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P-adic Spaces of Continuous Functions I

ATHANASIOS KATSARAS

Abstract

Properties of the so called 6,-complete topological spaces are investigated. Also,
necessary and sufficient conditions are given so that the space C'(X, E) of all contin-
uous functions, from a zero-dimensional topological space X to a non-Archimedean
locally convex space F, equipped with the topology of uniform convergence on the
compact subsets of X to be polarly barrelled or polarly quasi-barrelled.

Introduction

Let K be a complete non-Archimedean valued field and let C(X, E) be
the space of all continuous functions from a zero-dimensional Hausdorff
topological space X to a non-Archimedean Hausdorff locally convex space
E. We will denote by Cy(X, E) (resp. by Cro(X, E)) the space of all f €
C(X, E) for which f(X) is a bounded (resp. relatively compact) subset
of E. The dual space of C,.(X,E), under the topology t, of uniform
convergence, is a space M (X, E’) of finitely-additive E’-valued measures
on the algebra K(X) of all clopen , i.e. both closed and open, subsets of
X. Some subspaces of M (X, E’) turn out to be the duals of C(X, E) or
of Cy(X, E') under certain locally convex topologies.

In section 2 of this paper, we give some results about the space M (X, E’).
The notion of a fy-complete topological space was given in [2]. In section
3 we study some of the properties of 0,-complete spaces. Among other
results, we prove that a Hausdorfl zero-dimensional space is 8,-complete
iff it is homeomorphic to a closed subspace of a product of ultrametric
spaces. In section 4, we give necessary and sufficient conditions for the
space C(X, E), equipped with the topology of uniform convergence on the
compact subsets of X, to be polarly barrelled or polarly quasi-barrelled,

Keywords: Non-Archimedean fields, zero-dimensional spaces, locally convex spaces.
Math. classification: 46510, 46G10.
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A. KATSARAS

1. Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued
field, whose valuation is non-trivial. By a seminorm, on a vector space
over K, we will mean a non-Archimedean seminorm. Similarly, by a locally
convex space we will mean a non-Archimedean locally convex space over
K (see [9]). Unless it is stated explicitly otherwise, X will be a Hausdorff
zero-dimensional topological space , E a Hausdorff locally convex space
and cs(F) the set of all continuous seminorms on E. The space of all K-
valued linear maps on F is denoted by E*, while E’ denotes the topological
dual of E. A seminorm p, on a vector space G over K, is called polar if
p =sup{|f| : f € G*,|f| < p}. A locally convex space G is called polar
if its topology is generated by a family of polar seminorms. A subset A
of G is called absolutely convex if Az + uy € A whenever z,y € A and
A€ K with A |u] < 1. We will denote by (5,X the Banaschewski
compactification of X (see [3]) and by v,X the N-repletion of X, where
N is the set of natural numbers. We will let C(X, E') denote the space of
all continuous E-valued functions on X and Cy(X, E) (resp. Cre(X, E))
the space of all f € C(X, F) for which f(X) is a bounded (resp. relatively
compact) subset of E. In case E = K, we will simply write C(X), Cy(X)
and Cy.(X) respectively. For A C X, we denote by x4 the K-valued
characteristic function of A. Also, for X C Y C 3,X, we denote by BY
the closure of B in Y. If f € EX,p a seminorm on F and A C X, we
define

1fllp = sup p(f(x)), [Ifllap =supp(f(z)).
zeX €A

The strict topology 3, on Cy(X, E) (see [4]) is the locally convex topology
generated by the seminorms f — |[|hf|,, where p € ¢s(F) and h is in
the space B,(X) of all bounded K-valued functions on X which vanish at
infinity, i.e. for every € > 0 there exists a compact subset Y of X such
that |h(z)| <eif ¢ Y.

Let Q = Q(X) be the family of all compact subsets of 5,X \ X. For
H € Q, let Cy be the space of all h € C,.(X) for which the continu-
ous extension h% to all of 3,X vanishes on H. For p € cs(E), let B p
be the locally convex topology on Cy(X, E') generated by the seminorms
f = |hfllp, h € Cu.For H € Q,Bx is the locally convex topology on
Cy(X, E) generated by the seminorms f — ||af|l,, h € Cu,p € cs(E).

110



P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

The inductive limit of the topologies Sy, H € €1, is the topology (. Re-
placing Q2 by the family £2; of all K-zero subsets of 3,X, which are disjoint
from X, we get the topology ;. Recall that a K-zero subset of (3,X is
a set of the form {z € §,X : g(x) = 0}, for some g € C(5,X). We get
the topologies (3, and (3, replacing 2 by the family €, of all @ € Q with
the following property: There exists a clopen partition (A4;);er of X such
that @ is disjoint from each Eﬁ X Now By is the inductive limit of the
topologies Bg, @ € Q,. The inductive limit of the topologies B, as H
ranges over y,, is denoted by (3, ,, while 3/, is the projective limit of the
topologies 3, p € cs(E). For the definition of the topology 3. on Cy(X)
we refer to [7].

Let now K(X) be the algebra of all clopen subsets of X. We denote
by M (X, E") the space of all finitely-additive E’-additive measures m on
K (X) for which the set m(K (X)) is an equicontinuous subset of E’. For
each such m, there exists a p € ¢s(E) such that |[|m|, = m,(X) < oo,
where, for A € K(X),

myp(A) = sup{|m(B)s|/p(s) : p(s) # 0, AD B e K(X)}.

The space of all m € M(X,E’) for which my,(X) < oo is denoted by
M, (X, E"). If m € My(X,E’), then for x € X we define

N p(@) = inf{m,(V) 1z € V € K(X)}.

