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Stochastic fractional partial differential equations
driven by Poisson white noise

Salah Hajji

Abstract

We study a stochastic fractional partial differential equations of order α > 1
driven by a compensated Poisson measure. We prove existence and uniqueness of
the solution and we study the regularity of its trajectories.

Équations aux dérivées partielles fractionnaires stochastiques
dirigées par un bruit poissonnien

Résumé
On étudie une équation aux dérivées partielles stochastiques fractionnaires

d’ordre α > 1 dirigée par une mesure de Poisson compensée. On montre l’existence
et l’unicité de la solution et on étudie la régularité de ses trajectoires.

1. Introduction

In recent years fractional calculus knew a great progress considering their
applications in different fields of science, including numerical analysis,
physics, engineering, biology, economics and finance.
Partial differential equations is one of the mathematical domains where the
fractional calculus is strongly used (see Podlubny [8]). However, few pub-
lications treat stochastic partial differential equations involving fractional
derivatives. Most of them investigate evolution type equations, driven by a
fractional power of the Laplacian (see [3], [10]). These operators generate
symmetric stable semigroups when the order of derivation is less than 2.
Our idea is inspired by the paper of Debbi and Dozzi [5] in which the au-
thors studied a nonlinear stochastic fractional partial differential equations
of high order containing also derivatives of entire order and perturbed by

Keywords: Stochastic partial differential equations; fractional derivative operator; Pois-
son measure.
Math. classification: 26A33, 60H15.
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Gaussian white noise.
The aim of this paper is to generalize the result of [1] to nonlinear sto-
chastic fractional partial differential equations. We study the existence,
uniqueness and regularity of the solution of the following one-dimensional
stochastic fractional partial differential equation, formally given by
∂u

∂t
(t, x, ω) = Dδ

αu(t, x, ω) + f(t, u(t, x)) +
∫
U
g(t, u(t, x), z)Ñ(dt, dx, dz)

u(0, x) = u0(x) (1.1)

for t ∈ (0,+∞), x ∈ R, where (U ,B(U), q) is a σ finite measure space, Dα
δ

is the fractional differential operator with respect to the spacial variable,
f : (0,+∞)× R −→ R and g : (0,+∞)× R× U −→ R are measurable.
One rigorous formulations of the equation (1.1) can be given by the fol-
lowing integral equation

u(t, x) =
∫

R
Gα(t, x− y)u0(y)dy

+
∫ t

0

∫
R
Gα(t− s, x− y)f(s, u(s, y))dyds (1.2)

+
∫ t+

0

∫
R

∫
U
Gα(t− s, x− y)g(s, u(s−, y), z)Ñ(ds, dy, dz)

for t ∈ [0,+∞) and x ∈ R, where {Gα(t, x), x ∈ R, t ∈ [0,+∞)} stands
for the fundamental solution of the operator Dα

δ .
Some equations similar to equation (1.1) are studied also in [6] and [2],
but with the Laplacian operator in place of the operator Dα

δ .
We assume that the functions f and g satisfy the following growth and

Lipschitz conditions:
(H)
For all T > 0, there exists a constant K = KT , such that for all 0 ≤ t ≤
T, x, y ∈ R, z ∈ U

• |f(t, x)|2 +
∫
U |g(t, x, z)|2q(dz) ≤ KT (1 + |x|2)

• |f(t, x)− f(t, y)|2 +
∫
U |g(t, x, z)− g(t, y, z)|2q(dz) ≤ KT |x− y|2.

The remaining of the paper is structured as follows. In Section 2, we
give the definitions of stochastic integral with respect to Ñ(ds, dy, dz)
and the derivative operator Dα

δ , then we recall some inequalities satisfied
by the fundamental solution Gα and we precise the notion of solutions
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of the equation (1.1). Section 3 is dedicated to the proof of existence
and uniqueness of the solution. In Section 4 we prove the spatial Hölder
continuity of the solution.

2. Preliminaries and definitions

Let (Ω,F , P ) be a probability space equipped with a filtration {Ft} sat-
isfying the usual conditions. Let (U ,B(U), q) be a σ finite measure space
and let N be a Poisson measure on R+ × R × U with intensity measure
ν(ds, dx, dz) = dsdxq(dz). The compensated Poisson measure is denoted
by Ñ = N − ν.
Now, we define the stochastic integrals we will use.

