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P-adic Spaces of Continuous Functions I

Athanasios Katsaras

Abstract

Properties of the so called θo-complete topological spaces are investigated. Also,
necessary and sufficient conditions are given so that the space C(X, E) of all contin-
uous functions, from a zero-dimensional topological space X to a non-Archimedean
locally convex space E, equipped with the topology of uniform convergence on the
compact subsets of X to be polarly barrelled or polarly quasi-barrelled.

Introduction

Let K be a complete non-Archimedean valued field and let C(X,E) be
the space of all continuous functions from a zero-dimensional Hausdorff
topological space X to a non-Archimedean Hausdorff locally convex space
E. We will denote by Cb(X,E) (resp. by Crc(X,E)) the space of all f ∈
C(X,E) for which f(X) is a bounded (resp. relatively compact) subset
of E. The dual space of Crc(X,E), under the topology tu of uniform
convergence, is a space M(X,E′) of finitely-additive E′-valued measures
on the algebra K(X) of all clopen , i.e. both closed and open, subsets of
X. Some subspaces of M(X,E′) turn out to be the duals of C(X,E) or
of Cb(X,E) under certain locally convex topologies.
In section 2 of this paper, we give some results about the space M(X,E′).
The notion of a θ0-complete topological space was given in [2]. In section
3 we study some of the properties of θo-complete spaces. Among other
results, we prove that a Hausdorff zero-dimensional space is θo-complete
iff it is homeomorphic to a closed subspace of a product of ultrametric
spaces. In section 4, we give necessary and sufficient conditions for the
space C(X,E), equipped with the topology of uniform convergence on the
compact subsets of X, to be polarly barrelled or polarly quasi-barrelled,

Keywords: Non-Archimedean fields, zero-dimensional spaces, locally convex spaces.
Math. classification: 46S10, 46G10.
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A. Katsaras

1. Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued
field, whose valuation is non-trivial. By a seminorm, on a vector space
over K, we will mean a non-Archimedean seminorm. Similarly, by a locally
convex space we will mean a non-Archimedean locally convex space over
K (see [9]). Unless it is stated explicitly otherwise, X will be a Hausdorff
zero-dimensional topological space , E a Hausdorff locally convex space
and cs(E) the set of all continuous seminorms on E. The space of all K-
valued linear maps on E is denoted by E?, while E′ denotes the topological
dual of E. A seminorm p, on a vector space G over K, is called polar if
p = sup{|f | : f ∈ G?, |f | ≤ p}. A locally convex space G is called polar
if its topology is generated by a family of polar seminorms. A subset A
of G is called absolutely convex if λx + µy ∈ A whenever x, y ∈ A and
λ, µ ∈ K, with |λ|, |µ| ≤ 1. We will denote by βoX the Banaschewski
compactification of X (see [3]) and by υoX the N-repletion of X, where
N is the set of natural numbers. We will let C(X,E) denote the space of
all continuous E-valued functions on X and Cb(X,E) (resp. Crc(X,E))
the space of all f ∈ C(X,E) for which f(X) is a bounded (resp. relatively
compact) subset of E. In case E = K, we will simply write C(X), Cb(X)
and Crc(X) respectively. For A ⊂ X, we denote by χA the K-valued
characteristic function of A. Also, for X ⊂ Y ⊂ βoX, we denote by B̄Y

the closure of B in Y . If f ∈ EX , p a seminorm on E and A ⊂ X, we
define

‖f‖p = sup
x∈X

p(f(x)), ‖f‖A,p = sup
x∈A

p(f(x)).

The strict topology βo on Cb(X,E) (see [4]) is the locally convex topology
generated by the seminorms f 7→ ‖hf‖p, where p ∈ cs(E) and h is in
the space Bo(X) of all bounded K-valued functions on X which vanish at
infinity, i.e. for every ε > 0 there exists a compact subset Y of X such
that |h(x)| < ε if /∈ Y .
Let Ω = Ω(X) be the family of all compact subsets of βoX \ X. For
H ∈ Ω, let CH be the space of all h ∈ Crc(X) for which the continu-
ous extension hβo to all of βoX vanishes on H. For p ∈ cs(E), let βH,p

be the locally convex topology on Cb(X,E) generated by the seminorms
f 7→ ‖hf‖p, h ∈ CH . For H ∈ Ω, βH is the locally convex topology on
Cb(X,E) generated by the seminorms f 7→ ‖hf‖p, h ∈ CH , p ∈ cs(E).
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P-adic Spaces of Continuous Functions I

The inductive limit of the topologies βH ,H ∈ Ω, is the topology β. Re-
placing Ω by the family Ω1 of all K-zero subsets of βoX, which are disjoint
from X, we get the topology β1. Recall that a K-zero subset of βoX is
a set of the form {x ∈ βoX : g(x) = 0}, for some g ∈ C(βoX). We get
the topologies βu and β′u replacing Ω by the family Ωu of all Q ∈ Ω with
the following property: There exists a clopen partition (Ai)i∈I of X such
that Q is disjoint from each Ai

βoX . Now βu is the inductive limit of the
topologies βQ, Q ∈ Ωu. The inductive limit of the topologies βH,p, as H
ranges over Ωu, is denoted by βu,p, while β′u is the projective limit of the
topologies βu,p, p ∈ cs(E). For the definition of the topology βe on Cb(X)
we refer to [7].
Let now K(X) be the algebra of all clopen subsets of X. We denote
by M(X,E′) the space of all finitely-additive E′-additive measures m on
K(X) for which the set m(K(X)) is an equicontinuous subset of E′. For
each such m, there exists a p ∈ cs(E) such that ‖m‖p = mp(X) < ∞,
where, for A ∈ K(X),

mp(A) = sup{|m(B)s|/p(s) : p(s) 6= 0, A ⊃ B ∈ K(X)}.

The space of all m ∈ M(X,E′) for which mp(X) < ∞ is denoted by
Mp(X,E′). If m ∈Mp(X,E′), then for x ∈ X we define

Nm,p(x) = inf{mp(V ) : x ∈ V ∈ K(X)}.