In case E = K, we denote by M(X) the space of all finitely-additive
bounded K-valued measures on K(X). An element m of M(X) is called
7-additive if m(Vs) — 0 for each decreasing net (Vj) of clopen subsets
of X with V5 = (. In this case we write V5 | (). We denote by M, (X)
the space of all T-additive members of M (X). Analogously, we denote by
My(X) the space of all g-additive m, i.e. those m with m(V;,) — 0 when
V, 1 0. For an m € M(X, E’) and s € E, we denote by ms the element of
M(X) defined by (ms)(V) =m(V)s.

Next we recall the definition of the integral of an f € EX with respect to
an m € M(X, E’"). For a non-empty clopen subset A of X, let D4 be the
family of all & = {A;, Ag, ..., Ap;x1, 29, ..., 2,}, where {A;,..., A} isa
clopen partition of A and zp € Ar. We make D4 into a directed set by
defining oy > «g iff the partition of A in oy is a refinement of the one in
ag. For an o = {Ay, As, ..., Ap;x1,29,..., 20} € Dgand m € M(X, E'),
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A. KATSARAS

we define
wa(fym) =Y m(Ap)f ().
k=1

If the limit lim w, (f, m) exists in K, we will say that f is m-integrable over
A and denote this limit by [, f dm. We define the integral over the empty
set to be 0. For A = X, we write simply [ f dm. It is easy to see that if f is
m-integrable over X, then it is m-integrable over every clopen subset A of
X and [, fdm = [ xafdm.If 7, is the topology of uniform convergence,
then every m € M (X, E’) defines a 7,-continuous linear functional ¢,, on
Croe(X, E), ém(f) = [ fdm. Also every ¢ € (Cre(X, E),7,) is given in
this way by some m € M (X, E’).

For p € ¢s(E), we denote by M;,(X, E') the space of all m € My,(X,E’)
for which m,, is tight, i.e. for each € > 0, there exists a compact subset Y’
of X such that m,(A) < e if the clopen set A is disjoint from Y. Let

Mt(X7E/): U Mt,p(XaE/)‘
pEes(E

Every m € M, ,(X, E’) defines a [y-continuous linear functional w,, on
Cb(X7 E)a

um (f) = [ fdm. The map m — uy,, from M (X, E’) to (Cp(X, E), 3,), is
an algebraic isomorphism. For m € M, (X) and f € K¥, we will denote
by (VR) [ fdm the integral of f , with respect to m, as it is defined in
[9]. We will call (VR) [ fdm the (VR)-integral of f.

For all unexplained terms on locally convex spaces, we refer to [8] and
[9].
2. Some results on M(X, E’)

Theorem 2.1. Let m € M(X,E') be such that ms € M.(X), for all
s € E, and let p € cs(E) with ||m||, < co. Then :

(1) mp(V') = supyey Nmp(x) for every V e K(X).
(2) The set
supp(m) = (Y € K(X) : my(V) = 0}

is the smallest of all closed support sets for m.
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P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

(3) supp(m) = {x : Ny, p(z) # 0}.

(4) If V is a clopen set contained in the union of a family (V;)icr of
clopen sets, then

mp(V) < sup{m,(V;) :i € I}.

Proof: (1). If x € V, then Ny, p(z) < mp(V') and so
mp(V) > a = sup Ny p().
zcV

On the other hand, let m, (V') > d. There exists a clopen set W, contained
in V, and s € E with |m(W)s|/p(s) > d. Let p = ms € M;(X). Then

ul(W) = sup N, (a).
zeW

Let x € W be such that N,(x) > d - p(s). Now Ny, ,(x) > d. In fact,
assume the contrary and let Z be a clopen neighborhood of x contained
in W and such that m,(Z) < d. Now

N,(x) < |ul(Z) = sup{Im(Y)s| : Z > Y € K(X)} < p(s)-my(Z) < dp(s).

This contradiction proves (1).
(2).
X \ supp(m) = U{W € K(X): mp(W) = 0}.

Let V € K(X) be disjoint from supp(m). For each x € V, there exists
W e K(X), with x € W and m,(W) = 0 and so Ny, p(z) = 0. It follows
that

my(V) = sup Ny, p(x) =0,

zeV

which proves that supp(m) is a support set for m. On the other hand,
let Y be a closed support set for m. There exists a decreasing net (Vy) of
clopen sets with Y = (V. Let W € K(X) be disjoint from Y. For each
clopen set V contained in W and each s € E, we have VN Vs | 0 and so
lims(ms)(V N Vs) = 0. Since V5 is disjoint from Y, we have m(Vy) = 0
and so m(V) = m(V5 N'V), which implies that m(V)s = 0, for all s € E,
i.e. m(V) = 0, and hence my,(W) = 0. Therefore supp(m) C W¢. Taking
Vs in place of W, we get that supp(m) C Vs =Y, which proves (2).
(3) Let G = : Ny p(x) # 0} If V € K(X) is disjoint from G, then

mp(V) = sgg Npp(z) =0,
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A. KATSARAS

and so supp(m) C V¢, which implies that supp(m) C G. On the other
hand, let ¢ supp(m). There exists a clopen neighborhood W of x dis-
joint from supp(m). Since supp(m) is a support set for m, we have that
my(W) = 0 and thus Ny, , = 0 on W, which proves that ¢ G. Thus G
is contained in supp(m) and (3) follows.

(4). Let m,(V) > o > 0. There exists a clopen set A contained in V'
and s € E such that |m(A)s|/p(s) > a. If 4 = ms € M.(X), then
lu| (V) = Im(A)s| > a - p(s). In view of [9, p. 250] there exists an i such
that my,(Vi) > |p|(V3)/p(s) > «, which clearly completes the proof.

Theorem 2.2. Let m € M(X,E’) be such that ms € My(X) for alll
s € E (this in particular holds if m € My(X,E")). Let p € cs(E) be such
that my(X) < oo. If a clopen set V is contained in the union of a sequence
(Vi) of clopen sets, then my,(V) < sup,, mp(Vy,).