2.1. Stochastic integral with respect to Ñ(ds, dy, dz)

Let us introduce the following class:

Fpred := {h(t, y, z, ω) : h is Ft predictable and ∀t > 0,

E

∫ t

0

∫
R

∫
U
|h(s, y, z)|2ν(ds, dy, dz) <∞

}
it is known (see Ikeda and Watanabe [7]) that for any t > 0, the stochastic
integral

∫ t+
0

∫
R

∫
U h(s, y, z)Ñ(ds, dy, dz), for h ∈ Fpred, can be well defined.

The stochastic integral has the following isometry property

E

{∫ t+

0

∫
R

∫
U
h(s, y, z)Ñ(ds, dy, dz)

}2

=

E

∫ t

0

∫
R

∫
U
|h(s, y, z)|2ν(ds, dy, dz) .

Thus for any t > 0,
∫ t+
0

∫
R

∫
U h(s, y, z)Ñ(ds, dy, dz) ∈ L2(Ω).

This integral can be extended to a more general class F of integrands
without the predictable property, in the following manner :

A function h is said to be of class F if is Ft adapted, and there exists
a sequence hn ∈ Fpred such that for any t > 0

E

∫ t

0

∫
R

∫
U
|hn(s, y, z)− h(s, y, z)|2ν(ds, dy, dz) → 0 as n→∞
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For h ∈ F , for any t > 0,
∫ t+
0

∫
R

∫
U h(s, y, z)Ñ(ds, dy, dz) is defined as the

L2(Ω)-limit of the following Cauchy sequence

{
∫ t+

0

∫
R

∫
U
hn(s, y, z)Ñ(ds, dy, dz)}n∈N

(see Albeverio et al. [1] for more details).

2.2. Definition of the operator Dα
δ

The fractional differential operator Dα
δ is an extension of the inverse of

the generalized Riesz-Feller Potential when α > 2. It is given for α > 0 by

Definition 2.1. The fractional differential Dα
δ is given by

Dα
δ ϕ = F−1{ψα.Fϕ}

where
ψα(λ) = −|λ|αe−iδ

π
2
sgn(λ).

|δ| ≤ min{α − [α]2, 2 + [α]2 − α}, [α]2 is the largest even integer less or
equal to α, and δ = 0 when α ∈ 2N+1. F (respectively F−1) is the Fourier
(respectively Fourier inverse) transform.
The operator Dα

δ is a closed, densely defined operator on L2(R) and it
is the infinitesimal generator of a semigroup which is in general not sym-
metric and not a contraction. It is selfadjoint only when δ = 0 and in this
case, it coincides with the fractional power of the Laplacian. When α = 2
it is the Laplacian itself (see [4, 5]).

The Green function Gα(t, x) associated to the equation (1.1) is the
fundamental solution of the Cauchy problem

∂

∂t
G(t, x) = Dδ

αG(t, x), t > 0, x ∈ R,

G(0, x) = δ0(x).

Using Fourier’s calculus we obtain

Gα(t, x) = F−1{eδψα(λ)t;x} =
1
2π

∫ +∞

−∞
exp(−iλx− t|λ|αe−iδ

π
2
sgn(λ))dλ.

Let us recall some well-known properties, (see [5]), of the Green kernel Gα
which will be used later.

Lemma 2.2. For α ∈ (0,+∞)
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(1)
∫
RGα(t, x)dx = 1.

(2) Gα(t, x) satisfy the semigroup property, i.e. for 0 < s < t

Gα(t+ s, x) =
∫

R
Gα(t, y)Gα(s, x− y)dy.

(3) For 0 < α ≤ 2, the function Gα(t, .) is the density of a Lévy stable
process in time t.

(4) For fixed t, Gα(t, .) ∈ S∞={f ∈ C∞ and ∂k

∂xk f is bounded and
tends to zero when |x| tend to ∞, ∀k ∈ N}.

(5) ∂nGα
∂xn (t, x) = t−

n+1
α

∂nGα
∂ξn (1, ξ)|

ξ=t−
1
α x
, for all n ≥ 0.