In case E = K, we denote by M(X) the space of all finitely-additive
bounded K-valued measures on K(X). An element m of M(X) is called
τ -additive if m(Vδ) → 0 for each decreasing net (Vδ) of clopen subsets
of X with

⋂
Vδ = ∅. In this case we write Vδ ↓ ∅. We denote by Mτ (X)

the space of all τ -additive members of M(X). Analogously, we denote by
Mσ(X) the space of all σ-additive m, i.e. those m with m(Vn) → 0 when
Vn ↓ ∅. For an m ∈M(X,E′) and s ∈ E, we denote by ms the element of
M(X) defined by (ms)(V ) = m(V )s.
Next we recall the definition of the integral of an f ∈ EX with respect to
an m ∈M(X,E′). For a non-empty clopen subset A of X, let DA be the
family of all α = {A1, A2, . . . , An;x1, x2, . . . , xn}, where {A1, . . . , An} is a
clopen partition of A and xk ∈ Ak. We make DA into a directed set by
defining α1 ≥ α2 iff the partition of A in α1 is a refinement of the one in
α2. For an α = {A1, A2, . . . , An;x1, x2, . . . , xn} ∈ DA and m ∈M(X,E′),
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we define

ωα(f,m) =
n∑

k=1

m(Ak)f(xk).

If the limit limωα(f,m) exists in K, we will say that f is m-integrable over
A and denote this limit by

∫
A f dm. We define the integral over the empty

set to be 0. For A = X, we write simply
∫
f dm. It is easy to see that if f is

m-integrable over X, then it is m-integrable over every clopen subset A of
X and

∫
A f dm =

∫
χAf dm. If τu is the topology of uniform convergence,

then every m ∈M(X,E′) defines a τu-continuous linear functional φm on
Crc(X,E), φm(f) =

∫
f dm. Also every φ ∈ (Crc(X,E), τu)′ is given in

this way by some m ∈M(X,E′).
For p ∈ cs(E), we denote by Mt,p(X,E′) the space of all m ∈ Mp(X,E′)
for which mp is tight, i.e. for each ε > 0, there exists a compact subset Y
of X such that mp(A) < ε if the clopen set A is disjoint from Y . Let

Mt(X,E′) =
⋃

p∈cs(E

Mt,p(X,E′).

Every m ∈ Mt,p(X,E′) defines a β0-continuous linear functional um on
Cb(X,E),
um(f) =

∫
f dm. The map m 7→ um, from Mt(X,E′) to (Cb(X,E), βo)′, is

an algebraic isomorphism. For m ∈ Mτ (X) and f ∈ KX , we will denote
by (V R)

∫
f dm the integral of f , with respect to m, as it is defined in

[9]. We will call (V R)
∫
f dm the (V R)-integral of f .

For all unexplained terms on locally convex spaces, we refer to [8] and
[9].

2. Some results on M(X, E ′)

Theorem 2.1. Let m ∈ M(X,E′) be such that ms ∈ Mτ (X), for all
s ∈ E, and let p ∈ cs(E) with ‖m‖p <∞. Then :

(1) mp(V ) = supx∈V Nm,p(x) for every V ∈ K(X).

(2) The set

supp(m) =
⋂
{V ∈ K(X) : mp(V c) = 0}

is the smallest of all closed support sets for m.
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P-adic Spaces of Continuous Functions I

(3) supp(m) = {x : Nm,p(x) 6= 0}.

(4) If V is a clopen set contained in the union of a family (Vi)i∈I of
clopen sets, then

mp(V ) ≤ sup{mp(Vi) : i ∈ I}.

Proof: (1). If x ∈ V , then Nm,p(x) ≤ mp(V ) and so

mp(V ) ≥ α = sup
x∈V

Nm,p(x).

On the other hand, let mp(V ) > d. There exists a clopen set W , contained
in V , and s ∈ E with |m(W )s|/p(s) > d. Let µ = ms ∈Mτ (X). Then

|µ|(W ) = sup
x∈W

Nµ(x).

Let x ∈ W be such that Nµ(x) > d · p(s). Now Nm,p(x) ≥ d. In fact,
assume the contrary and let Z be a clopen neighborhood of x contained
in W and such that mp(Z) < d. Now

Nµ(x) ≤ |µ|(Z) = sup{|m(Y )s| : Z ⊃ Y ∈ K(X)} ≤ p(s)·mp(Z) ≤ d·p(s).
This contradiction proves (1).
(2).

X \ supp(m) =
⋃
{W ∈ K(X) : mp(W ) = 0}.

Let V ∈ K(X) be disjoint from supp(m). For each x ∈ V , there exists
W ∈ K(X), with x ∈ W and mp(W ) = 0 and so Nm,p(x) = 0. It follows
that

mp(V ) = sup
x∈V

Nm,p(x) = 0,

which proves that supp(m) is a support set for m. On the other hand,
let Y be a closed support set for m. There exists a decreasing net (Vδ) of
clopen sets with Y =

⋂
Vδ. Let W ∈ K(X) be disjoint from Y . For each

clopen set V contained in W and each s ∈ E, we have V ∩ Vδ ↓ ∅ and so
limδ(ms)(V ∩ Vδ) = 0. Since V c

δ is disjoint from Y , we have m(V c
δ ) = 0

and so m(V ) = m(Vδ ∩ V ), which implies that m(V )s = 0, for all s ∈ E,
i.e. m(V ) = 0, and hence mp(W ) = 0. Therefore supp(m) ⊂ W c. Taking
V c

δ in place of W , we get that supp(m) ⊂
⋂
Vδ = Y , which proves (2).

(3) Let G = x : Nm,p(x) 6= 0}. If V ∈ K(X) is disjoint from G, then

mp(V ) = sup
x∈V

Nm,p(x) = 0,
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and so supp(m) ⊂ V c, which implies that supp(m) ⊂ G. On the other
hand, let x /∈ supp(m). There exists a clopen neighborhood W of x dis-
joint from supp(m). Since supp(m) is a support set for m, we have that
mp(W ) = 0 and thus Nm,p = 0 on W , which proves that x /∈ G. Thus G
is contained in supp(m) and (3) follows.
(4). Let mp(V ) > α > 0. There exists a clopen set A contained in V
and s ∈ E such that |m(A)s|/p(s) > α. If µ = ms ∈ Mτ (X), then
|µ|(V ) ≥ |m(A)s| > α · p(s). In view of [9, p. 250] there exists an i such
that mp(Vi) ≥ |µ|(Vi)/p(s) > α, which clearly completes the proof.

Theorem 2.2. Let m ∈ M(X,E′) be such that ms ∈ Mσ(X) for alll
s ∈ E (this in particular holds if m ∈ Mσ(X,E′)). Let p ∈ cs(E) be such
that mp(X) <∞. If a clopen set V is contained in the union of a sequence
(Vn) of clopen sets, then mp(V ) ≤ supnmp(Vn).