Proof : 'We show first that, for 4 € M,(X), then there exists an n with
|| (V) < |p|(Vy). In fact, this is clearly true if |u|(V) = 0. Assume that
l1|(V) > 0 and let W, = UY V4. Since WENV | 0, there exists n such
that [u|(V N WYS) < |u|(V). Since V. (VOAWE) U Wh, it follows that

el (V) < |ul(Wn) = max |u|(V),

and the claim follows for p. Suppose now that m,(V) > r > 0. There
exists a clopen subset W of V and s € F such that |m(W)s| > r - p(s).
Let p = ms. Then pu € My(X) and |u|(V) > |m(W)s| > r - p(s). By
the first part of the proof, there exists an n such that |u|(V;,) > 7 - p(s).
Hence, there exists a clopen subset D of V,, such that |u(D)| > 7 - p(s).
Now |m|,(V,,) > |m(D)s|/p(s) > r, which completes the proof.

For X C Y C 3,X, and m € M(X), we denote by m" the element of
M(Y) defined by mY (V) = m(V N X). We denote by m¥> and m® the
mY for Y = v,X and Y = (3,X, respectively.

We have the following easily established

Theorem 2.3. Let m € M(X,E’) be such that ms € M (X) for all
se€ E. Then :

(1) supp(m®) = supp(m)ﬁox.
(2) supp(m) = supp(m™) N X.
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P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

(3) If m has compact support, then supp(m) = supp(m™).

Theorem 2.4. Let m € M,(X,E') and p = mP. The following are
equivalent:

(1) supp(p) C voX.

(2) If Vi, | 0, then there exists an n, such that m(V,) = 0 for every
n > Ne.

(3) If V,, | 0, then there exists an n such that m(V) = 0 for every
clopen set V' contained in V,.

(4) For every Z € Q there exists a clopen subset A on [(3,X disjoint
from Z and such that supp(u) C A.

(5) If Vi | 0, then there exists an n such that my(Vy,) = 0.

Proof: (1) = (2). If V,, | 0, then the set m?f"x is disjoint from v, X
and so supp(p) € U, VTf’goX. In view of the compactness of supp(u), there
exists an n, with supp(u) C WCDB"X. If now n > n,, then m(V;,) = 0.

(2) = (3). Let V,, | 0 and suppose that, for each n, there exists a clopen
subset A of V;, such that m(A) # 0.

Claim. For each n, there exists £k > n and a clopen set B with V; C
B C V, and m(B) # 0. Indeed there exists a clopen subset A of V,,
such that m(A) # 0. For each k, let By = Vi, N A, Dy = Vi \ Bg. Then
Dy, | 0. By our hypothesis, there exists k > n such that m(Dy) = 0. Let
B = AUD;. Then V;, € B C V,. Since A and D;, are disjoint, we have
that m(B) = m(A) # 0 and the claim follows. By induction, we choose
ny =1 < mng < ... and clopen sets By such that V,, ., C By C V,, and
m(Bg) # 0. Since By | 0 and m(By) # 0 for every k, we arrived at a
contradiction.

(3) = (4). Let Z € Q. There exists a decreasing sequence (V},) of clopen

sets with Z = mﬁﬁ"x. By our hypothesis, there exists an n suich that

m(V) = 0 for each clopen subset V of V,,. Now it suffices to take A =

WﬁoX‘

(4) = (1). Let z € B, X \ v,X. There exists a decreasing sequence (V) of
clopen sets with z € Z = m?nﬂf)X. Clearly Z € Q1. Thus, there exists a
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A. KATSARAS

clopen subset A of 5, X disjoint from Z and containing supp(u). Hence z
is not in supp(p).

(3) = (5). It is trivial.

(5) = (1). Let z € B,X \ v,X. There exists a decreasing sequence (V},)
of clopen sets with z € Z = an"X. Let n be such that m,(V},) = 0. If

G = Vnﬁox, then 41,(G) = 0 and so supp(p) C B,X \ G, which implies
that z ¢ supp(p). This completes the proof.

Theorem 2.5. For an m € My(X, E’), the following are equivalent :
(1) m has a compact support, i.e. m € M.(X, E").
(2) supp(mP) C X.

(3) If Vs | 0, then there exists a 6, such that m(Vs) = 0 for all
§ > o,

(4) If Vs | 0, then there exists a 6 such m(V) = 0 for each clopen
subset V' of V.

(5) If H € Q, then there exists a clopen subset A of 5,X, disjoint
from H and containing supp(m®).

(6) If Vs | 0, then there exists a § such that m,(Vs) = 0.

Proof : In view of Theorem 2.3, (1) implies (2).
(2) = (3). Let V5 | 0. By the compactness of supp(m?), there exists ,
such that supp(m®) C Vs and so m(Vs) = 0 for § > d,.
(3) = (4). Let V5 | 0 and suppose that, for each ¢, there exists a clopen
subset V' of Vs with m(V') # 0.
Claim: For each § there exist v > 0 and a clopen set A such that V., C
A C Vs and m(A) # 0. In fact, there exists a clopen subset G of Vs with
m(G) # 0. For each v, let Z, =V, NG, W, =V, \ Z,. Then W, | . By
our hypothesis, there exists v > ¢ with m(V,) = 0. Let A = GUW,,. Since
the sets G and W, are disjoint, we have that m(A4) = m(G) # 0. Since
V., C A C Vs, the claim follows.
Let now F be the family of all clopen subsets A of X with the following
property: There are 7,9, with v > 9, V, C A C V5 and m(A) # 0. Since
F | 0, we got a contradiction.
(4) = (5). If H € Q, then there exists a decreasing net (V) of clopen
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P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

subsets of X with ﬂVgﬁ"X = H. Since Vs | 0, there exists ¢ such that
m(V) = 0 for each clopen subset V' of Vs. Now it suffices to take A =
Wﬁox

(5) = (1). Let z € 5,X \ X. By (5), there exists a clopen subset A of 5, X
containing supp(m?) and not containing z.

