Prescribing Q-curvature on higher dimensional spheres
Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 2, pp. 259-295.

We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.

DOI : 10.5802/ambp.207
Classification : 35J60, 53C21, 58J05
Mots clés : Variational problems, lack of compactness, $Q$ curvature, critical points at infinity
El Mehdi, Khalil 1

1 Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA
@article{AMBP_2005__12_2_259_0,
     author = {El Mehdi, Khalil},
     title = {Prescribing $Q$-curvature on higher dimensional spheres},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {259--295},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {2},
     year = {2005},
     doi = {10.5802/ambp.207},
     zbl = {05016092},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.207/}
}
TY  - JOUR
AU  - El Mehdi, Khalil
TI  - Prescribing $Q$-curvature on higher dimensional spheres
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
SP  - 259
EP  - 295
VL  - 12
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.207/
DO  - 10.5802/ambp.207
LA  - en
ID  - AMBP_2005__12_2_259_0
ER  - 
%0 Journal Article
%A El Mehdi, Khalil
%T Prescribing $Q$-curvature on higher dimensional spheres
%J Annales mathématiques Blaise Pascal
%D 2005
%P 259-295
%V 12
%N 2
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.207/
%R 10.5802/ambp.207
%G en
%F AMBP_2005__12_2_259_0
El Mehdi, Khalil. Prescribing $Q$-curvature on higher dimensional spheres. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 2, pp. 259-295. doi : 10.5802/ambp.207. http://www.numdam.org/articles/10.5802/ambp.207/

[1] Aubin, T.; Bahri, A. Une hypothèse de topologie algebrique pour le problème de la courbure scalaire prescrite, J Math. Pures Appl., Volume 76 (1997), pp. 843-850 | DOI | MR | Zbl

[2] Aubin, T. Some nonlinear problems in differential geometry, Springer-Verlag, New York, 1997

[3] Bahri, A.; Coron, J.M. On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 255-294 | DOI | MR | Zbl

[4] Bahri, A.; Rabinowitz, P. Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non linéaire, Volume 8 (1991), pp. 561-649 | Numdam | MR | Zbl

[5] Bahri, A. Critical point at infinity in some variational problems, Pitman Res. Notes Math Ser 182, Longman Sci. Tech. Harlow, 1989 | MR | Zbl

[6] Bahri, A. An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. Journal, Volume 81 (1996), pp. 323-466 | DOI | MR | Zbl

[7] Ayed, M. Ben; Chen, Y.; Chtioui, H.; Hammami, M. On the prescribed scalar curvature problem on 4- manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677 | DOI | MR | Zbl

[8] Ayed, M. Ben; Mehdi, K. El The Paneitz curvature problem on lower dimensional spheres, Preprint The Abdus Salam ICTP, Trieste, Italy, Volume 48 (2003) | MR | Zbl

[9] Ayed, M. Ben; Mehdi, K. El Existence of conformal metrics on spheres with prescribed Paneitz curvature, Manuscripta Math, Volume 114 (2004), pp. 211-228 | MR | Zbl

[10] Ayed, M. Ben; Hammami, M. Critical points at infinity in a fourth order elliptic problem with limiting exponent, Nonlinear Anal. TMA, Volume 59 (2004), pp. 891-916 | MR | Zbl

[11] Branson, T. P.; Chang, S. A.; Yang, P. C. Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys., Volume 149 (1992), pp. 241-262 | DOI | MR | Zbl

[12] Branson, T. P. Differential operators canonically associated to a conformal structure, Math. Scand., Volume 57 (1985), pp. 293-345 | EuDML | MR | Zbl

[13] Branson, T. P. Group representations arising from Lorentz conformal geometry, J. Funct. Anal., Volume 74 (1987), pp. 199-291 | DOI | MR | Zbl

[14] Brezis, H.; Coron, J.M. Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., Volume 89 (1985), pp. 21-56 | DOI | MR | Zbl

[15] Chang, S. A.; Gursky, M. J.; Yang, P. C. Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math., Volume 121 (1999), pp. 215-257 | DOI | MR | Zbl

[16] Chang, S. A.; Qing, J.; Yang, P. C. Compactification for a class of conformally flat 4-manifolds, Invent. Math., Volume 142 (2000), pp. 65-93 | DOI | MR | Zbl

[17] Chang, S. A.; Qing, J.; Yang, P. C. On the Chern-Gauss-Bonnet integral for conformal metrics on R4, Duke Math. J., Volume 103 (2000), pp. 523-544 | DOI | MR | Zbl

[18] Chang, S. A.; Yang, P. C. On a fourth order curvature invariant, Spectral problems in Geometry and Arithmetic, Contemporary Math., Volume 237 (1999), pp. 9-28 | Zbl

[19] Chang, S. A. On Paneitz operator - fourth order differential operator in conformal geometry, Harmonic Analysis and PDE; Essays in Honor of A. P. Calderon, Editors: M. Christ, C. Kenig and C. Sadorsky; Chicago Lectures in Mathematics, Volume Chapter 8 (1999), pp. 127-150 | Zbl

[20] Chtioui, H. Prescribing the scalar curvature problem on three and four manifolds, Adv. Nonlinear Stud., Volume 3 (2003), pp. 457-469 | MR | Zbl

[21] Djadli, Z.; Hebey, E.; Ledoux, M. Paneitz-type operators and applications, Duke Math. J., Volume 104 (2000), pp. 129-169 | DOI | MR | Zbl

[22] Djadli, Z.; Malchiodi, A.; Ahmedou, M. Ould Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, Commun. Contemp. Math., Volume 4 (2002), pp. 357-408 | DOI | MR | Zbl

[23] Djadli, Z.; Malchiodi, A.; Ahmedou, M. Ould Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow up analysis and applications, Annali della Scuola Normale Sup. di Pisa, Volume 5 (2002), pp. 387-434 | EuDML | Numdam | MR | Zbl

[24] Esposito, P.; Robert, F. Mountain pass critical points for Paneitz-Branson operators, Calc. Var. Partial Differential Equations, Volume 15 (2002), pp. 493-517 | DOI | MR | Zbl

[25] Felli, V. Existence of conformal metrics on Sn with prescribed fourth-order invariant, Adv. Differential Equations, Volume 7 (2002), pp. 47-76 | MR | Zbl

[26] Gursky, M. J. The Weyl functional, de Rham cohomology and Khaler-Einstein metrics, Ann. of Math., Volume 148 (1998), pp. 315-337 | DOI | MR | Zbl

[27] Lin, C. S. A classification of solutions of a conformally invariant fourth order equation in Rn, Commentari Mathematici Helvetici, Volume 73 (1998), pp. 206-231 | DOI | MR | Zbl

[28] Lions, P. L. The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, Volume 1 (1985), p. I: 165-201; II: 45-121 | EuDML | MR | Zbl

[29] Milnor, J. Lectures on h-Cobordism Theorem, Princeton University Press, Princeton, 1965 | MR | Zbl

[30] Paneitz, S. A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (1983) (Preprint)

[31] Struwe, M. A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | EuDML | MR | Zbl

[32] Wei, J.; Xu, X. On conformal deformations of metrics on Sn, J. Funct. Anal., Volume 157 (1998), pp. 292-325 | DOI | MR | Zbl

[33] Xu, X.; Yang, P. C. Positivity of Paneitz operators, Discrete Contin. Dyn. Syst., Volume 7 (2001), pp. 329-342 | DOI | MR | Zbl

Cité par Sources :