For stationary Gaussian processes, we obtain the necessary and sufficient conditions for Poincaré inequality and log-Sobolev inequality of process-level and provide the sharp constants. The extension to moving average processes is also presented, as well as several concrete examples.
@article{AMBP_2005__12_2_231_0, author = {Li, Guangfei and Miao, Yu and Peng, Huiming and Wu, Liming}, title = {Poincar\'e and {log-Sobolev} inequality for stationary {Gaussian} processes and moving average processes}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {231--243}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {2}, year = {2005}, doi = {10.5802/ambp.205}, zbl = {1090.60035}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.205/} }
TY - JOUR AU - Li, Guangfei AU - Miao, Yu AU - Peng, Huiming AU - Wu, Liming TI - Poincaré and log-Sobolev inequality for stationary Gaussian processes and moving average processes JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 231 EP - 243 VL - 12 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.205/ DO - 10.5802/ambp.205 LA - en ID - AMBP_2005__12_2_231_0 ER -
%0 Journal Article %A Li, Guangfei %A Miao, Yu %A Peng, Huiming %A Wu, Liming %T Poincaré and log-Sobolev inequality for stationary Gaussian processes and moving average processes %J Annales mathématiques Blaise Pascal %D 2005 %P 231-243 %V 12 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.205/ %R 10.5802/ambp.205 %G en %F AMBP_2005__12_2_231_0
Li, Guangfei; Miao, Yu; Peng, Huiming; Wu, Liming. Poincaré and log-Sobolev inequality for stationary Gaussian processes and moving average processes. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 2, pp. 231-243. doi : 10.5802/ambp.205. http://www.numdam.org/articles/10.5802/ambp.205/
[1] On bilinear forms in Gaussian random variables and Toeplitz matrices, Probab. Th. Rel. Fields, Volume 79 (1988), pp. 37-45 | DOI | MR | Zbl
[2] Moderate deviations of moving average processes (Preprint 2004, submitted)
[3] Large deviations for stationary Gaussian processes, Comm. Math. Phys., Volume 97 (1985), pp. 187-210 | DOI | MR | Zbl
[4] Log-Sobolev inequalities for diffusions with respect to the -metric (Preprint 2004, submitted)
[5] Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, Volume 1709 (1999), pp. 120-216 | DOI | EuDML | Numdam | MR | Zbl
[6] Logarithmic Sobolev inequalities and contractivity properties of semigroups, Varenna, 1992, Lecture Notes in Math., Volume 1563 (1993), pp. 54-88 | DOI | MR | Zbl
[7] Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities, J. Funct. Anal., Volume 163, No.1 (1999), pp. 1-28 | DOI | MR | Zbl
[8] Fractional Brownian motion and long-range dependence, Theory and applications of long-range dependence (2003), pp. 5-38 (Birkhäuser Boston, Boston, MA) | MR | Zbl
[9] On large deviations for moving average processese, Probability, Finance and Insurance, pp.15-49, the proceeding of a Workshop at the University of Hong-Kong (15-17 July) (2002) (Eds: T.L. Lai, H.L. Yang and S.P. Yung. World Scientific 2004, Singapour) | MR
Cité par Sources :