(4) = (6). It is trivial.

(6) = (2). Let z € 3,X \ X. There exists a decreasing net (Vs) of clopen
sets with {z} = ﬂVgﬂ"X. Let & be such that m, (V) = 0. If 4 = mP then
MP(V(;BC'X) = my(V5) = 0 and so supp(p) is disjoint from the closure of Vs
in 3, X, which implies that z ¢ supp(u).

This completes the proof.

3. 6,-Complete Spaces

Recall that 6,X is the set of all z € §,X with the following property: For
each clopen partition (V;) of X there exists i such that z € 1 (see [2]).
By [2, Lemma 4.1] we have X C 6,X C v,X. For each clopen partition
o= (Vi)iel of X, let
W = Vi x Vi
i€l

Then the family of all W,, « a clopen partition of X, is a base for a
uniformity U. = UX, compatible with the topology of X, and (6,X,U%X)
coincides with the completion of (X, U, ). We will say that X is 6,-complete
iff X =6,X. As it is shown in [2], if Y is a f,-complete and f: X — Y is
a continuous function, then f has a continuous extension f% : 9, X — Y.
A subset A of X is called bounding if every f € C(X) is bounded on A.
Note that several authors use the term bounded set instead of bounding.
But in this paper we will use the term bounding to distinguish from the
notion of a bounded set in a topological vector space. A set A C X is
bounding iff A% s compact. In this case (as it is shown in [2, Theorem
4.6]) we have that P ey S L Clearly a continuous image of
a bounding set is bounding. Let us say that a family F of subsets of X is
finite on a subset A of X if the family {f € F: F N A # ()} is finite. We
have the following easily established

Lemma 3.1. For a subset A of X, the following are equivalent :
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1) A is bounding.

2) FEwvery continuous real-valued function on X is bounded on A.

(1)
(2)
(3) Ewvery locally finite family of open subsets of X is finite on A.
(4)

4) Every locally finite family of clopen subsets of X is finite on A.

By [1, Theorem 4.6] every ultraparacompact space (and hence every
ultrametrizable space) is §,-complete.

Theorem 3.2. Fvery complete Hausdorff locally convex space E is 0,-
complete.

Proof: Let U be the usual uniformity on F, i.e. the uniformity having
as a base the family of all sets of the form

Wpe ={(z,y) :p(x —y) <€}, p€cs(E), e>0.

Given W) ¢, we consider the clopen partition o = (V;);er of E generated
by the equivalence relation = ~ y iff p(z —y) < e. Then W, = W, and
so U is coarser that U.. Since (E,U) is complete and U. is compatible
with the topology of E, it follows that (E,U.) is complete and the result
follows.

Corollary 3.3. A subset B, of a complete Hausdorff locally conver space
E, is bounding iff it is totally bounded.

Proof: 1If B is bounding, then B = B i compact and hence totally
bounded, which implies that B is totally bounded. Conversely, if B is
totally bounded, then B is totally bounded. Thus B is compact and hence
B is bounding.

Theorem 3.4. If G is a locally convex space (not necessarily Hausdorff),
then every bounding subset A of G is totally bounded.

Proof: Assume first that G is Hausdorff. Let G be the completion of G.
The closure B of Ain G is bounding and hence B is totally bounded, which
implies that A is totally bounded. If G is not Hausdorff, we consider the
quotient space F' = G/@ and let u : G — F be the quotient map. Since
u is continuous, the set u(A) is bounding, and hence totally bounded,
in F. Let now V be a convex neighborhood of zero in G. Then, u(V)
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P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

is a neighborhood of zero in F. Let S be finite subset of A such that
u(A) C u(S) + u(V). But then

ACS+V4+{0}cS+V+V=S8+V,
which proves that A is totally bounded.

Theorem 3.5. We have:
(1) Closed subspaces of 0,-complete spaces are 0,-complete.

(2) If X =[1X;, with X; # 0 for all i, then X is 0,-complete iff each
X; is 0,-complete .

(3) If (Yi)ier is a family of 0,-complete subspaces of X, then Y =Y
s 0,-complete.

(4) 0,X is the smallest of all 0,-complete subspaces of B, X which con-
tain X.

Proof: (1). Let Z be a closed subspace of a 6,-complete space X and
let (5) be a UZ-Cauchy net in Z. Then (z5) is UX-Cauchy and hence
x5 — x € X. Moreover, x € Z since Z is closed.

(2). Each X; is homeomorphic to a closed subspace of X. Thus X is
0,-complete if X is 0,-complete. Conversely, suppose that each X; is 0,-
complete. If (29) is a UX-Cauchy net, then (z?9) is a UXi-Cauchy net in
X; and hence xf —x; € X;. If © = (x;), then z% — z, which proves that
(X,U,) is complete.

(3). Let X =1]]Y; and consider the map f:Y — X, f(x); = x for
all i. Then f:Y — f(Y) = D is a homeomorphism. Also D is a closed
subspace of X. Since X is 6,-complete, it follows that D is 8,-complete
and hence Y is 0,-complete.

(4).  Since 6,X is 6,-complete (by [2, Theorem 4.9]) and X C 6,X C
B, X, the result follows from (3).

Theorem 3.6. For a point z € 5,X, the following are equivalent :
(1) z€6,X.

(2) IfY is a Hausdorff ultraparacompact space and f : X —'Y contin-
uous, then fP(z) € Y, where f% : 8,X — B,Y is the continuous
extension of  f.

119



A. KATSARAS

(3) For every ultrametric space Y and every f : X — Y continuous ,
we have that f%(z) €Y.