Proof : We show first that, for µ ∈Mσ(X), then there exists an n with
|µ|(V ) ≤ |µ|(Vn). In fact, this is clearly true if |µ|(V ) = 0. Assume that
|µ|(V ) > 0 and let Wn =

⋃N
1 Vk. Since W c

n ∩ V ↓ ∅, there exists n such
that |µ|(V ∩W c

n) < |µ|(V ). Since V ⊂ (V
⋂
W c

n)
⋃
Wn, it follows that

|µ|(V ) ≤ |µ|(Wn) = max
1≤k≤n

|µ|(Vk),

and the claim follows for µ. Suppose now that mp(V ) > r > 0. There
exists a clopen subset W of V and s ∈ E such that |m(W )s| > r · p(s).
Let µ = ms. Then µ ∈ Mσ(X) and |µ|(V ) ≥ |m(W )s| > r · p(s). By
the first part of the proof, there exists an n such that |µ|(Vn) > r · p(s).
Hence, there exists a clopen subset D of Vn such that |µ(D)| > r · p(s).
Now |m|p(Vn) ≥ |m(D)s|/p(s) > r, which completes the proof.

For X ⊂ Y ⊂ βoX, and m ∈ M(X), we denote by mY the element of
M(Y ) defined by mY (V ) = m(V ∩ X). We denote by mυo and mβo the
mY for Y = υoX and Y = βoX, respectively.

We have the following easily established

Theorem 2.3. Let m ∈ M(X,E′) be such that ms ∈ Mτ (X) for all
s ∈ E. Then :

(1) supp(mβo) = supp(m)
βoX

.

(2) supp(m) = supp(mβo) ∩X.
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(3) If m has compact support, then supp(m) = supp(mβo).

Theorem 2.4. Let m ∈ Mp(X,E′) and µ = mβo. The following are
equivalent:

(1) supp(µ) ⊂ υoX.

(2) If Vn ↓ ∅, then there exists an no such that m(Vn) = 0 for every
n ≥ no.

(3) If Vn ↓ ∅, then there exists an n such that m(V ) = 0 for every
clopen set V contained in Vn.

(4) For every Z ∈ Ω1 there exists a clopen subset A on βoX disjoint
from Z and such that supp(µ) ⊂ A.

(5) If Vn ↓ ∅, then there exists an n such that mp(Vn) = 0.

Proof: (1) ⇒ (2). If Vn ↓ ∅, then the set
⋂
Vn

βoX is disjoint from υoX

and so supp(µ) ⊂
⋃

n V
c
n

βoX . In view of the compactness of supp(µ), there
exists an no with supp(µ) ⊂ V c

no

βoX . If now n ≥ no, then m(Vn) = 0.
(2) ⇒ (3). Let Vn ↓ ∅ and suppose that, for each n, there exists a clopen
subset A of Vn such that m(A) 6= 0.
Claim. For each n, there exists k > n and a clopen set B with Vk ⊂
B ⊂ Vn and m(B) 6= 0. Indeed there exists a clopen subset A of Vn

such that m(A) 6= 0. For each k, let Bk = Vk ∩ A, Dk = Vk \ Bk. Then
Dk ↓ ∅. By our hypothesis, there exists k > n such that m(Dk) = 0. Let
B = A ∪ Dk. Then Vk ⊂ B ⊂ Vn. Since A and Dk are disjoint, we have
that m(B) = m(A) 6= 0 and the claim follows. By induction, we choose
n1 = 1 < n2 < . . . and clopen sets Bk such that Vnk+1

⊂ Bk ⊂ Vnk
and

m(Bk) 6= 0. Since Bk ↓ ∅ and m(Bk) 6= 0 for every k, we arrived at a
contradiction.
(3) ⇒ (4). Let Z ∈ Ω1. There exists a decreasing sequence (Vn) of clopen
sets with Z =

⋂
Vn

βoX . By our hypothesis, there exists an n suich that
m(V ) = 0 for each clopen subset V of Vn. Now it suffices to take A =
V c

n
βoX .

(4) ⇒ (1). Let z ∈ βoX \ υoX. There exists a decreasing sequence (Vn) of
clopen sets with z ∈ Z =

⋂
Vn

βoX . Clearly Z ∈ Ω1. Thus, there exists a
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clopen subset A of βoX disjoint from Z and containing supp(µ). Hence z
is not in supp(µ).
(3) ⇒ (5). It is trivial.
(5) ⇒ (1). Let z ∈ βoX \ υoX. There exists a decreasing sequence (Vn)
of clopen sets with z ∈ Z =

⋂
Vn

βoX . Let n be such that mp(Vn) = 0. If
G = Vn

βoX , then µp(G) = 0 and so supp(µ) ⊂ βoX \ G, which implies
that z /∈ supp(µ). This completes the proof.

Theorem 2.5. For an m ∈Mp(X,E′), the following are equivalent :

(1) m has a compact support, i.e. m ∈Mc(X,E′).

(2) supp(mβo) ⊂ X.

(3) If Vδ ↓ ∅, then there exists a δo such that m(Vδ) = 0 for all
δ ≥ δo.,

(4) If Vδ ↓ ∅, then there exists a δ such m(V ) = 0 for each clopen
subset V of Vδ.

(5) If H ∈ Ω, then there exists a clopen subset A of βoX, disjoint
from H and containing supp(mβo).

(6) If Vδ ↓ ∅, then there exists a δ such that mp(Vδ) = 0.

Proof : In view of Theorem 2.3, (1) implies (2).
(2) ⇒ (3). Let Vδ ↓ ∅. By the compactness of supp(mβ

o ), there exists δo
such that supp(mβo) ⊂ V c

δo
and so m(Vδ) = 0 for δ ≥ δo.

(3) ⇒ (4). Let Vδ ↓ ∅ and suppose that, for each δ, there exists a clopen
subset V of Vδ with m(V ) 6= 0.
Claim: For each δ there exist γ ≥ δ and a clopen set A such that Vγ ⊂
A ⊂ Vδ and m(A) 6= 0. In fact, there exists a clopen subset G of Vδ with
m(G) 6= 0. For each γ, let Zγ = Vγ ∩G,Wγ = Vγ \ Zγ . Then Wγ ↓ ∅. By
our hypothesis, there exists γ ≥ δ with m(Vγ) = 0. Let A = G∪Wγ . Since
the sets G and Wγ are disjoint, we have that m(A) = m(G) 6= 0. Since
Vγ ⊂ A ⊂ Vδ, the claim follows.
Let now F be the family of all clopen subsets A of X with the following
property: There are γ, δ, with γ ≥ δ, Vγ ⊂ A ⊂ Vδ and m(A) 6= 0. Since
F ↓ ∅, we got a contradiction.
(4) ⇒ (5). If H ∈ Ω, then there exists a decreasing net (Vδ) of clopen
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subsets of X with
⋂
Vδ

βoX = H. Since Vδ ↓ ∅, there exists δ such that
m(V ) = 0 for each clopen subset V of Vδ. Now it suffices to take A =
V c

δ
βoX .

