk and ωk where ζ is a primitive n-th root of unity and ω=ζ+ζ -1 . In particular, this result with ζk implies the classical Kummer theory. We also present a method for calculating not only the conductor but also the Artin symbols of the cyclic extension which is defined by the Rikuna polynomial.

DOI : 10.5802/ambp.259
Classification : 11R20, 12E10, 12G05
Mots-clés : Generic polynomial, Kummer theory, Artin symbol
Komatsu, Toru 1

1 Faculty of Mathematics Kyushu University 6-10-1 Hakozaki Higashiku Fukuoka, 812-8581 Japan
@article{AMBP_2009__16_1_127_0,
     author = {Komatsu, Toru},
     title = {Generalized {Kummer} theory and its applications},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {127--138},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {1},
     year = {2009},
     doi = {10.5802/ambp.259},
     zbl = {1188.11054},
     mrnumber = {2514533},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.259/}
}
TY  - JOUR
AU  - Komatsu, Toru
TI  - Generalized Kummer theory and its applications
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 127
EP  - 138
VL  - 16
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.259/
DO  - 10.5802/ambp.259
LA  - en
ID  - AMBP_2009__16_1_127_0
ER  - 
%0 Journal Article
%A Komatsu, Toru
%T Generalized Kummer theory and its applications
%J Annales mathématiques Blaise Pascal
%D 2009
%P 127-138
%V 16
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.259/
%R 10.5802/ambp.259
%G en
%F AMBP_2009__16_1_127_0
Komatsu, Toru. Generalized Kummer theory and its applications. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 1, pp. 127-138. doi : 10.5802/ambp.259. http://www.numdam.org/articles/10.5802/ambp.259/

[1] Chapman, R. J. Automorphism polynomials in cyclic cubic extensions, J. Number Theory, Volume 61 (1996), pp. 283-291 | DOI | MR | Zbl

[2] Hashimoto, K.; Rikuna, Y. On generic families of cyclic polynomials with even degree, Manuscripta Math., Volume 107 (2002), pp. 283-288 | DOI | MR | Zbl

[3] Jensen, C. U.; Ledet, A.; Yui, N. Generic polynomials, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[4] Kishi, Y. A family of cyclic cubic polynomials whose roots are systems of fundamental units, J. Number Theory, Volume 102 (2003), pp. 90-106 | DOI | MR | Zbl

[5] Komatsu, T. Potentially generic polynomial (To be submitted)

[6] Komatsu, T. Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory, Manuscripta Math., Volume 114 (2004), pp. 265-279 | DOI | MR | Zbl

[7] Komatsu, T. Cyclic cubic field with explicit Artin symbols, Tokyo Journal of Mathematics, Volume 30 (2007), pp. 169-178 | DOI | MR | Zbl

[8] Lecacheux, O. Units in number fields and elliptic curves, Advances in number theory, Oxford Univ. Press, New York, 1993, pp. 293-301 | MR | Zbl

[9] Morton, P. Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory, Volume 49 (1994), pp. 183-208 | DOI | MR | Zbl

[10] Ogawa, H. Quadratic reduction of multiplicative group and its applications, Surikaisekikenkyusho Kokyuroku, Volume 1324 (2003), pp. 217-224 | MR

[11] Rikuna, Y. On simple families of cyclic polynomials, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 2215-2218 | DOI | MR | Zbl

Cité par Sources :