Proof: (1) = (2). Since §,Y =Y, the result follows from [2, Theorem
4.4].
(2) = (3). It is trivial.
(3) = (1). Assume that z ¢ 0,X. Then, there exists a clopen partition
(

A;) of X such that z ¢ |, 4; A% Let fi = x4, and define
d: X x X =R, d(z,y)=sup|fi(z) - fi(y)|

Then d is a continuous ultrapseudometric on X. Let Y = X; be the
corresponding ultrametric space and let 7 : X — Y; be the quotient map,
x +— T4 = Z. Since 7 is continuous, there exists (by (3)) an z € X such that
7P (2) = 4. Let (z5) be a net in X converging to z. Then 75 = 77 (z5) —
7P (z) = 7, and so d(xs,x) — 0. If x € A;, then |fi(zs) — 1| — 0, and
so there exists d, such that x5 € A; when § > ,. But then z € EBOX, a
contradiction. This completes the proof.

Theorem 3.7. Let X be a dense subspace of a Hausdorff zero-dimensional
space Y. The following are equivalent :

(1) Y C 0,X (more precisely, Y is homeomorphic to a subspace of
0,X).

(2) Each continuous function, from X to any ultrametric space Z, has
a continuous extension to all of Y.

Proof: (1) implies (2) by the preceding Theorem.
(2) = (1). We will prove first that, for each clopen subset V of X, we
have that V' NVe = (0, and so 7Y s clopen in Y. Indeed, define

d: X x X =R, dz,y) =max{|fi(z) = i(y)],[fo(z) = L2(y)[},

where f1 = xv, fo = xve. Then d is a continuous ultrapseudometric on
X. Let m: X — X4 be the quotient map. By our hypothesis, there exists

a continuous extension h : Y — X, of m. Suppose that z € V' N ey,
There are nets (x5), (y,), in V, V¢ respectively, such that z; — z, and
Yy — 2. Let d be the ultrametric of X; and let d,,, be such that

d(m(z5),h(2)) <1 and d(m(x,),h(z)) <1
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when § > d,,7 > 7v,. Now
d(5,Y7,) = d(m(s,), m(ys,)) < 1,

a contradiction. Thus V" is clopenin Y. If A = VY, B = WY, then
A OB T T .

This, being true for each clopen subset V' of X, implies that 5, X = 5,V

and so X C Y C 3,Y = 3,X. Now our hypothesis (2) and the preceding
Theorem imply that Y C 6,X, and the result follows.

Theorem 3.8. For each continuous ultrapseudometric d on X, there ex-
ists a continuous ultrapseudometric d% on 0,X which is an extension of
d. Moreover, d% is the unique continuous extension of d.

Proof: Consider the ultrametric space X, and let d be its ultrametric.
Let h be the coninuous extension of the quotient map 7 : X — X, to all
of 8,X. Define

d% : 0,X x 0,X — R, d%(y,z) = d(h(y), h(2)).

It is easy to see that d% is a continuous ultrapseudometric which is an
extension of d. Finally, let p be any continuous ultrapseudometric on
0,X, which is an extension of d, and let y,z € 6,X. There are nets
(Ys)sen, (2y)yer) in X which convergence to y, z, respectively. Let ® =
A x I'" and consider on ® the order (d1,71) > (62,72) iff 6; > d2 and
7 = 2. For ¢ = (6,7) € @, we let ag = ys5, by = z,. Then ay — ¥,
by — z. Thus

o(y,2) = limo(ag,bs) =limd(h(as), h(by))
= limd% (ag,by) = d%(y, 2)

and hence p = d%, which completes the proof.

—~
w e
N =

Theorem 3.9. Let (H,,) be a sequence of equicontinuous subsets of C(X).
If 2 € 0,X, then there exists * € X such that f%(z) = f(z) for all
feUH,=H.

Proof: Define

d:X? >R, d(z,y) =maxmin{l/n, sup |f(z) — f(y)|}.
" feHn

Then d is a continuous ultrapseudometric on X. Take ¥ = X; and let
7 : X — Y be the quotient map. Then 7% (2) = u € Y. Choose = €
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X with m(z) = u, and let (zs5) be a net in X converging to z in (5,X.
Now f(x5) — fP(z) for all f € H. Since n(xs) — m(z), we have that
d(zs,x) — 0, and so |f(xs) — f(z)| — 0 for all f € H. Thus, for f € H,
we have f(x) = lim f(z5) = f%(2), and the result follows.

Theorem 3.10. If H C C(X) is equicontinuous, then the family
HY% = {f%: feH}
s equicontinuous on 0,X. Moreover, if H is pointwise bounded, then the
same holds for H%
Proof: Define

d:X> =R, d(z,y)=min{L, sup |f(x) — f(y)]}.
feH

Let 7% : §,X — X4 be the continuous extension of the quotient map = :
X — X, Let z € 0,X and € > 0. There exists # € X such that 7% (z) =
7(z). Let (vs) be a net in X converging to z. Then 7(xs) — 7% (2) = n(x
and so d(z5,z) — 0. Thus, for f € H, we have f%(z2) = lim f(z5) = f(x).
The set W = {y € X : d(z,y) < €} is d-clopen (hence clopen ) in X and

so W~ =V is clopen in 6,X. Since x5 € W eventually, it follows that
z € V. Now, for f € H and a € V, we have that |f%(a) — f%(2)] <e. In
fact, there exists a net (y,) in W converging to a. Thus

1% (a) = fP(2)| = | f(2) = f*(a)] = lim[f(z) — f(yy)] < e

This proves that H% is equicontinuous on 6,X. The last assertion follows
from the preceding Theorem.

Theorem 3.11. U. = UX is the uniformity U generated by the family of
all continuous ultrapseudometrics on X.

Proof: Let (A;) be a clopen partition of X and let W = |JA; x A;.
Define

d(z,y) = sup|fi(x) — fi(y)l,
7
where f; = x4,. Then d is a continuous ultrapseudometric on X. Since

W ={(z,y) : d(z,y) <1/2},

it follows that U, is coarser than U. Conversely, let d be a continuous
ultrapseudometric on X, € > 0 and D = {(z,y) : d(z,y) < e}. If a is the
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clopen partition of X corresponding to the equivalence relation x ~ y iff
d(x,y) <€, then D = W, and the result follows.