(5) ⇒ (1). Let z ∈ βoX \X. By (5), there exists a clopen subset A of βoX
containing supp(mβo) and not containing z.
(4) ⇒ (6). It is trivial.
(6) ⇒ (2). Let z ∈ βoX \X. There exists a decreasing net (Vδ) of clopen
sets with {z} =

⋂
Vδ

βoX . Let δ be such that mp(Vδ) = 0. If µ = mβo , then
µp(Vδ

βoX) = mp(Vδ) = 0 and so supp(µ) is disjoint from the closure of Vδ

in βoX, which implies that z /∈ supp(µ).
This completes the proof.

3. θo-Complete Spaces

Recall that θoX is the set of all z ∈ βoX with the following property: For
each clopen partition (Vi) of X there exists i such that z ∈ Vi

βoX (see [2]).
By [2, Lemma 4.1] we have X ⊂ θoX ⊂ υoX. For each clopen partition
α = (Vi)i∈I of X, let

Wα =
⋃
i∈I

Vi × Vi.

Then the family of all Wα, α a clopen partition of X, is a base for a
uniformity Uc = UX

c , compatible with the topology of X, and (θoX,UθoX
c )

coincides with the completion of (X,Uc). We will say that X is θo-complete
iff X = θoX. As it is shown in [2], if Y is a θo-complete and f : X → Y is
a continuous function, then f has a continuous extension fθo : θoX → Y .
A subset A of X is called bounding if every f ∈ C(X) is bounded on A.
Note that several authors use the term bounded set instead of bounding.
But in this paper we will use the term bounding to distinguish from the
notion of a bounded set in a topological vector space. A set A ⊂ X is
bounding iff A

υoX is compact. In this case (as it is shown in [2, Theorem
4.6]) we have that AθoX = A

υoX = A
βoX

. Clearly a continuous image of
a bounding set is bounding. Let us say that a family F of subsets of X is
finite on a subset A of X if the family {f ∈ F : F ∩ A 6= ∅} is finite. We
have the following easily established

Lemma 3.1. For a subset A of X, the following are equivalent :
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(1) A is bounding.

(2) Every continuous real-valued function on X is bounded on A.

(3) Every locally finite family of open subsets of X is finite on A.

(4) Every locally finite family of clopen subsets of X is finite on A.

By [1, Theorem 4.6] every ultraparacompact space (and hence every
ultrametrizable space) is θo-complete.

Theorem 3.2. Every complete Hausdorff locally convex space E is θo-
complete.

Proof: Let U be the usual uniformity on E, i.e. the uniformity having
as a base the family of all sets of the form

Wp,ε = {(x, y) : p(x− y) ≤ ε}, p ∈ cs(E), ε > 0.

Given Wp,ε, we consider the clopen partition α = (Vi)i∈I of E generated
by the equivalence relation x ∼ y iff p(x − y) ≤ ε. Then Wp,ε = Wα and
so U is coarser that Uc. Since (E,U) is complete and Uc is compatible
with the topology of E, it follows that (E,Uc) is complete and the result
follows.

Corollary 3.3. A subset B, of a complete Hausdorff locally convex space
E, is bounding iff it is totally bounded.

Proof: If B is bounding, then B = B
θoE is compact and hence totally

bounded, which implies that B is totally bounded. Conversely, if B is
totally bounded, then B is totally bounded. Thus B is compact and hence
B is bounding.

Theorem 3.4. If G is a locally convex space (not necessarily Hausdorff),
then every bounding subset A of G is totally bounded.

Proof: Assume first that G is Hausdorff. Let Ĝ be the completion of G.
The closure B of A in Ĝ is bounding and hence B is totally bounded, which
implies that A is totally bounded. If G is not Hausdorff, we consider the
quotient space F = G/{0} and let u : G→ F be the quotient map. Since
u is continuous, the set u(A) is bounding, and hence totally bounded,
in F . Let now V be a convex neighborhood of zero in G. Then, u(V )
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is a neighborhood of zero in F . Let S be finite subset of A such that
u(A) ⊂ u(S) + u(V ). But then

A ⊂ S + V + {0} ⊂ S + V + V = S + V,

which proves that A is totally bounded.

Theorem 3.5. We have:

(1) Closed subspaces of θo-complete spaces are θo-complete.

(2) If X =
∏
Xi, with Xi 6= ∅ for all i, then X is θo-complete iff each

Xi is θo-complete .

(3) If (Yi)i∈I is a family of θo-complete subspaces of X, then Y =
⋂
Yi

is θo-complete.

(4) θoX is the smallest of all θo-complete subspaces of βoX which con-
tain X.

Proof: (1). Let Z be a closed subspace of a θo-complete space X and
let (xδ) be a UZ

c -Cauchy net in Z. Then (xδ) is UX
c -Cauchy and hence

xδ → x ∈ X. Moreover, x ∈ Z since Z is closed.
(2). Each Xi is homeomorphic to a closed subspace of X. Thus Xi is
θo-complete if X is θo-complete. Conversely, suppose that each Xi is θo-
complete. If (xδ) is a UX

c -Cauchy net, then (xδ
i ) is a UXi

c -Cauchy net in
Xi and hence xδ

i → xi ∈ Xi. If x = (xi), then xδ → x, which proves that
(X,Uc) is complete.
(3). Let X =

∏
Yi and consider the map f : Y → X, f(x)i = x for

all i. Then f : Y → f(Y ) = D is a homeomorphism. Also D is a closed
subspace of X. Since X is θo-complete, it follows that D is θo-complete
and hence Y is θo-complete.
(4). Since θoX is θo-complete (by [2, Theorem 4.9]) and X ⊂ θoX ⊂
βoX, the result follows from (3).

Theorem 3.6. For a point z ∈ βoX, the following are equivalent :

(1) z ∈ θoX.

(2) If Y is a Hausdorff ultraparacompact space and f : X → Y contin-
uous, then fβo(z) ∈ Y , where fβo : βoX → βoY is the continuous
extension of f .
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(3) For every ultrametric space Y and every f : X → Y continuous ,
we have that fβo(z) ∈ Y .

Proof: (1) ⇒ (2). Since θoY = Y , the result follows from [2, Theorem
4.4].
(2) ⇒ (3). It is trivial.
(3) ⇒ (1). Assume that z /∈ θoX. Then, there exists a clopen partition
(Ai) of X such that z /∈

⋃
iAi

βoX . Let fi = χAi and define

d : X ×X → R, d(x, y) = sup
i
|fi(x)− fi(y)|.