(6) Let α ∈ (1,+∞). Then there exists a constant Kα such that

• |Gα(1, x)| ≤ Kα(1 + |x|1+α)−1,
• |Gnα(1, x)| ≤ Kα

1+|x|α+n−1

(1+|x|α+n)2
.

(7) For α ∈ (1,+∞), for any fixed n ∈ N, and T ≥ 0 , for γ such that
1

α+n+1 < γ < α+1
n+1 ,∫ T

0

∫ +∞

−∞
|∂
nGα
∂yn

(s, y)|γdyds <∞.

In this paper, we restrict ourselves to the case α > 1 in order that∫ T
0

∫
RG

2
α(t, x)dxds <∞ (see Lemma 2.2, property (7)).

Let us now give a precise formulation of solutions for Equation (1.1).

Definition 2.3. Let 0 < T <∞. A measurable stochastic field

{u(t, x), t ∈ [0, T ], x ∈ R}
is said to be a mild solution of the equation (1.1) on [0, T ] if

• u(t, x) is adapted for every x.

• {u(t, x)}, as a family of L2(Ω,F , P )-valued random variables, is
right continuous and has left limits in the variable t ∈ [0, T ],
namely,

u(t−, x, .) = L2(Ω)− lim
s↑t

u(s, x, .), t ∈ [0, T ].
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In this paper we simply call such a u modified càdlàg in t (after
the French acronym).

• Equation (1.2) holds a.s. for all t ∈ [0, T ] and x ∈ R.

A solution u on [0, T ] is said to be Lp(Ω)- bounded if

sup
t≤T

sup
x∈R

E|u(t, x)|p <∞.

All positive constants appearing in this paper are called C. They may
change from one line to the next one.

3. Existence and uniqueness

The main result of this section is the following

Theorem 3.1. Let p ≥ 2 and T > 0 be fixed. Under condition (H) and
the assumption that the initial condition u0 is Lp(Ω) bounded, equation
(1.1) has a unique mild solution u on [0, T ] which is Lp(Ω) bounded.

For the proof we need the following lemma.
Fix T > 0 and let

E := {{v(t, x), t ∈ [0, T ], x ∈ R} : v is measurable ,Ft adapted,

modified càdlàg in t such that, sup
t≤T

sup
x∈R

E|v(t, x)|p <∞
}
.

Lemma 3.2. Let v ∈ E and set

X(t, x) :=
∫ t+

0

∫
R

∫
U
Gα(t− s, x− y)g(s, v(s−, y), z)Ñ(ds, dy, dz),

Y (t, x) :=
∫ t

0

∫
R
Gα(t− s, x− y)f(s, v(s, y))dyds.

Then X and Y belong to E.

Proof. Let us first show that X is well defined.
For any fixed t ∈ [0, T ], let, for (s, y, z) ∈ [0, t]× R× U ,

ht,x(s, y, z) := Gα(t− s, x− y)g(s, v(s−, y), z),

vn(s, y) := v(0, y)1{0}(s) +
2n−1∑
k=0

v(
kt

2n
, y)1

( kt
2n ,

(k+1)t
2n ]

(s), n ∈ N,
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and

hnt,x(s, y, z) := Gα(t− s, x− y)g(s, vn(s, y), z).

Clearly vn is Fs predictable, so hn is also Fs predictable. Let us show that
hn ∈ Fpred.
By condition(H) we have :

E

∫ t

0

∫
R

∫
U
|hnt,x(s, y, z)|2ν(ds, dy, dz)

≤ KT

∫ t

0

∫
R
Gα(t− s, x− y)2(E|vn(s, y)|2 + 1)dyds <∞.

Thus hnt,x ∈ Fpred. On the other hand, by the condition (H) we have

E

∫ t

0

∫
R

∫
U
|hnt,x(s, y, z)− ht,x(s, y, z)|2ν(ds, dy, dz)

≤ KT

∫ t

0

∫
R
Gα(t− s, x− y)2E|vn(s, y)− v(s−, y)|2dsdy

By the definition of vn and the fact that v is modified càdlàg we have

E|vn(s, y)− v(s−, y)|2 −→ 0
n→∞

, for all (s, y) ∈ [0, t]× R

and

E|vn(s, y)− v(s−, y)|2 ≤ 4 sup
r≤T

sup
x∈R

E|v(r, x)|2, ∀(s, y, n) ∈ [0, t]× R× N.