Theorem 3.12. Let (Y;, fi)icr be the family of all pairs (Y, f), where Y
is an ultrametric space and f: X — Y a continuous map. Then

0.X = (/7)1 (v3).

i€l
Proof: 1t follows from Theorem 3.6.

Theorem 3.13. A Hausdorff zero-dimensional space X is 0,-complete iff
it 18 homeomorphic to a closed subspace of a product of ultrametic spaces.

Proof: Every ultrametric space is 6,-complete. Thus the sufficiency
follows from Theorem 3.5. Conversely, assume that X is 6,-complete and
let (Yi, fi)ier be as in the preceding Theorem. Then X = (N, Z;, Z; =
(fiﬁ")_l(Yi). Let Y = [[Y; with its product topology. The map v : X —
Y, u(z); = fi(z), is one-to-one. Indeed, let x # y and choose a clopen
neighborhood V' of z not containing y. Let f = xy and

d: X xY =R, dab)=|f(a) - f).

The quotient map 7 : X — Xy is continuous and w(z) # 7(y), which
implies that u(z) # u(y). Clearly u is continuous. Also u=! : u(X) — X
is continuous. Indeed, let V be a clopen subset of X containing x, and
consider the pseudometric d(z,y) = |xv(z) — xv(y)|. Let 7 : X — X, be
the quotient map. There exists a ¢ € I such that Y; = X4 and f; = .
Then

fiV) =a(V) ={n(z) : d(w(z) — m(z,)) < 1}.

The set w(V') is open in Y; = X. Let m; : Y — Y; be the ith-projection
map and G = 7; Y(7(V)). If z € X is such that u(z) € G, then fi(z) =
u(x); € (V) and so d(z,x,) < 1, which implies that z € V since z, € V.
This proves that v : X — u(X) is a homeomorphism. Finally, u(X) is a
closed subspace of Y. In fact, let (x5) be a net in X with u(zs) -y €Y.
Then f;(xz5) — y; for all i. Going to a subnet if necessary, we may assume
that x5 — 2z € G, X. Now fi(zs) — fiﬁ"(z) in 3,Y;. But then ff"(z) =
y; € Y;, for all ¢, and hence z € §,X = X, by the preceding Theorem.
Thus y; = fi(2), for all i, and hence y = wu(z). This proves that X is
homeomorphic to a closed subspace of Y and the result follows.
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Corollary 3.14. Every Hausdorff ultraparacompact space is homeomor-
phic to a closed subspace of a product of ultrametric spaces.

Theorem 3.15. For a subset A of X, the following are equivalent :
(1) A is bounding.
(2) A is U.-totally bounded.

(3) For each continuous ultrapseudometric d on X, A is d-totally
bounded.

Proof: In view of Theorem 3.11, (2) is equivalent to (3). Also, by [2,
Theorem 4.6], (1) implies (2).
(2) = (1). Let f e C(X),

A= Lo f@] 1) An = {oin < |f(@) <n+ 1}

for n > 1. Then (A;) is a clopen partition of X. Let W = J,, An, X A,,. By
our hypothesis, there are z1,...,zy in A such that A ¢ UY Wz,]. For
each 1 < k < N, there exists ny such that z;, € A,,. Then A C Ujlv Ap,
and so

<
[flla < | max ng,

which proves that A is bounding.

4. Polarly Barrelled Spaces of Continuous Functions

Definition 4.1. A Hausdorff locally convex space E is called :

(1) polarly barrelled if every bounded subset of E, = (E,o(E', E)) is
equiconinuous.

(2) polarly quasi-barrelled if every strongly bounded subset of E’ is
equicontinuous.

We will denote by C.(X, E) the space C(X, E) equipped with the topol-
ogy of uniform convergence on compact subsets of X. By M (X, E’) we
will denote the space of all m € M (X, E’) with compact support. The
dual space of C.(X, E) coincides with M.(X, E’).

Recall that a zero-dimensional Hausdorff topological space X is called a
po-space (see [2]) if every bounding subset of X is relatively compact. We

124



P-ADIC SPACES OF CONTINUOUS FUNCTIONS I

denote by p,X the smallest of all p,-subspaces of 3,X which contain X.
Then X C poX C 6,X and, for each bounding subset A of X, the set

47X is contained in 1oX (see [2]). Moreover, if Y is another Hausdorff
zero-dimensional space and f : X — Y, then f%(u,X) C poY and so
there exists a continuous extension f#° : u, X — uoY of f.

Theorem 4.2. Assume that E' # {0} and let G = Co(X,E). Then G is
polarly barrelled iff X is a po-space and E polarly barrelled.

Proof: Assume that G is polarly barrelled.
I. FE is polarly barrelled. Indeed, let ® be a w*-bounded subset of E’
and let x € X. For u € E’, let

uy 1 G =K, ug(f) =u(f(x)).
Let H = {uy; : u € ®}. For f € C(X, E), we have

sup |ug (f)[ = sup |u(f(z))| < oo

ued ued

and so H is a w*-bounded subset of G’. By our hypothesis, there exists
p € c¢s(E) and Y a compact subset of X such that

{F€C:|flvy<1}CH

But then {s € E: p(s) < 1} C ®° and so ® is equicontinuous.
II. X is a pe-space. In fact, let A be a bounding subset of X and let
' € E', 2’ # 0. Define p on E by p(x) = |2/(s)|. Then p € ¢s(F). The set

D={f€G:|flap<1}

is a polar barrel in G and so D is a neighborhood of zero in G. Let Y a
compact subset of X and g € ¢s(E) be such that

{f€G:|fllvy<1}CD.

But then A C Y and so A is compact.

