Cale Bases in Algebraic Orders
Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 117-131.

Let R be a non-maximal order in a finite algebraic number field with integral closure R ¯. Although R is not a unique factorization domain, we obtain a positive integer N and a family 𝒬 (called a Cale basis) of primary irreducible elements of R such that x N has a unique factorization into elements of 𝒬 for each xR coprime with the conductor of R. Moreover, this property holds for each nonzero xR when the natural map Spec(R ¯)Spec(R) is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.

DOI : 10.5802/ambp.170
Picavet-L’Hermitte, Martine 1

1 Laboratoire de Mathématiques Pures Université Blaise Pascal Les Cézeaux 63177 AUBIERE CEDEX FRANCE
@article{AMBP_2003__10_1_117_0,
     author = {Picavet-L{\textquoteright}Hermitte, Martine},
     title = {Cale {Bases} in {Algebraic} {Orders}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {117--131},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {1},
     year = {2003},
     doi = {10.5802/ambp.170},
     zbl = {02068413},
     mrnumber = {1990013},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.170/}
}
TY  - JOUR
AU  - Picavet-L’Hermitte, Martine
TI  - Cale Bases in Algebraic Orders
JO  - Annales mathématiques Blaise Pascal
PY  - 2003
SP  - 117
EP  - 131
VL  - 10
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.170/
DO  - 10.5802/ambp.170
LA  - en
ID  - AMBP_2003__10_1_117_0
ER  - 
%0 Journal Article
%A Picavet-L’Hermitte, Martine
%T Cale Bases in Algebraic Orders
%J Annales mathématiques Blaise Pascal
%D 2003
%P 117-131
%V 10
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.170/
%R 10.5802/ambp.170
%G en
%F AMBP_2003__10_1_117_0
Picavet-L’Hermitte, Martine. Cale Bases in Algebraic Orders. Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 117-131. doi : 10.5802/ambp.170. http://www.numdam.org/articles/10.5802/ambp.170/

[1] Anderson, D. D.; Knopp, K. R.; Lewin, R. L. Almost Bézout domains II, J. Algebra, Volume 167 (1994), pp. 547-556 | DOI | MR | Zbl

[2] Anderson, D. D.; Mahaney, L. A. On primary factorizations, J. Pure Appl. Algebra, Volume 54 (1988), pp. 141-154 | DOI | MR | Zbl

[3] Anderson, D. D.; Zafrullah, M. Almost Bézout domains, J. Algebra, Volume 142 (1991), pp. 285-309 | DOI | MR | Zbl

[4] Chapman, S.T.; Halter-Koch, F.; Krause, U. Inside factorial monoids and integral domains, J. Algebra, Volume 252 (2002), pp. 350-375 | DOI | MR | Zbl

[5] Dumitrescu, T.; Lequain, Y.; Mott, J. L.; Zafrullah, M. Almost GCD domains of finite t-character, J. Algebra, Volume 245 (2001), pp. 161-181 | DOI | MR | Zbl

[6] Edwards, H. M. Fermat’s last Theorem, Springer GTM, Berlin, 1977 | MR | Zbl

[7] Faisant, A. Interprétation factorielle du nombre de classes dans les ordres des corps quadratiques, Ann. Math. Blaise Pascal, Volume 7 (2) (2000), pp. 13-18 | DOI | EuDML | Numdam | MR | Zbl

[8] Geroldinger, A.; Halter-Koch, F.; Kaczorowski, J. Non-unique factorizations in orders of global fields, J. Reine Angew. Math., Volume 459 (1995), pp. 89-118 | EuDML | MR | Zbl

[9] Picavet-L’Hermitte, M.; Halter-Koch, F.; Tichy, R. Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis, de Gruyter, Berlin-NewYork, 2000, pp. 365-390 | MR | Zbl

[10] Picavet-L’Hermitte, M. Weakly factorial quadratic orders, Arab. J. Sci. and Engineering, Volume 26 (2001), pp. 171-186 | MR

[11] Zafrullah, M. A general theory of almost factoriality, Manuscripta Math., Volume 51 (1985), pp. 29-62 | DOI | MR | Zbl

[12] Zanardo, P.; Zannier, U. The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., Volume 115 (1994), pp. 379-391 | DOI | MR | Zbl

Cité par Sources :