Furthermore by Lemma 2.2, property (7), we have∫ t

0

∫
R
Gα(t− s, x− y)2dsdy <∞.

Then by the Lebesgue’s dominated convergence theorem we obtain that∫ t

0

∫
R
Gα(t− s, x− y)2E|vn(s, y)− v(s−, y)|2dsdy −→ 0

n→∞
.

Hence ht,x ∈ F for any fixed t ∈ [0, T ], so the integral∫ t+
0

∫
R

∫
U Gα(t− s, x− y)g(s, v(s−, y), z)Ñ(ds, dy, dz) is well defined.

Using the same techniques, as in [1], we show that X is Ft adapted and
modified càdlàg.
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Further more, by Burkholder’s inequality and condition (H), we have

E|X(t, x)|p ≤ CE(
∫ t

0

∫
R

∫
U
G2
α(t− s, x− y)g2(s, v(s−, y), z)dsdyq(dz))

p
2

≤ CE(
∫ t

0

∫
R
G2
α(t− s, x− y)(1 + v2(s−, y)dsdy)

p
2

≤ C(1 + sup
s≤T

sup
x∈R

E|v(s, x)|p)
∫ T

0

∫
R
G2
α(t− s, x− y)dsdy)

p
2

By Lemma 2.2, property (7), the last integral is finite. Then

sup
t≤T

sup
x∈R

E|X(t, x)|p) <∞

Finally X ∈ E .
It is well known that Y is measurable Ft adapted and modified càdlàg.
By Hölder inequality with respect to the measure |Gα(t − s, x − y)|dsdy
and the growth assumption on f , we have

E|Y (t, x)|p ≤ E(
∫ t

0

∫
R
|Gα(t− s, x− y)|fp(s, v(s, y))dsdy)

×
{∫ t

0

∫
R
|Gα(t− s, x− y)|dsdy

}p−1

≤ CE

∫ t

0

∫
R
|Gα(t− s, x− y)|(1 + vp(s, y))dsdy

≤ C(1 + sup
s≤T

sup
x∈R

E|v(s, x)|p)
∫ T

0

∫
R
|Gα(t− s, x− y)|dsdy.

So

sup
t≤T

sup
x∈R

E|Y (t, x)|p) <∞.

and finally Y ∈ E . �

Proof of Theorem 3.1.
• Proof of the existence: Let the sequence (un, n ≥ 1) be given by:

u1(t, x) =
∫

R
Gα(t, x− y)u0(y)dy

50



Fractional SPDEs driven by Poisson white noise

un+1(t, x) = u1(t, x) +
∫ t

0

∫
R
Gα(t− s, x− y)f(s, un(s, y))dyds

+
∫ t+

0

∫
R

∫
U
Gα(t− s, x− y)g(s, un(s−, y), z)Ñ(ds, dy, dz)

It is easy to see that u1 ∈ E , so by Lemma 3.2, we have for all n ≥ 1, un ∈ E .
Let

Fn(t, x) := E|un+1(t, x)− un(t, x)|p,

and
Hn(t) := sup

s≤t
sup
x∈R

Fn(s, x).

we have ∀t ∈ [0, T ],∀x ∈ R

Fn(t, x) ≤ 2p−1[An(t, x) +Bn(t, x)] (3.1)

with

An(t, x) :=

E

(∫ t

0

∫
R
Gα(t− s, x− y)(f(s, un(s, y))− f(s, un−1(s, y)))dyds

)p
and

Bn(t, x) := E

{∫ t+

0

∫
R

∫
U
Gα(t− s, x− y)

(g(s, un(s−, y), z)− g(s, un−1(s−, y), z))Ñ(ds, dy, dz)
}p
.

By condition (H) and Hölder inequality with respect to the measure
|Gα(t− s, x− y)|dsdy, we obtain

An(t, x) ≤ CE(
∫ t

0

∫
R
|Gα(t− s, x− y)||(un − un−1)(s, y)|pdyds)

×
(∫ t

0

∫
R
|Gα(t− s, x− y)|dyds

)p−1

.