Then d is a continuous ultrapseudometric on X. Let Y = Xd be the
corresponding ultrametric space and let π : X → Yd be the quotient map,
x 7→ x̃d = x̃. Since π is continuous, there exists (by (3)) an x ∈ X such that
πβo(z) = x̃d. Let (xδ) be a net in X converging to z. Then x̃δ = πβo(xδ) →
πβo(z) = x̃, and so d(xδ, x) → 0. If x ∈ Ai, then |fi(xδ) − 1| → 0, and
so there exists δo such that xδ ∈ Ai when δ ≥ δo. But then z ∈ Ai

βoX , a
contradiction. This completes the proof.

Theorem 3.7. Let X be a dense subspace of a Hausdorff zero-dimensional
space Y . The following are equivalent :

(1) Y ⊂ θoX (more precisely, Y is homeomorphic to a subspace of
θoX).

(2) Each continuous function, from X to any ultrametric space Z, has
a continuous extension to all of Y .

Proof: (1) implies (2) by the preceding Theorem.
(2) ⇒ (1). We will prove first that, for each clopen subset V of X, we
have that V Y ∩ V cY = ∅, and so V Y is clopen in Y . Indeed, define

d : X ×X → R, d(x, y) = max{|f1(x)− f1(y)|, |f2(x)− f2(y)|},
where f1 = χV , f2 = χV c . Then d is a continuous ultrapseudometric on
X. Let π : X → Xd be the quotient map. By our hypothesis, there exists
a continuous extension h : Y → Xd of π. Suppose that z ∈ V

Y ∩ V cY .
There are nets (xδ), (yγ), in V , V c respectively, such that xδ → z, and
yγ → z. Let d̃ be the ultrametric of Xd and let δo, γo be such that

d̃(π(xδ), h(z)) < 1 and d̃(π(xγ), h(z)) < 1
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when δ ≥ δo, γ ≥ γo. Now

d(xδo , yγo) = d̃(π(xδo), π(yδo)) < 1,

a contradiction. Thus V Y is clopen in Y . If A = V
Y
, B = V cY , then

A
βoY ⋂

B
βoY = V

βoY ⋂
V cβoY = ∅.

This, being true for each clopen subset V of X, implies that βoX = βoY
and so X ⊂ Y ⊂ βoY = βoX. Now our hypothesis (2) and the preceding
Theorem imply that Y ⊂ θoX, and the result follows.

Theorem 3.8. For each continuous ultrapseudometric d on X, there ex-
ists a continuous ultrapseudometric dθo on θoX which is an extension of
d. Moreover, dθo is the unique continuous extension of d.

Proof: Consider the ultrametric space Xd and let d̃ be its ultrametric.
Let h be the coninuous extension of the quotient map π : X → Xd to all
of θoX. Define

dθo : θoX × θoX → R, dθo(y, z) = d̃(h(y), h(z)).

It is easy to see that dθo is a continuous ultrapseudometric which is an
extension of d. Finally, let % be any continuous ultrapseudometric on
θoX, which is an extension of d, and let y, z ∈ θoX. There are nets
(yδ)δ∈∆, (zγ)γ∈Γ) in X which convergence to y, z, respectively. Let Φ =
∆ × Γ and consider on Φ the order (δ1, γ1) ≥ (δ2, γ2) iff δ1 ≥ δ2 and
γ1 ≥ γ2. For φ = (δ, γ) ∈ Φ, we let aφ = yδ, bφ = zγ . Then aφ → y,
bφ → z. Thus

%(y, z) = lim %(aφ, bφ) = lim d̃(h(aφ), h(bφ)) (3.1)

= lim dθo(aφ, bφ) = dθo(y, z) (3.2)

and hence % = dθo , which completes the proof.

Theorem 3.9. Let (Hn) be a sequence of equicontinuous subsets of C(X).
If z ∈ θoX, then there exists x ∈ X such that fθo(z) = f(x) for all
f ∈

⋃
Hn = H.

Proof: Define

d : X2 → R, d(x, y) = max
n

min{1/n, sup
f∈Hn

|f(x)− f(y)|}.

Then d is a continuous ultrapseudometric on X. Take Y = Xd and let
π : X → Y be the quotient map. Then πβo(z) = u ∈ Y . Choose x ∈
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X with π(x) = u, and let (xδ) be a net in X converging to z in βoX.
Now f(xδ) → fβo(z) for all f ∈ H. Since π(xδ) → π(x), we have that
d(xδ, x) → 0, and so |f(xδ) − f(x)| → 0 for all f ∈ H. Thus, for f ∈ H,
we have f(x) = lim f(xδ) = fβo(z), and the result follows.

Theorem 3.10. If H ⊂ C(X) is equicontinuous, then the family

Hθo = {fθo : f ∈ H}
is equicontinuous on θoX. Moreover, if H is pointwise bounded, then the
same holds for Hθo

Proof: Define

d : X2 → R, d(x, y) = min{1, sup
f∈H

|f(x)− f(y)|}.

Let πθo : θoX → Xd be the continuous extension of the quotient map π :
X → Xd. Let z ∈ θoX and ε > 0. There exists x ∈ X such that πθo(z) =
π(x). Let (xδ) be a net in X converging to z. Then π(xδ) → πθo(z) = π(x)
and so d(xδ, x) → 0. Thus, for f ∈ H, we have fθo(z) = lim f(xδ) = f(x).
The set W = {y ∈ X : d(x, y) ≤ ε} is d-clopen (hence clopen ) in X and
so W θoX = V is clopen in θoX. Since xδ ∈ W eventually, it follows that
z ∈ V . Now, for f ∈ H and a ∈ V , we have that |fθo(a)− fθo(z)| ≤ ε. In
fact, there exists a net (yγ) in W converging to a. Thus

|fθo(a)− fθo(z)| = |f(x)− fθo(a)| = lim
γ
|f(x)− f(yγ)| ≤ ε.

This proves that Hθo is equicontinuous on θoX. The last assertion follows
from the preceding Theorem.

Theorem 3.11. Uc = UX
c is the uniformity U generated by the family of

all continuous ultrapseudometrics on X.

Proof: Let (Ai) be a clopen partition of X and let W =
⋃
Ai × Ai.

Define
d(x, y) = sup

i
|fi(x)− fi(y)|,

where fi = χAi . Then d is a continuous ultrapseudometric on X. Since

W = {(x, y) : d(x, y) < 1/2},
it follows that Uc is coarser than U . Conversely, let d be a continuous
ultrapseudometric on X, ε > 0 and D = {(x, y) : d(x, y) ≤ ε}. If α is the
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clopen partition of X corresponding to the equivalence relation x ∼ y iff
d(x, y) ≤ ε, then D = Wα and the result follows.

