Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 147-160.

In this paper we consider the modified wave equation associated with a class of radial Laplacians L generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra c-function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of noncompact symmetric spaces.

DOI : 10.5802/ambp.199
El Kamel, Jamel 1 ; Yacoub, Chokri 1

1 Faculty of Science of Monastir Department of Mathematics Boulevard de l’environnement Monastir Tunisia
@article{AMBP_2005__12_1_147_0,
     author = {El Kamel, Jamel and Yacoub, Chokri},
     title = {Huygens{\textquoteright} principle and equipartition of energy for the modified wave equation associated to a generalized radial {Laplacian}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {147--160},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {1},
     year = {2005},
     doi = {10.5802/ambp.199},
     zbl = {1088.35036},
     mrnumber = {2126445},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.199/}
}
TY  - JOUR
AU  - El Kamel, Jamel
AU  - Yacoub, Chokri
TI  - Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
SP  - 147
EP  - 160
VL  - 12
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.199/
DO  - 10.5802/ambp.199
LA  - en
ID  - AMBP_2005__12_1_147_0
ER  - 
%0 Journal Article
%A El Kamel, Jamel
%A Yacoub, Chokri
%T Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
%J Annales mathématiques Blaise Pascal
%D 2005
%P 147-160
%V 12
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.199/
%R 10.5802/ambp.199
%G en
%F AMBP_2005__12_1_147_0
El Kamel, Jamel; Yacoub, Chokri. Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 147-160. doi : 10.5802/ambp.199. http://www.numdam.org/articles/10.5802/ambp.199/

[1] Anker, J.Ph.; Damek, E.; Yacoub, Ch. Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, Volume XXIII (1996), pp. 643-679 | Numdam | MR | Zbl

[2] Bloom, W.R.; Xu, Z. Fourier transforms of Schwartz functions on Chébli-Triméche hypergroups, Mh. Math., Volume 125 (1998), pp. 89-109 | DOI | MR | Zbl

[3] Branson, T.P.; Olafsson, G.; Schlichtkrull, H. Huygens’ principle in Riemannian symmetric spaces, Math. Ann., Volume 301 (1995), pp. 445-462 | DOI | Zbl

[4] Branson, T.P.; Olafsson, G. Equipartition of energy for waves in symmetric spaces, J. Funct. Anal., Volume 97 (1991), pp. 403-416 | DOI | MR | Zbl

[5] Branson, T.P. Eventual partition of conserved quantities in wave motion, J. Math. Anal. Appl., Volume 96 (1983), pp. 54-62 | DOI | MR | Zbl

[6] Chébli, H. Théorème de Paley-Wiener associé à un opérateur singulier sur (0,), J. Math. Pures Appl., Volume 58 (1979), pp. 1-19 | MR | Zbl

[7] Duffin, R.J. Equipartition of energy in wave motion, J. Math. Anal. Appl., Volume 32 (1970), pp. 386-391 | DOI | MR | Zbl

[8] Helgason, S. Huygens’ principle for wave equation on symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 279-288 | DOI | Zbl

[9] Koornwinder, T.H.; Askey & al., R.A. Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions : Group theoretical aspects and applications, Reidel, 1984, pp. 1-85 | MR | Zbl

[10] Lax, P.D.; Phillips, R.S. Scattering theory, Academic Press, New York, 1967 | MR | Zbl

[11] Lax, P.D.; Phillips, R.S. Translation representations for the solution of the non-euclidean wave equation, Comm. Pure Appl. Math., Volume 32 (1979), pp. 617-667 | DOI | MR | Zbl

[12] Olafsson, G.; Schlichtkrull, H. Wave propagation on Riemannian symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 270-278 | DOI | MR | Zbl

[13] Trimèche, K. Transformation intégrale de Weyl et thóréme de Paley-Wiener associés à un opérateur différentiel singulier sur (0,+), J. Math. Pures. Appl., Volume 60 (1981), pp. 51-98 | MR | Zbl

[14] Trimèche, K. Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comp. Harm. Anal., Volume 4 (1997), pp. 97-112 | DOI | MR | Zbl

[15] Yacoub, Ch., 1994 (Thèse, Université Paris-Sud)

Cité par Sources :