Conversely, suppose that F is polarly barrelled and X a p,-space. Let H
be a w*-bounded subset of the dual space M.(X, E’) of G. Let s € E and

D={ms:meH} C M(X).
For h € Cyo(X), we have that

sup | < ms,h > |= sup | <m,hs > | < cc.
meH meH
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Thus, considering M (X)) as the dual of the Banach space F' = (Cro(X), Tu),
D is w*-bounded of F’ and so sup,,cy [|ms|| = ds < co. Hence, |m(V)s| <
ds for all V e K(X). It follows that the set

M = UHm(K(X))

is a w*-bounded subset of E’. Since E is polarly barrelled, there exists
p € ¢s(E) such that |u(s)| <1 for all w € M and all s € E with p(s) < 1.
Hence sup,, ¢ ||m|[, < oo. We may choose p so that ||m][, < 1 for all
m € H. Let

Z=SH)= U supp(m).
meH

Then Z is bounding. In fact, assume that Z is not bounding. Then, by
[6, Proposition 6.6], there exists a sequence (m,) in H and f € C(X,E)
such that < my,, f >= A", for all n, where |\| > 1, which contradicts the
fact that H is w*-bounded. By our hypothesis now, Z is compact. Since

{feG:|fllzp <1} C H,
the result follows.
Corollary 4.3. C.(X) is polarly barrelled iff X is a po-space.

Let now G, E be Hausdorff locally convex spaces. We denote by Ls(G, E)
the space L(G, E) of all continuous linear maps, from G to E, equipped
with the topology of simple convergence.

Theorem 4.4. Assume that E is polar and let G be polarly barrelled. If
E is a po-space (e.g. when E is metrizable or complete), then Ls(G, E) is
a fLo-space.

Proof: Let ® be a bounding subset of Ls(G, E). For x € G, the set
O(z) = {¢(z) : ¢ € }

is a bounding subset of F and hence its closure M, in E is compact.
® is a topological subspace of EC and it is contained in the compact set
M = [l,eq M. Since the closure of ® in E€ is compact, it suffices to show
that this closure is contained in L(G, F). To this end, we prove first that,
given a polar neighborhood W of zero in F, there exists a neighborhood
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U of zero in G such that ¢(U) C W for all ¢ € ®. In fact, for ¢ € ®, let
¢’ be the adjoint map. Let

z=J ¢H),
pe®

where H is the polar of W in E’. If € G, then ®(x) is a bounded subset
of E and hence ®(z) C aW, for some a € K. If now ¢ € ® and u € H,
then

| <P (w),z>]=|<ud(z>]<]|al,
which proves that Z is a w*-bounded subset of G’. As G is polarly bar-
relled, the polar U = Z°, of Z in G, is a neighborhood of zero and
$(U) C H° =W, for all ¢ € ®, which proves our claim. Let now ¢ € B¢
be in the closure of ®. Then ¢ is linear. There exists a net (¢5) in ® con-
verging to ¢ in EC. If x € U, then ¢(z) = lim ¢s5(z) € W, which proves
that ¢ is continuous. Hence the result follows.
Corollary 4.5. If E is polarly barrelled, then the weak dual E. of E is a
Lho-SPace.
Theorem 4.6. Suppose thatAE is polar and G polarly barrelled. For f €
C(X,E), let fto: p,X — E be its continuous extension. If T : G —
C.(X, E) is a continuous linear map, then the map

T:G — Cu(uoX,E), s (Ts)H,

18 continuous

Proof: Note that Eis 0,-complete and hence a p,-space. Let
¢: X — Ls(G,E), <o(x),s>=(Ts)(z).
Then ¢ is continuous. Since Lg(G, E) is a pe-space, there exists a contin-
uous extension
¢ro e X — Ls(GLE).
Let now A be a compact subset of 1, X and p a polar continuous seminorm
on E. We denote also by p the continuous extension of p to all of E. Let

V = {g€ CluX, B) : gllap <1}

The set & = ¢#*(A) is compact in Ly(G, E). As in the proof of Theorem
4.4, there exists a neighborhood U of zero in G such that

YU)CW ={se E:p(s) <1},
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for all b € ®. Now, for y € A and s € U, we have

p(Ts)(y)) = p(< ¢ (y),s >) <1
and so T's € V. This proves that T is continuous and the result follows.

Theorem 4.7. Assume that E is polar and polarly barrelled and let T,
be the locally convex topology on C(X,E) generated by the seminorms
[ = |[f*||lap, where A ranges over the family of all compact subsets of
poX and p € cs(E). Then :

(1) (C(X, E), 7o) is polarly barrelled and T, is finer than 1, (and hence
finer than T.).

(2) If T is any polarly barrelled topology on C(X,E) which is finer
than 7., then T is finer than 7,. Hence 7, is the polarly barrelled
topology associated with each of the topologies T, and 7.

Proof: (1). Since E is polarly barrelled, the same is true for E. The
space
F = C.(uoX, E) is polarly barrelled and the map

S:(C(X,E),10) = F, = fr,

is a linear homeomorphism. Thus 7, is polarly barrelled. Also, since for

each bounding subset B of X, its closure B" X s compact, it follows that
T, 18 finer than 7.

(2). Let 7 be a polarly barrelled topology on C(X, E), which is finer than
T, and let G = (C(X, E), 7). The identity map

T:G— C.(X,E)
is continuous and hence the map
T:G— ColpoX, E), [ f*,

is continuous. This proves that 7, is coarser than 7 and the Theorem
follows.

Theorem 4.8. Suppose that E is polar. Then G = (C(X, E),m,) is polarly
barrelled iff E is polarly barrelled and, for each compact subset A of pu,X,

there exists a bounding subset B of X such that A C B
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Proof: Assume that G is polarly barrelled. It is easy to see that F is
polarly barrelled. In view of the preceding Theorem, 7, = 7,. Thus, for
each compact subset A of 11, X and each non-zero p € cs(F), there exist a
bounding subset B of X and ¢ € ¢s(E) such that

{feCXE):fllBg <1} C{f: 1/*)lap <1}

It follows easily that A C BrX Conversely, suppose that the condition
is satisfied. The condition clearly implies that 7, is coarser than 7, and
hence 1, = 7,, which implies that G is polarly barrelled by the preceding
Theorem.