Theorem 3.12. Let (Yi, fi)i∈I be the family of all pairs (Y, f), where Y
is an ultrametric space and f : X → Y a continuous map. Then

θoX =
⋂
i∈I

(fβo
i )−1(Yi).

Proof: It follows from Theorem 3.6.

Theorem 3.13. A Hausdorff zero-dimensional space X is θo-complete iff
it is homeomorphic to a closed subspace of a product of ultrametic spaces.

Proof: Every ultrametric space is θo-complete. Thus the sufficiency
follows from Theorem 3.5. Conversely, assume that X is θo-complete and
let (Yi, fi)i∈I be as in the preceding Theorem. Then X =

⋂
i Zi, Zi =

(fβo
i )−1(Yi). Let Y =

∏
Yi with its product topology. The map u : X →

Y, u(x)i = fi(x), is one-to-one. Indeed, let x 6= y and choose a clopen
neighborhood V of x not containing y. Let f = χV and

d : X × Y → R, d(a, b) = |f(a)− f(b)|.

The quotient map π : X → Xd is continuous and π(x) 6= π(y), which
implies that u(x) 6= u(y). Clearly u is continuous. Also u−1 : u(X) → X
is continuous. Indeed, let V be a clopen subset of X containing xo and
consider the pseudometric d(x, y) = |χV (x)− χV (y)|. Let π : X → Xd be
the quotient map. There exists a i ∈ I such that Yi = Xd and fi = π.
Then

fi(V ) = π(V ) = {π(x) : d̃(π(x)− π(xo)) < 1}.
The set π(V ) is open in Yi = Xd. Let πi : Y → Yi be the ith-projection
map and G = π−1

i (π(V )). If x ∈ X is such that u(x) ∈ G, then fi(x) =
u(x)i ∈ π(V ) and so d(x, xo) < 1, which implies that x ∈ V since xo ∈ V .
This proves that u : X → u(X) is a homeomorphism. Finally, u(X) is a
closed subspace of Y . In fact, let (xδ) be a net in X with u(xδ) → y ∈ Y .
Then fi(xδ) → yi for all i. Going to a subnet if necessary, we may assume
that xδ → z ∈ βoX. Now fi(xδ) → fβo

i (z) in βoYi. But then fβo
i (z) =

yi ∈ Yi, for all i, and hence z ∈ θoX = X, by the preceding Theorem.
Thus yi = fi(z), for all i, and hence y = u(z). This proves that X is
homeomorphic to a closed subspace of Y and the result follows.
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Corollary 3.14. Every Hausdorff ultraparacompact space is homeomor-
phic to a closed subspace of a product of ultrametric spaces.

Theorem 3.15. For a subset A of X, the following are equivalent :

(1) A is bounding.

(2) A is Uc-totally bounded.

(3) For each continuous ultrapseudometric d on X, A is d-totally
bounded.

Proof: In view of Theorem 3.11, (2) is equivalent to (3). Also, by [2,
Theorem 4.6], (1) implies (2).
(2) ⇒ (1). Let f ∈ C(X),

A1 = {x : |f(x)| ≤ 1}, An+1 = {x : n < |f(x)| ≤ n+ 1}
for n ≥ 1. Then (An) is a clopen partition of X. Let W =

⋃
nAn×An. By

our hypothesis, there are x1, . . . , xN in A such that A ⊂
⋃N

1 W [xk]. For
each 1 ≤ k ≤ N , there exists nk such that xk ∈ Ank

. Then A ⊂
⋃N

1 Ank

and so
‖f‖A ≤ max

1≤k≤N
nk,

which proves that A is bounding.

4. Polarly Barrelled Spaces of Continuous Functions

Definition 4.1. A Hausdorff locally convex space E is called :

(1) polarly barrelled if every bounded subset of E′
σ = (E′, σ(E′, E)) is

equiconinuous.

(2) polarly quasi-barrelled if every strongly bounded subset of E′ is
equicontinuous.

We will denote by Cc(X,E) the space C(X,E) equipped with the topol-
ogy of uniform convergence on compact subsets of X. By Mc(X,E′) we
will denote the space of all m ∈ M(X,E′) with compact support. The
dual space of Cc(X,E) coincides with Mc(X,E′).
Recall that a zero-dimensional Hausdorff topological space X is called a
µo-space (see [2]) if every bounding subset of X is relatively compact. We
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denote by µoX the smallest of all µo-subspaces of βoX which contain X.
Then X ⊂ µoX ⊂ θoX and, for each bounding subset A of X, the set
A

βoX is contained in µoX (see [2]). Moreover, if Y is another Hausdorff
zero-dimensional space and f : X → Y , then fβo(µoX) ⊂ µoY and so
there exists a continuous extension fµo : µoX → µoY of f .

Theorem 4.2. Assume that E′ 6= {0} and let G = Cc(X,E). Then G is
polarly barrelled iff X is a µo-space and E polarly barrelled.

Proof: Assume that G is polarly barrelled.
I. E is polarly barrelled. Indeed, let Φ be a w?-bounded subset of E′
and let x ∈ X. For u ∈ E′, let

ux : G→ K, ux(f) = u(f(x)).

Let H = {ux : u ∈ Φ}. For f ∈ C(X,E), we have

sup
u∈Φ

|ux(f)| = sup
u∈Φ

|u(f(x))| <∞

and so H is a w?-bounded subset of G′. By our hypothesis, there exists
p ∈ cs(E) and Y a compact subset of X such that

{f ∈ G : ‖f‖Y,p ≤ 1} ⊂ Ho.

But then {s ∈ E : p(s) ≤ 1} ⊂ Φo and so Φ is equicontinuous.
II. X is a µo-space. In fact, let A be a bounding subset of X and let
x′ ∈ E′, x′ 6= 0. Define p on E by p(x) = |x′(s)|. Then p ∈ cs(E). The set

D = {f ∈ G : ‖f‖A,p ≤ 1}

is a polar barrel in G and so D is a neighborhood of zero in G. Let Y a
compact subset of X and q ∈ cs(E) be such that

{f ∈ G : ‖f‖Y,p ≤ 1} ⊂ D.

But then A ⊂ Y and so A is compact.
Conversely, suppose that E is polarly barrelled and X a µo-space. Let H
be a w?-bounded subset of the dual space Mc(X,E′) of G. Let s ∈ E and

D = {ms : m ∈ H} ⊂M(X).