≤ C

∫ t

0
sup
y∈R

E|(un − un−1)(s, y)|p(
∫

R
|Gα(t− s, x− y)|dy)ds

≤ C

∫ t

0
Hn−1(s)ds. (3.2)
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By condition (H), Burkholder inequality and Hölder inequality with re-
spect to the measure G2

α(t− s, x− y)dsdy we obtain

Bn(t, x) ≤ CE(
∫ t

0

∫
R
G2
α(t− s, x− y)|un − un−1(s−, y)|2dsdy)

p
2

≤ C

∫ t

0

∫
R
G2
α(t− s, x− y)E|un − un−1(s−, y)|pdsdy

×
(∫ t

0

∫
R
G2
α(t− s, x− y)dsdy

) p
2
−1

≤ C

∫ t

0
sup
y∈R

|(un − un−1)(s, y)|p(
∫

R
G2
α(t− s, x− y)dy)ds

≤ C

∫ t

0
(t− s)−

1
αHn−1(s)ds. (3.3)

Hence, by (3.1), (3.2), (3.3), we obtain that

Hn(t) ≤ C

∫ t

0
(t− s)−

1
αHn−1(s)ds

for some positive constant C.
By Lemma 3.3 in [9], the series

∑
n≥1(Hn(t))

1
p converges uniformly on

[0, T ]. Hence the sequence (un) converges in Lp(Ω) uniformly on [0, T ]×R.
Let

u(t, x) = Lp(Ω)− lim
n
un(t, x)

It is easy to see that u ∈ E and moreover u satisfies equation (1.2). Thus
u is a solution to equation (1.1) on [0, T ].
• Proof of the uniqueness: Let u and v be two mild solutions of the

equation (1.1) on [0, T ] and set

H(t) = sup
s≤t

sup
x∈R

E|u(s, x)− v(s, x)|2.

By the same argument as in the proof of existence, we get :

H(t) ≤ C

∫ t

0
(t− s)−

1
αH(s)ds.

Applying Gronwall Lemma, we obtain that H(T ) = 0. This clearly implies
that u(t, x, .) = v(t, x, .) a.s. �
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4. Regularity of the solution

In this section we give the spatial regularity of the solution. This regularity
is based on the following lemma proved in [5].

Lemma 4.1. For α+1
2 < γ < α+ 1, we have∫ +∞

0

∫ +∞

−∞
|Gα(v, 1 + z)−Gα(v, z)|γdzdv <∞.

Theorem 4.2. Suppose that u0 is Lp(Ω) bounded for all p ≥ 2 and let u
denote the mild solution of the equation (1.1) on [0, T ], then we have:
For α < 3 and for fixed t > 0 the process {u(t, x), x ∈ R} has Hölder
continuous trajectories with exponent α−1

2 − ε, for any ε > 0, P-a.s.

Proof. The proof is similar to one given by Debbi and Dozzi in [5]. We
have
u(t, x) =∫

R
Gα(t, x− y)u0(y)dy +

∫ t

0

∫
R
Gα(t− s, x− y)f(s, u(s, y))dyds

+
∫ t+

0

∫
R

∫
U
Gα(t− s, x− y)g(s, u(s−, y), z)Ñ(ds, dy, dz)

= u(t, x) + v(t, x) + w(t, x) .

It is easy to see that u1 is smooth function with respect to t and to x.
By using Lemma 2.2, property (4), we can show that x → v(t, x) is a
smooth function, so it is sufficient to estimate the spatial regularity of w.
By Burkholder-Davis-Gundy inequality, condition (H) and the fact the
solution is Lp(Ω) bounded, we have:

E|w(t+ h, x)− w(t, x)|p

≤ C(1 + sup
[0,T ]×R

E|u(t, x)|p)× {
∫ t

0

∫
R
|Gα(v, y + h)−Gα(v, y)|2dydv}

p
2

≤ Chp
α−1
2α {

∫ +∞

0

∫ +∞

−∞
|Gα(v, 1 + z)−Gα(v, z)|2}

p
2 dzdv .

By Lemma 4.1, the last integral converge ( we have taken α < 3 in
order that α+1

2 < 2 < α+ 1 ).
Hence,

E|w(t+ h, x)− w(t, x)|p ≤ Chp
α−1
2α
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we can choose p as large as we please, so that the result follows from
Kolmogorov’s Theorem. �
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