Let us say that a family F of subsets of a a set Z is finite on a subset
F of Z if the family of all members of F which meet F' is finite.

Definition 4.9. A subset D, of a topological space Z, is said to be w-
bounded if every family F of open subsets of Z, which is finite on each
compact subset of Z, is also finite on D. If this happens for families of
clopen sets, then D is said to be w,-bounded. We say that Z is a w-
space (resp. a w,-space ) if every w-bounded (resp. w,-bounded) subset is
relatively compact.

Lemma 4.10. A subset D, of a zero-dimensional topological space Z, is
w-bounded iff it is w,-bounded.

Proof: Assume that D is not w-bounded. Then, there exists an infinite
sequence (zy) of distinct elements of D and a sequence (V},) of open sets
such that z, € V,, and (V,,) is finite on each compact subset of X. By
[5, Lemma 2.5], there exists a subsequence (xy,) and pairwise disjoint
clopen sets W, with z,, € Wj. We may choose W, C V,,,. Now (W}) is
clearly finite on each compact subset of X, which implies that D is not
wo-bounded. Hence the Lemma follows.

We easily get the following
Lemma 4.11. Every w,-bounded subset of X is bounding.

Theorem 4.12. Assume that E' # {0}. Then G = C.(X,E) is polarly
quasi-barrelled iff E is polarly quasi-barrelled and X a w,-space.

Proof: Suppose that E is polarly quasi barrelled and X a w,-space.
Let H be a strongly bounded subset of the dual space M (X, E) of G. We
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show first that there exists p € cs(E) such that sup,,cx ||m|, < co. In
fact, let B be a bounded subset of E and consider the set

D ={ms:me H, s € B}.
If h € Cro(X), then the set {hs: s € B} is a bounded subset of G and so

sup ‘/hs dm' = sup ‘/hd(ms)
meH meH
Considering D a a subset of the dual of the Banach space F' = (Cy.(X), 7,),
we see that D is a w*-bounded subset of I’ and hence equicontinuous.
Thus

< oQ.

d= sup |ms| < 0.
meH,seB

Let
= [J m(K(X)).

meH
Then for A € K(X),s € B,m € H, we have |/m(A4)s| < |ms| < d.
Hence ® is a strongly bounded subset of E’. By our hypothesis, ® is
an equicontinuous subset of E’. Thus, there exists p € cs(E) such that
|m(A)s| <1 for all m € H and all s € E with p(s) < 1. It follows from
this that sup,,cz ||m|, = r < co. We may choose p so that r < 1. Let
now
Y=8(H)= U supp(m).
meH

Then Y is wo,-bounded. Assume the contrary. Then, there exists a sequence
(V3,) of distinct clopen subsets of X, such that V,,NY # () for all n and (V},)
is finite on each compact subset of X. . For each n there exists m,, € H
with V;, N supp(my,) # 0. Then (my,)p(V5,) > 0. There are a clopen subset
W, of V,, and s,, € E, with p(s,) < 1, such that m(W,,)s, = v, # 0. Let
|A| > 1 and take

M = {7, "A\"xw, 8, : n € N}.

Since (W,,) is finite on each compact subset of X, it follows that M is a
bounded subset of G and so M is absorbed by H°. Let A, # 0 be such
that M C A\,H°. But then

1> |/\;17;1/\nmn(wn)3n‘ = ’)\;1)\71|
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for all n, which is a contradiction. So Y is w,-bounded and hence compact
by our hypothesis. Moreover

{feG:|fllyp<1}CcH®

Indeed, let || f|ly,, < 1. The set V = {z : p(f(z)) > 1} is disjoint from Y
and hence my(V) = 0 for all m € H. Thus, for m € H, we have

]/;hmﬁgufm-mav>=o

J ||

Conversely, suppose that G is polarly quasi-barrelled. Let ® be a strongly
bounded subset of E’ and let x € X. For u € E’, define u, on G by
uz(f) = u(f(z)). Then u, € G'. The set H = {u, : u € ®} is a strongly
bounded subset of G’. Indeed, let D be a bounded subset of G. Since the
set {f(z): f € D} is a bounded subset of E, we have that

and so

<m,(V°) < 1.

sup |uz(f) = sup |u(f(x))| < occ.
feDued feDued

By our hypothesis, H is an equicontinuous subset of G’. Thus, there exists
a compact subset Y of X and p € ¢s(F) such that

{FeG:flyp <1}

But then {s € E : p(s) < 1} C ®° and so ¢ is an equicontinuous subset
of E’, which proves that E is polarly quasi-barrelled. Finally, let A be
a w,-bounded subset of X and choose a non-zero element z’ of E’. Let
p(s) = |2'(s)] and consider the set

Z={f€G:|fllap<1}.

Then Z is a polar set. We will show that Z is bornivorous. So, suppose
that there exists a bounded subset M of G which is not absorbed by Z.
Then, there exists a sequence (fy,) in M, || fn]lap > n. Let

Vo ={z: p(fu(z)) > n}.

Then V,, intersects A. Since A is w,-bounded, there exists a compact subset
Y of X such that (V},) is not finite on Y, which is a contradiction since
supfeps || fllv,p < oo. This contradiction shows that Z absorbs bounded
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subsets of G. In view of our hypothesis, there exist a compact subset Y of
X and g € cs((E) such that

{feG:|fllvg <1}

which implies that A C Y and so A is relatively compact. This clearly
completes the proof.

Corollary 4.13. (1) Co(X) is polarly quasi-barrelled iff X is a w,-
space.

(2) If E' # {0}, then Co(X, E) is polarly quasi-barrelled iff both E and
C.(X) are polarly quasi- barrelled.
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