For h ∈ Crc(X), we have that

sup
m∈H

| < ms, h > | = sup
m∈H

| < m,hs > | <∞.
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Thus, consideringM(X) as the dual of the Banach space F = (Crc(X), τu),
D is w?-bounded of F ′ and so supm∈H ‖ms‖ = ds <∞. Hence, |m(V )s| ≤
ds for all V ∈ K(X). It follows that the set

M =
⋃

m∈H

m(K(X))

is a w?-bounded subset of E′. Since E is polarly barrelled, there exists
p ∈ cs(E) such that |u(s)| ≤ 1 for all u ∈M and all s ∈ E with p(s) ≤ 1.
Hence supm∈H ‖m‖p < ∞. We may choose p so that ‖m‖p ≤ 1 for all
m ∈ H. Let

Z = S(H) =
⋃

m∈H

supp(m).

Then Z is bounding. In fact, assume that Z is not bounding. Then, by
[6, Proposition 6.6], there exists a sequence (mn) in H and f ∈ C(X,E)
such that < mn, f >= λn, for all n, where |λ| > 1, which contradicts the
fact that H is w?-bounded. By our hypothesis now, Z is compact. Since

{f ∈ G : ‖f‖Z,p ≤ 1} ⊂ Ho,

the result follows.

Corollary 4.3. Cc(X) is polarly barrelled iff X is a µo-space.

Let nowG,E be Hausdorff locally convex spaces. We denote by Ls(G,E)
the space L(G,E) of all continuous linear maps, from G to E, equipped
with the topology of simple convergence.

Theorem 4.4. Assume that E is polar and let G be polarly barrelled. If
E is a µo-space (e.g. when E is metrizable or complete), then Ls(G,E) is
a µo-space.

Proof: Let Φ be a bounding subset of Ls(G,E). For x ∈ G, the set

Φ(x) = {φ(x) : φ ∈ Φ}

is a bounding subset of E and hence its closure Mx in E is compact.
Φ is a topological subspace of EG and it is contained in the compact set
M =

∏
x∈GMx. Since the closure of Φ in EG is compact, it suffices to show

that this closure is contained in L(G,E). To this end, we prove first that,
given a polar neighborhood W of zero in E, there exists a neighborhood
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U of zero in G such that φ(U) ⊂ W for all φ ∈ Φ. In fact, for φ ∈ Φ, let
φ′ be the adjoint map. Let

Z =
⋃

φ∈Φ

φ′(H),

where H is the polar of W in E′. If x ∈ G, then Φ(x) is a bounded subset
of E and hence Φ(x) ⊂ αW , for some α ∈ K. If now φ ∈ Φ and u ∈ H,
then

| < φ′(u), x > | = | < u, φ(x > | ≤ |α|,
which proves that Z is a w?-bounded subset of G′. As G is polarly bar-
relled, the polar U = Zo, of Z in G, is a neighborhood of zero and
φ(U) ⊂ Ho = W , for all φ ∈ Φ, which proves our claim. Let now φ ∈ EG

be in the closure of Φ. Then φ is linear. There exists a net (φδ) in Φ con-
verging to φ in EG. If x ∈ U , then φ(x) = limφδ(x) ∈ W , which proves
that φ is continuous. Hence the result follows.

Corollary 4.5. If E is polarly barrelled, then the weak dual E′σ of E is a
µo-space.

Theorem 4.6. Suppose that E is polar and G polarly barrelled. For f ∈
C(X,E), let fµo : µoX → Ê be its continuous extension. If T : G →
Cc(X,E) is a continuous linear map, then the map

T̃ : G→ Cc(µoX, Ê), s 7→ (Ts)µo ,

is continuous

Proof: Note that Ê is θo-complete and hence a µo-space. Let

φ : X → Ls(G,E), < φ(x), s >= (Ts)(x).

Then φ is continuous. Since Ls(G, Ê) is a µo-space, there exists a contin-
uous extension

φµo : µoX → Ls(G, Ê).
Let now A be a compact subset of µoX and p a polar continuous seminorm
on E. We denote also by p the continuous extension of p to all of Ê. Let

V = {g ∈ C(µoX, Ê) : ‖g‖A,p ≤ 1}.

The set Φ = φµo(A) is compact in Ls(G, Ê). As in the proof of Theorem
4.4, there exists a neighborhood U of zero in G such that

ψ(U) ⊂W = {s ∈ Ê : p(s) ≤ 1},
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for all ψ ∈ Φ. Now, for y ∈ A and s ∈ U , we have

p((T̃ s)(y)) = p(< φµo(y), s >) ≤ 1

and so T̃ s ∈ V . This proves that T̃ is continuous and the result follows.

Theorem 4.7. Assume that E is polar and polarly barrelled and let τo
be the locally convex topology on C(X,E) generated by the seminorms
f 7→ ‖fµo‖A,p, where A ranges over the family of all compact subsets of
µoX and p ∈ cs(E). Then :

(1) (C(X,E), τo) is polarly barrelled and τo is finer than τb (and hence
finer than τc).

(2) If τ is any polarly barrelled topology on C(X,E) which is finer
than τc, then τ is finer than τo. Hence τo is the polarly barrelled
topology associated with each of the topologies τb and τc.

Proof: (1). Since E is polarly barrelled, the same is true for Ê. The
space
F = Cc(µoX, Ê) is polarly barrelled and the map

S : (C(X,E), τo) → F, f 7→ fµo ,

is a linear homeomorphism. Thus τo is polarly barrelled. Also, since for
each bounding subset B of X, its closure BµoX is compact, it follows that
τo is finer than τb.
(2). Let τ be a polarly barrelled topology on C(X,E), which is finer than
τc, and let G = (C(X,E), τ). The identity map

T : G→ Cc(X,E)

is continuous and hence the map

T̃ : G→ Cc(µoX, Ê), f 7→ fµo ,

is continuous. This proves that τo is coarser than τ and the Theorem
follows.

Theorem 4.8. Suppose that E is polar. Then G = (C(X,E), τb) is polarly
barrelled iff E is polarly barrelled and, for each compact subset A of µoX,
there exists a bounding subset B of X such that A ⊂ B

µoX .
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Proof: Assume that G is polarly barrelled. It is easy to see that E is
polarly barrelled. In view of the preceding Theorem, τb = τo. Thus, for
each compact subset A of µoX and each non-zero p ∈ cs(E), there exist a
bounding subset B of X and q ∈ cs(E) such that

{f ∈ C(X,E) : ‖f‖B,q ≤ 1} ⊂ {f : ‖fµo‖A,p ≤ 1}.

It follows easily that A ⊂ B
µoX . Conversely, suppose that the condition

is satisfied. The condition clearly implies that τo is coarser than τb and
hence τb = τo, which implies that G is polarly barrelled by the preceding
Theorem.

Let us say that a family F of subsets of a a set Z is finite on a subset
F of Z if the family of all members of F which meet F is finite.

Definition 4.9. A subset D, of a topological space Z, is said to be w-
bounded if every family F of open subsets of Z, which is finite on each
compact subset of Z, is also finite on D. If this happens for families of
clopen sets, then D is said to be wo-bounded. We say that Z is a w-
space (resp. a wo-space ) if every w-bounded (resp. wo-bounded) subset is
relatively compact.

Lemma 4.10. A subset D, of a zero-dimensional topological space Z, is
w-bounded iff it is wo-bounded.

Proof: Assume that D is not w-bounded. Then, there exists an infinite
sequence (xn) of distinct elements of D and a sequence (Vn) of open sets
such that xn ∈ Vn and (Vn) is finite on each compact subset of X. By
[5, Lemma 2.5], there exists a subsequence (xnk

) and pairwise disjoint
clopen sets Wk with xnk

∈ Wk. We may choose Wk ⊂ Vnk
. Now (Wk) is

clearly finite on each compact subset of X, which implies that D is not
wo-bounded. Hence the Lemma follows.

We easily get the following

Lemma 4.11. Every wo-bounded subset of X is bounding.

Theorem 4.12. Assume that E′ 6= {0}. Then G = Cc(X,E) is polarly
quasi-barrelled iff E is polarly quasi-barrelled and X a wo-space.

Proof: Suppose that E is polarly quasi barrelled and X a wo-space.
Let H be a strongly bounded subset of the dual space Mc(X,E) of G. We

129



A. Katsaras

show first that there exists p ∈ cs(E) such that supm∈H ‖m‖p < ∞. In
fact, let B be a bounded subset of E and consider the set

D = {ms : m ∈ H, s ∈ B}.

If h ∈ Crc(X), then the set {hs : s ∈ B} is a bounded subset of G and so

sup
m∈H

∣∣∣∣∫ hs dm

∣∣∣∣ = sup
m∈H

∣∣∣∣∫ h d(ms)
∣∣∣∣ <∞.

ConsideringD a a subset of the dual of the Banach space F = (Crc(X), τu),
we see that D is a w?-bounded subset of F ′ and hence equicontinuous.
Thus

d = sup
m∈H,s∈B

‖ms‖ <∞.

Let
Φ =

⋃
m∈H

m(K(X)).

Then for A ∈ K(X), s ∈ B, m ∈ H, we have |m(A)s| ≤ ‖ms‖ ≤ d.
Hence Φ is a strongly bounded subset of E′. By our hypothesis, Φ is
an equicontinuous subset of E′. Thus, there exists p ∈ cs(E) such that
|m(A)s| ≤ 1 for all m ∈ H and all s ∈ E with p(s) ≤ 1. It follows from
this that supm∈H ‖m‖p = r < ∞. We may choose p so that r ≤ 1. Let
now

Y = S(H) =
⋃

m∈H

supp(m).

Then Y is wo-bounded. Assume the contrary. Then, there exists a sequence
(Vn) of distinct clopen subsets of X, such that Vn∩Y 6= ∅ for all n and (Vn)
is finite on each compact subset of X. . For each n there exists mn ∈ H
with Vn ∩ supp(mn) 6= ∅. Then (mn)p(Vn) > 0. There are a clopen subset
Wn of Vn and sn ∈ E, with p(sn) ≤ 1, such that m(Wn)sn = γn 6= 0. Let
|λ| > 1 and take

M = {γ−1
n λnχWnsn : n ∈ N}.

Since (Wn) is finite on each compact subset of X, it follows that M is a
bounded subset of G and so M is absorbed by Ho. Let λo 6= 0 be such
that M ⊂ λoH

o. But then

1 ≥ |λ−1
o γ−1

n λnmn(Wn)sn| = |λ−1
o λn|
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for all n, which is a contradiction. So Y is wo-bounded and hence compact
by our hypothesis. Moreover

{f ∈ G : ‖f‖Y,p ≤ 1} ⊂ Ho.

Indeed, let ‖f‖Y,p ≤ 1. The set V = {x : p(f(x)) > 1} is disjoint from Y
and hence mp(V ) = 0 for all m ∈ H. Thus, for m ∈ H, we have∣∣∣∣∫

V
f dm

∣∣∣∣ ≤ ‖f‖p ·mp(V ) = 0

and so ∣∣∣∣∫ f dm

∣∣∣∣ =
∣∣∣∣∫

V c
f dm

∣∣∣∣ ≤ mp(V c) ≤ 1.

Conversely, suppose that G is polarly quasi-barrelled. Let Φ be a strongly
bounded subset of E′ and let x ∈ X. For u ∈ E′, define ux on G by
ux(f) = u(f(x)). Then ux ∈ G′. The set H = {ux : u ∈ Φ} is a strongly
bounded subset of G′. Indeed, let D be a bounded subset of G. Since the
set {f(x) : f ∈ D} is a bounded subset of E, we have that

sup
f∈D,u∈Φ

|ux(f)| = sup
f∈D,u∈Φ

|u(f(x))| <∞.

By our hypothesis, H is an equicontinuous subset of G′. Thus, there exists
a compact subset Y of X and p ∈ cs(E) such that

{f ∈ G : ‖f‖Y,p ≤ 1}.

But then {s ∈ E : p(s) ≤ 1} ⊂ Φo and so Φ is an equicontinuous subset
of E′, which proves that E is polarly quasi-barrelled. Finally, let A be
a wo-bounded subset of X and choose a non-zero element x′ of E′. Let
p(s) = |x′(s)| and consider the set

Z = {f ∈ G : ‖f‖A,p ≤ 1}.

Then Z is a polar set. We will show that Z is bornivorous. So, suppose
that there exists a bounded subset M of G which is not absorbed by Z.
Then, there exists a sequence (fn) in M , ‖fn‖A,p > n. Let

Vn = {x : p(fn(x)) > n}.

Then Vn intersects A. Since A is wo-bounded, there exists a compact subset
Y of X such that (Vn) is not finite on Y , which is a contradiction since
supf∈M ‖f‖Y,p < ∞. This contradiction shows that Z absorbs bounded
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subsets of G. In view of our hypothesis, there exist a compact subset Y of
X and q ∈ cs((E) such that

{f ∈ G : ‖f‖Y,q ≤ 1},

which implies that A ⊂ Y and so A is relatively compact. This clearly
completes the proof.

Corollary 4.13. (1) Cc(X) is polarly quasi-barrelled iff X is a wo-
space.

(2) If E′ 6= {0}, then Cc(X,E) is polarly quasi-barrelled iff both E and
Cc(X) are polarly quasi- barrelled.
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